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Aging impacts the brain’s structural and functional organization and over

time leads to various disorders, such as Alzheimer’s disease and cognitive

impairment. The process also impacts sensory function, bringing about a

general slowing in various perceptual and cognitive functions. Here, we

analyze the Cambridge Centre for Ageing and Neuroscience (Cam-CAN)

resting-state magnetoencephalography (MEG) dataset—the largest aging

cohort available—in light of the quasicriticality framework, a novel organizing

principle for brain functionality which relates information processing and

scaling properties of brain activity to brain connectivity and stimulus.

Examination of the data using this framework reveals interesting correlations

with age and gender of test subjects. Using simulated data as verification, our

results suggest a link between changes to brain connectivity due to aging and

increased dynamical fluctuations of neuronal firing rates. Our findings suggest

a platform to develop biomarkers of neurological health.
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1. Introduction

It is extremely useful in medicine to have biomarkers that will diagnose or predict a

patient’s health (Montez et al., 2009; Zijlmans et al., 2012; Mena et al., 2016; Bruining

et al., 2020). In neuroscience, the rapid advancement of data collection and analysis

has generated many new candidate biomarkers, like in seizure prediction, for example

(Scheffer et al., 2009; Kuhlmann et al., 2018). However, it is sometimes difficult to tell if

a new biomarker underlies the cause of a condition or merely has a spurious correlation

with it (Granger and Newbold, 1974; Mormann et al., 2007; Calude and Longo, 2017). A

strategy to avoid this pitfall would be to focus on observables that are tied to homeostatic

functions that are known to establish conditions for health.

A growing body of work suggests that the brain homeostatically regulates itself to

operate near a critical point where information processing is optimal (Meisel et al.,

2017; Ma et al., 2019; Beggs, 2022). At this critical point, incoming activity is neither

amplified (supercritical) nor damped (subcritical), but approximately preserved as it

passes through neural networks (Beggs, 2008). Departures from the critical point have
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been associated with conditions of poor neurological health

like epilepsy (Meisel et al., 2012), Alzheimer’s disease (Montez

et al., 2009) and depression (Gärtner et al., 2017; for a

review, see Zimmern, 2020). For example, when subjects

are deprived of sleep, their brain signals as assessed by

electroencephalography (EEG)move from near the critical point

toward being supercritical, where there is an increased likelihood

of seizures. After restorative sleep, subjects move back toward

being subcritical where seizures are less likely (Meisel et al.,

2013). Homeostasis of criticality has been observed in animal

experiments too, where prolonged eye suture causes visual

cortex to become subcritical. After several days under this

condition, the cortex returns toward the critical point (Ma et al.,

2019). These and other studies (Tetzlaff et al., 2010; Shew et al.,

2015; Fontenele et al., 2019) indicate that there are mechanisms

to maintain the brain near the critical point, even in the face of

strong perturbations.

The brain, however, is never exactly critical and it is natural

to ask if there is an organizing principle behind the neocortex’s

functional behavior. The quasicriticality framework (Williams-

García et al., 2014) has been advanced as such a principle. A new

way to plot the brain’s proximity to the critical point, rooted

in this idea of quasicriticality, has revealed that the effective

critical exponents (explained more below) are confined to lie

near a scaling line (Friedman et al., 2012). For example, as a

rat explores, grooms, or sleeps over several hours, its effective

critical exponents may change, but they consistently lie near

this scaling line, moving along it over time (Fontenele et al.,

2019). In another experiment that illustrates this, as rats learned

a lever pressing task over several weeks their effective critical

exponents moved along the scaling line but never strayed far

from it (Ma et al., 2020). Similar findings have now been reported

by several labs, including our own (Shew et al., 2015; Fosque

et al., 2021). This makes it reasonable to ask if a new biomarker

for neurological health could be based on the brain’s tendency to

operate within the quasicritical region. Based on this work, we

hypothesize that the position, and its change, along this scaling

line could serve as a biomarker for neurological health.

To pursue this, we examined a large set of magneto-

encephalography (MEG) data collected from 604 healthy human

subjects. We extracted the effective critical exponents from each

patient and plotted them along the scaling line. As a first step

toward testing this idea, we asked if the position on the scaling

line contained information about the patients’ age, gender,

and sensitivity to inputs. We found that statistically significant

relationships did exist, suggesting that this approach will be

fruitful for other health-related information.

To quantitatively interpret these results, we used a

previously-published computational model of brain dynamics,

the so-called cortical branching model (CBM) (Williams-García

et al., 2014). When we supplied this model with activity levels

and connectivity patterns that approximated those from the

patient population, it produced outputs that were consistent

with the results from the human data. This model gives us an

intuitive understanding of why the effective critical exponents

move along the scaling line and how they might be related to

departures from criticality.

The remainder of this paper is organized as follows. In

the next section we will briefly explain some background

information related to quasicritical behavior, like effective

critical exponents, the scaling relation and scaling line, as

some of these concepts are imported from physics and are

not widely known in neuroscience. After that, we will describe

the methods of data collection and analysis. This will be

followed by the results section, which describes the data analysis

and computational modeling. Lastly, we will discuss possible

limitations and future applications of this approach.

2. Background: The organizing
principle of quasicriticality

Broadly speaking, activity in neural networks propagates in

successive stages, spreading from one set of active neurons to

another, and resulting in spatio-temporal patterns of activation

known as neuronal avalanches. This propagation can be

quantified using the branching ratio σ , which gives the average

number of neurons activated by a single active neuron. If we

consider a network with infinitesimal inputs, then the network is

supercritical when σ > 1, and incoming signals are successively

amplified. After several stages, it is difficult to discern from

the output which neurons were active at the input because the

network becomes nearly saturated with activity. When σ < 1,

the network is subcritical and incoming signals are damped.

After several stages, it is also difficult to discern which neurons

were active at the input, now because there is almost no activity

at the output. When σ ≈ 1, the network nears a critical

point where levels of activity are roughly maintained. In this

condition, it is easiest to use the output to reconstruct the input;

mutual information between inputs and outputs is maximized

for critical systems (Shew et al., 2011). For similar reasons, a

network’s dynamical response to inputs, i.e., its susceptibility,

is also maximized near the critical point and diverges at the

critical point σ = 1. It has become clear that this picture seems

consistent with experimental evidence (Shew et al., 2011;Wilting

and Priesemann, 2019). This type of evidence has been obtained

from in vitro culture preparations (Beggs and Plenz, 2003) as

well as in vivo recordings from fish (Ponce-Alvarez et al., 2018),

rodents (Fontenele et al., 2019), primates (Petermann et al.,

2009), and humans (Tagliazucchi et al., 2012; Shriki et al., 2013).

Other signatures of criticality include the scale-free

distributions of measured quantities, for example, the size and

duration of neuronal avalanches. At criticality, probability

distributions of avalanche quantities q (e.g., avalanche size S

and duration T) conform to the finite-size scaling assumption,

P(q, L) = q−τq9q(q/L
dq ), that establishes relations between

the critical exponents τq and fractional dimension dq, given a

system of linear size L, and where 9q is the scaling function
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FIGURE 1

Neuronal avalanches and their distributions. (A) Schematic

network of five neurons; inactive neurons are represented by

gray dots and active neurons by black dots; and propagation of

activity is represented by arrows. Two avalanches are shown: the

first with size 4 and duration 4, and the second with size 5 and

duration 4. (B) In a critical network, the distribution of avalanche

sizes S, follows a power law, which appears linear when plotted

with logarithmic scales. The slope of this line gives the exponent

τS = 1.6. (C) The distribution of avalanche durations, T, follows

another power law with exponent τT = 1.8. (D) The average

avalanche size for a given duration, 〈S〉(T), follows a power law

with exponent γ = 4/3. The appearance of multiple power laws

and the relationship between their exponents,

(τT − 1)/(τS − 1) = γ , indicate that the network may be operating

near a critical point.

(Nishimori and Ortiz, 2011). Close to criticality, avalanche size

and duration distributions nearly follow power laws, showing

approximate scale invariance (Figure 1). The fact that these

distributions are nearly scale-free indicates the absence of a

dominant length or time scale, which would be small in the case

of subcritical networks and large in the case of supercritical

networks. Relations between the characteristic exponents

of these power laws help to confirm critical behavior. For

instance, as indicated above, the network produces cascades,

or avalanches, of activity whose sizes S and durations T follow

power law distributions, P(S) ∝ S−τS and P(T) ∝ T−τT ,

respectively. When represented in a log-log plot, power law

distributions appear as straight lines and the slopes of these

distributions are used to estimate critical exponents. When the

average avalanche size 〈S〉 is plotted against avalanche duration,

this also produces a straight line in a log-log plot; the exponent

for this is γ , and the distribution 〈S〉 ∝ Tγ . At criticality, the

avalanche size exponent τS and avalanche duration exponent τT
are related by the exact scaling relation (Jensen, 1998; Sethna

et al., 2001; Henkel et al., 2008; Friedman et al., 2012),

γ =
τT − 1

τS − 1
, (1)

where γ corresponds to the characteristic exponent of average

avalanche size for a given duration, 〈S〉(T), another scale-free
quantity. The relations above are only exactly satisfied at

criticality. At criticality, universality dictates a unique set of

critical exponents and scaling relations among them. These

relations will not be satisfied away from the critical point,

complicating the general problem of quantifying closeness to

criticality in non-equilibrium systems. Recently, some attempts

have been done in this direction, but there is still much work to

be made (Palmieri and Jensen, 2020a,b).

Interestingly, in living systems, pairs of exponents (τT , τS)

seem to approximately satisfy the scaling relation (1), with

pairs of exponents organized around the scaling line. Then,

one wonders whether there is a sense in which one can

assess proximity to a critical point(s): (1) Is it possible to

determine quantitatively how close a neural network can be

to its optimal response, i.e., largest dynamical susceptibility?

And, most importantly, (2) Is there an organizing principle for

neural dynamics?

The quasicriticality hypothesis states that living neural

systems, being constantly bombarded by external input, will

adapt to operate in the functional parameter region near

the peak of maximum dynamical susceptibility of neural

activity (Williams-García et al., 2014). This quasicritical region

maximizes information propagation across the neural network.

Moreover, the peak of maximum susceptibility defines a non-

equilibrium Widom line (or surface) that depends on the level

of external noise (or stimulus) as well as other functional

parameters of the network. It is important to emphasize that

the quasicritical hypothesis represents a universal organizing

principle and not a particular non-equilibrium model of

brain cortex dynamics (such as the CBM, Williams-García

et al., 2014). As mentioned earlier, there is now evidence of

homeostasis toward a quasicritical region, even after strong

disruptions. In this sense, homeostasis of neuronal activity is

analogous to homeostasis of blood pressure, heart rate, and

body temperature. Because it is useful to track these vital

signs over time, it would also make sense to track proximity

to this quasicritical region over time. A new way to do this

has emerged from the previously-mentioned exponent relation

and the organizing principle of quasicriticality (Williams-García

et al., 2014; Fontenele et al., 2019; Fosque et al., 2021). In this

framework, although the network is not exactly at the critical

point, it may still have approximate power-law distributions

with effective critical exponents. When the network operates

away from the critical point, the two sides of Equation (1) will

not exactly equal each other. The magnitude of this difference

has been called the distance to criticality coefficient (DCC; Ma

et al., 2019). At, or near, the Widom line this relation will be

approximately satisfied (Williams-García et al., 2014; Fosque

et al., 2021) providing evidence for quasicritical behavior.

The use of scaling exponents and the relations among

them is based upon previous works (Williams-García et al.,

2014; Fosque et al., 2021) which showed that when the

system’s response, subject to noise, is near the peak of

maximum dynamical susceptibility, it maximizes the region
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FIGURE 2

Empirical data stay near the γ -scaling line. Depiction of

avalanche duration exponents, τ̃T , plotted against avalanche size

exponents, τ̃S for data collected from the same rat at di�erent

times (similar to data presented by Fontenele et al., 2019). Note

that in all cases, exponents lie close to the dashed γ -scaling line

given by γ = (τ̃T − 1)/(τ̃S − 1). Proximity to the γ -scaling line

indicates closeness to the critical point.

of scale-invariance in avalanche distributions with a scaling

relation closest to being satisfied. The effective avalanche

duration exponent, τ̃T , and the effective avalanche size

exponent, τ̃S can be plotted as a point in the (τ̃T , τ̃S) plane.

Over time, depending on stimuli, noise, and intrinsic structural

parameters of the neural network, it is found that while τ̃T

and τ̃S may change, they typically remain close to the so-

called γ -scaling line, given by the exact scaling relation in

Equation (1). This is shown schematically in Figure 2. The fact

that the same system under different stimuli or noise displays

different pairs of effective exponents is an indication that the

dynamics of that system cannot be critical. We argue that the

hypothesis of criticality needs to be replaced by the hypothesis

of quasicriticality.

What things can push a network away from the critical

point? Randomness is ubiquitous in the nervous system, from

synaptic transmission to thermal noise causing neurons to

spontaneously fire (White et al., 2000). When a perfectly critical

network experiences noise, it moves away from the critical

point in very specific ways. Intuitively, when the probability

of spontaneous activity in neurons, ps, is increased, formerly

distinct avalanches are concatenated (Figure 3) as shown in

Williams-García et al. (2014). This increases the number of

large avalanches, which decreases the slope of the distribution,

and thus reduces the effective exponent. This can account for

movement along the γ -scaling line toward the origin, as shown

in Figure 4. This contrasts with what is expected to happen

exactly at the critical point, where only one set of exponents

should be found—a single point that does notmove on the line—

since that point (together with other exponents) represents

a single universality class (Nishimori and Ortiz, 2011). Thus,

moving exponents indicate that the network is not critical at

all. But if the exponents move along the line, then the network

is as close to critical as it could be—this is the origin of the

term quasicriticality.

It is important to note that this phenomenon of avalanche

concatenation will radically change the value of σ as traditionally

measured, due to absence of separation of timescales between

driving and relaxation processes. Hence, we use the branching

parameter κ , the largest eigenvalue of the connectivity matrix, as

the control parameter that tunes the system close to the peak of

susceptibility. Note that κ can be considered to be the theoretical

branching ratio, while σ is the empirical one measured without

distinguishing concatenated avalanches, and in the critical case

when ps = 0 both will be unity. This parameter, and its relation

to the branching ratio σ , is explained in Section 3.

An increase in ps has other effects as well. As there is

more random activity, mutual information between inputs and

outputs will be reduced; this is like experiencing static in a

phone call and being less able to hear the speaker. Moreover,

because the network will be less responsive to slight changes in

the inputs, the susceptibility of the network will also decrease

with increased ps (Figure 4). To better illustrate, we draw a

non-equilibrium phase diagram of the system (Figure 5) using

the branching parameter κ as the control parameter. When

ps = 0, the critical point occurs at κ = 1 and there are two

distinct phases: the inactive subcritical phase (κ < 1) and active

supercritical phase (κ > 1). When ps is non-zero, however,

the phase transition is replaced by a crossover region between

less active and more active network states; there is always some

network activity, even in the less active states. This crossover

region is in fact the quasicritical region and contains the peak

susceptibility for a given value of ps. The values of κ at which the

susceptibility peaks for each value of ps are themselves connected

by the (dynamical) Widom line.

With large changes in ps, a network may need to “move”

back to the quasicritical region by adjusting κ . As shown in

Fosque et al. (2021), there is a correspondence between this

“adjustment” and “movement” along the γ -scaling line, due to

the change in the values of effective exponents τ̃T and τ̃S as

ps is changed. This is the underlying mechanism responsible

for the movement of exponents along the γ -scaling line in

Figures 2, 4. This picture of moving exponents fits well with

recent reports that the exponents of a given animal can move

along this exponent relation line over time (Fontenele et al.,

2019) or after learning (Ma et al., 2020). Recent experiments with

cortical slice cultures are also consistent with this framework

(Fosque et al., 2021). Thus, although a quasicritical network

is not at the critical point it is, in the sense described above,

“close enough” to still enjoy improved information processing

compared to networks that are arbitrarily away from the

critical point (Helias, 2021). With this, we hypothesize that

human MEG data will also fall along the γ -scaling line.

Most importantly, the position along the γ -scaling line may

reveal useful information about patient health and age. In

this paper, we take the first steps toward exploring this idea.

Can the position along the γ -scaling line be linked with

basic patient information like age, gender, or sensitivity to

new inputs?
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FIGURE 3

How spontaneous activity reduces exponent magnitude. (A) Two avalanches as shown before. Note gap in activity separating them. (B)

Spontaneous activity turns on neurons that would otherwise have been inactive (red circle), filling the gap. The two previously distinct

avalanches are now merged together into a larger and longer avalanche. (C) The increase in large avalanches causes the tail of the distribution

to move further to the right. This in turn causes the magnitude of the exponent τ̃S to decrease (1.6–1.4). The figure illustrates schematically the

results of quasicritical simulations (Fosque et al., 2021).

FIGURE 4

(A) Moving along the γ -scaling line. Avalanche duration exponents, τ̃T , plotted against avalanche size exponents, τ̃S for di�erent values of ps.

Note that in all cases, exponents lie close to the dashed γ -scaling line given by the equation γ = (τ̃T − 1)/(τ̃S − 1). When there is no spontaneous

activity, the magnitude of the exponents is largest (circle). As ps is increased, the magnitude of the exponents decreases (square, then triangle).

Schematic plot here summarizes results reported by Shew et al. (2015), Fontenele et al. (2019), and Fosque et al. (2021), and predicted by

models of quasicriticality (Williams-García et al., 2014; Fosque et al., 2021). (B) Susceptibility, χ , is blunted by increases in ps. When ps = 0 and

the branching parameter is exactly one, the susceptibility curve will diverge to infinity (circle). As ps is increased (square, triangle), the

susceptibility declines. Note that the branching parameter at which these curves peak also declines. This figure schematically depicts the

predictions of a quasicritical network model (Williams-García et al., 2014) that have recently been corroborated with data from spiking networks

(Fosque et al., 2021).

3. Methods

3.1. Data and participants

We analyzed resting-stateMEG data of 604 participants (304

male and 300 females) aged 18–88 years old provided in the

Cam-CAN database. For each subject, temporal Signal Space

Separation (tSSS, MaxFilter 2.2, Elekta Neuromag, Oy, Helsinki,

Finland) was applied to remove noise from external source and

from HPI coil. The sampling frequency of recorded data was 1

kHz with a high-pass filter of 0.03 Hz. Independent component

analysis had been performed by Cam-CAN to exclude signal

components associated with eye movements. The resting-state

recordings were each at least 8 min and 40 s in duration. The

MEG sensor array consisted of 306-channel Elekta Neuromag

Vectorview (102 magnetometers and 204 planar gradiometers).
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FIGURE 5

Phase diagram illustrating quasicriticality and the Widom line.

When ps = 0, there is an inactive phase to the left of the critical

point (κ = 1 = σ ) and an active phase to the right of it. The

critical point is given by the circle. The thick gray curve shows

how the fraction of active neurons (y-axis) varies as the control

parameter κ is increased. As ps is increased (lighter gray curves),

this curve is shifted vertically and to the left. The points at which

susceptibility will be maximal for each value of ps are given by

the square and the circle. While the network will not be critical

at these points, it will be quasicritical (quasicritical region is

enclosed with a parabolic black dashed line). This means that

susceptibility will be maximal for that level of spontaneous

activity. The dashed line joining these optimal points is called

the Widom line. Note that the branching parameters at which

maximum susceptibility occurs are now shifted to the left. We

can also see that there are three main regions divided by the

Widom line, the subcritical and supercritical ones. This figure

schematically depicts predictions of a quasicritical network

model (Williams-García et al., 2014) which have recently been

corroborated with data from spiking networks (Fosque et al.,

2021).

We analyzed the magnetometer sensors only- although we have

analyzed all directions, the magnetometer time-series provided

better and more pronounced avalanche distributions. This gave

us as a result 102 channels of time-series activity for each

participant. More details about the data acquisition pipeline can

be found in Taylor et al. (2017). Computations were carried out

using MATLAB (R2020a, The Mathworks Natick, MA), and the

Python programming language (Python Software Foundation.

Python Language Reference, version 3.8. available at https://

www.python.org/), GNU Parallel (Tange, 2011).

3.2. Extracting neuronal avalanches from
MEG sensor activity

In MEG data, each channel’s activity is presented in the

form of a continuous-time series. The amplitudes, positive or

negative, of these time-series determine the level of neural

activity in the corresponding channel. To determine the

significant, active, events we set a threshold separating relevant

activity from background noise. In this way, we map to a

discrete-time series. The method used amounts to:

• Let N = 102 be the total number of nodes/channels per

subject, and zi the state of the node i, i = 1, · · · ,N. A node

can have only one of two possible states zi(t) ∈ {0, 1} at a
given time t.

• To determine the state of the node zi(t) from MEG data,

we first subtract the mean activity and divide it by the

standard deviation (SD). We then threshold the resulting

time series so that events, positive or negative, that surpass

the threshold level represent the active zi(tn) = 1 state

while the rest is considered inactive, i.e., zi(t) = 0, for

times t 6= tn. We adjust the threshold by following the same

procedure as in Dehghani et al. (2012) and Jannesari et al.

(2020).

We found that a threshold much lower than 3 SD led to the

detection of many noisy events, and 3 SD showed to be optimal

for most subjects. This discretization map is similar to the one

used in previous works (Shriki et al., 2013; Jannesari et al., 2020).

3.3. E�ective critical exponents on the
γ -scaling line

We have seen in previous work (Fosque et al., 2021) that

the effective avalanche distribution exponents of a network with

different parameters and noise will move along the γ -scaling

line as long as the system lies in the quasicritical region. In this

work, we explore the potential relation between the position of

exponents on the γ -scaling line and the age and gender of the

subjects. We thus need a way to project the pair of effective

exponents (τ̃S, τ̃T), defining a point, onto the γ -scaling line to

quantitatively asses its position along the line.

To this end, once the γ -scaling line is determined, we

consider the following projection method (see Figure 6):

• Shift vertically all points along the τ̃T axis, so that the γ -

scaling line intercepts the origin (0, 0). Note that we are only

interested in the relative position on the line, so shifting all

points does not affect the results.

• Project the vectors, defined from the origin to the shifted

points (τ̃S, τ̃T), onto the new γ -scaling line as indicated in

Figure 6B.

• Choose the projected point with largest distance from the

origin on the shifted γ -scaling line. This distance will be

defined as 1.

• Re-scale all other projected points by the maximal distance,

so that all distances fall in the interval [0, 1].

Consequently, how far from the origin a given subject’s point

lies on the γ -scaling line provides a measure whose magnitude

may correlate to age and/or gender, thus providing a biomarker.
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FIGURE 6

Pairs of size and duration e�ective exponents for each subject are transformed to a normalized value between 0 and 1. We call this measure the

“position on the γ -scaling line.” This measure is obtained by (A) shifting the γ -scaling line, and (B) projecting each subject’s duration-size vector

onto the shifted γ -scaling line. The largest projection represents the value of 1.

3.4. Determining branching ratio σ and
susceptibility χ

We used a recently-developed multi-step regression

algorithm (MR. Estimator, Spitzner et al., 2021) to calculate

the branching ratios, σ , of each subject. This algorithm allows

to study subsampled time series and obtain the approximate,

empirical, branching ratio σ .

We also calculated the local time fluctuation (LTF) as

described in Fosque et al. (2021), which is similar to the

coefficient of variation. The LTF measures the temporal

fluctuations of the density of active nodes, or in amore colloquial

sense, the variability of firing rate that the network displays in a

given time interval. One starts by calculating the density of active

nodes in the network at every time step,

ρ1(t) =
1

N

N
∑

i=1

δzi(t),1,

where N is the total number of nodes, zi(t) is the state of node i

at time t, and δzi(t),1 is 1 if zi(t) = 1 and zero otherwise. Then,

we calculate the average firing rate for each subject by averaging

the activity density over the total recording time T,

〈ρ1(t)〉T =
1

T

T
∑

t=1

ρ1(t).

Notice that this definition of “firing rate” can never be

greater than one because we are considering the fraction of

population active at time t.We can also calculate the (dynamical)

susceptibility defined as

χ = N[〈ρ21 (t)〉T − 〈ρ1(t)〉2T], (2)

where 〈ρ21 (t)〉T = 1
T

∑T
t=1 ρ21 (t). Once the susceptibility, χ ,

and average firing rate, 〈ρ1(t)〉T , have been obtained one can

calculate the LTF,

LTF =
1

〈ρ1(t)〉T

√

χ

N
. (3)

As seen from this Equation (3), if the standard deviation in

average activity,
√

χ , is large compared to the average firing rate,

then LTF > 1, which translates into a bursting activity, whereas

whenever LTF < 1 the activity becomes more regular.

We also calculated the variance of avalanche sizes, S, for each

subject,

var(S) = 〈S2〉 − 〈S〉2, (4)

where 〈Sν〉 = 1
Nav

∑Nav
j=1 S

ν
j is the average of avalanche sizes to

power ν(= 1, 2), Sj is the size of avalanche number j, and Nav is

the total number of avalanches found in the given subject.

3.5. CBM: A minimal neural network
model

Computational models are often extremely helpful in

interpreting data and building intuitions about different

mechanisms in nature. In neuroscience different models are

proposed to mimic a variety of dynamical processes involving

neurons. We are interested in understanding the collective

behavior of a large number of neurons. Here, the computational

neuroscience community is divided into two major camps: rate-

type and spike-typemodels. For statistical analysis of avalanches,

discrete-time spike models are more appropriate. In addition,

our neuronal network is interacting spatially and temporally,

that is, the state of a neuron will depend on the state of its
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connected neighbors at a previous time. Since the transmission

of information between connected neurons is intrinsically

probabilistic, the model needs to be stochastic. These are known

as probabilistic cellular automata models.

While more biologically detailed models of cortical neural

networks have been used to simulate nearly critical behavior

(Markram et al., 2015; Del Papa et al., 2017), we did not take

that approach. Here we were motivated by an extension of the

principle of universality which can be invoked when systems

operate near criticality (in particular, at theWidom line). Briefly,

universality states that when the behavior of a system is scale-

free, then its dynamics are similar across many scales; models

therefore are not rooted in the details found at any particular

scale. Rather, simple generic principles operate across scales,

leading to correspondingly simple, conceptually-based models

(Sethna et al., 2001; Beggs, 2022). Motivated by this, we employ

a computational model based on our previous work (Williams-

García et al., 2014; Fosque et al., 2021). Our cortical branching

model (CBM), a probabilistic cellular automaton, makes use

of the branching process to characterize avalanches and the

spread of information across the network (Williams-García

et al., 2014). The CBM is an elementary minimal model of

cortex dynamics that encapsulates many of the experimentally

relevant collective phenomena of neural networks. Although

this model includes only excitatory nodes and fixed delays at

1 time-step, it reproduced relevant characteristics of biological

neural networks such as avalanche distributions and raster plots

seen experimentally in cortical slice networks (Beggs and Plenz,

2003; Haldeman and Beggs, 2005). We let each neural node

have the same small probability ps of spontaneous activation,

mimicking the effect of external noise. Note that this model can

also be used to obtain critical dynamics by letting ps = 0 and

κ = 1. The CBM is consistent with the organizing principle

of quasicriticality but clearly many other models satisfy such

principle ( including an extension of the CBM that incorporates

inhibitory and rich club nodes; Weerawongphrom et al., 2022).

In this work, CBM simulations consisted of fully connected

random networks, i.e., there is at least one path connecting

any two nodes in the network. These networks had N = 256

nodes, each having a number of incoming neighbors kin = 5,

a connectivity matrix with weights Pij, and a fixed refractory

period τr = 1 during which the node is not able to activate. Each

node can be activated in two ways. First, it could be driven by

its incoming neighbors. Second, it could activate spontaneously

due to the external noise with probability ps = 10−3. We will

describe each of these next.

3.5.1. Driven activity

Each connection from node i to node j has a weight Pij =
κpnij indicating the probability of transmission of activation pnij ,

0 ≤ pnij ≤ 1, randomly chosen from a weighting function

(described below). The label nij ∈ {1, ..., kin} ranks each neighbor

connection coming from neighbor i to target node j by strength,

e.g., nij = 1 corresponds to the strongest connection inbound

at node j. The sum of probabilities emanating from each node i

adds to one:

1 =
kin
∑

i=1

pnij .

Note that, when the network is tuned to be critical, the

sum of incoming probabilities is the branching ratio σ by

construction. We incorporate the branching parameter κ to

modulate the state of the network. The relation between the

branching ratio σ and the branching parameter κ is explained

below. Node j at time step t + 1 becomes active if node i in the

previous time step t was active and the connection between them

transmitted. A connection from i to j transmits if rand ≤ Pij,

where rand is a uniformly distributed random number drawn

from the interval [0, 1].

Processing nodes update at each time step to simulate the

propagation of activity through the network. After becoming

active, a node would become inactive, or refractory, for the next

τr = 1 time steps.

3.5.2. Branching

The branching parameter κ plays the role of the control

parameter in the CBM, similar to temperature in the Ising

model. This parameter places the system in or out of the

quasicritical region. In the critical case, when ps = 0, κ = 1

would put the system in the critical region. However, in the

quasicritical case κ will have different values depending on the

external noise ps and other parameters of the network.

3.5.3. Spontaneous activity

In addition to driven activity from neighbors, each node

has a small probability, given by ps, of becoming spontaneously

active at any time step. The network can only be critical when

ps = 0. As ps increases, the network activity moves into the

quasicritical region.

3.5.4. Weighting function

As many studies report weight distributions with a nearly

exponential form (Brunel et al., 2004; Barbour et al., 2007; Chen

et al., 2010), we adopt a weighting function where transmission

probabilities pnij are determined by the following equation

pnij =
e−Bnij

∑kin
n=1 e

−Bn
,

where i’s are neighbors to the target j node. When the bias

exponent B ≥ 0 equals zero, the distribution is homogeneous; as

B increases, the distribution of pnij values becomes increasingly
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FIGURE 7

Human data suggests that exponential decay of connection

strengths becomes steeper with age. Figure adapted from Otte

et al. (2015). Note that oldest age group (bottom) shows the

sharpest drop, while the youngest age group (top) has the

shallowest curve. For details, see text.

inhomogeneous with few strong connections and many weak

ones. Because data suggests that connection strengths become

increasingly skewed with age, we wanted to be able to capture

this in the model.

We increased B to simulate the changes in connections

reported in aging brains. Our justification for this was motivated

by the results of Otte et al. (2015), who looked at connection

strengths in human patients as they aged (see Figure 7). There,

the density of fiber bundles was assessed by Diffusion Weighted

Imaging (DWI). The entire cortical mantle was parcellated into

regions (nodes) and the strength of each node was taken as the

sum of connection strengths into and out of a region. When

average node strengths were arranged in descending order and

then separated by age groups, it revealed that curves from older

patients dropped more steeply than for younger patients. The

best fit exponential curves for the three age groups revealed

a trend, where the exponents became larger for older cohorts.

For ages 25–45: 0.02338 (0.02043, 0.02633), ages 45–65: 0.02909

(0.0257, 0.03248), and ages 65–90: 0.03067 (0.02601, 0.03534);

figures given as mean value, followed by 95% confidence limits.

It is important to stress that in our CBM we effectively mimic

the reduction in the number of connections by skewing the

FIGURE 8

MEG data from 566 human subjects on the γ -scaling line with

ages ranging from 18 to 88 years old. Error bars are shown in

blue. A least-squares fit of exponent pairs is also shown in

dashed line, and gives a least-squares fit of γlsf = 1.24± 0.02.

Solid line indicates the average scaling slope, 〈 τ̃T−1
τ̃S−1

〉 = 1.4± 0.4.

The scaling slope is the average of scaling fraction across

subjects.

weights of the connections while keeping kin fixed. We found

that random removal of connections in a simulation results

in an increase in the bias parameter, B. This is because most

connections have relatively weak strengths, so random removal

preferentially reduces weak strengths, increasing the skew, and

therefore B.

4. Results

4.1. γ -Scaling line results

A major prediction of quasicriticality is that human MEG

data should organize along a γ -scaling line just as has been

seen previously with animal’s spiking data (Fontenele et al.,

2019; Fosque et al., 2021). To test this, we calculated effective

exponents from the avalanche distributions of the included

MEG data and found, as predicted, that all these exponents are

distributed along the γ -scaling line. The average γ exponent

for all datasets is 〈γ 〉 = 1.07 ± 0.03, and the average scaling

〈 τ̃T−1
τ̃S−1

〉 = 1.4 ± 0.4. Recall that γ is obtained from the power-

law relation between the average avalanche size distribution

〈S〉 and the avalanche duration T. These results are consistent

within statistical error bars, and we need to remember that

the scaling fraction is sensitively dependent upon errors of

the measured effective exponents, so larger errors are to be

expected. Figure 8 shows all datasets on the γ -scaling line with

their corresponding error bars. These results show a similar

characteristic distribution of effective exponents as in Fontenele

et al. (2019) and Fosque et al. (2021) although with a slightly

different slope. Hence, we see that these results appear to be

consistent with the organizing principle of quasicriticality.

After confirming that the data followed the principle of

quasicriticality, we next sought to find out if the position on

the γ -scaling line could reveal information about the patient
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FIGURE 9

Older subjects display smaller exponents and higher susceptibility. (A) Older subjects have exponents that fall lower on the γ -scaling line. We

found that there is a significant negative correlation between age and the magnitude of time and size exponents in our dataset. (B) Older

subjects have higher dynamical susceptibility. There is a significant correlation between age and susceptibility.

population. We first looked at the differences between age

groups with respect to their exponents. We used the distance

measure explained earlier and found that there is a small but

significant negative correlation between age and the position

on the line. More specifically, being older is found to be

negatively correlated with the magnitude of the duration and

size exponents (Figure 9) and therefore, a lower location on our

previously defined position on the γ -scaling line.

Another prediction of quasicriticality is that when ps

increases, susceptibility decreases (as long as the system is near

the peak of maximum susceptibility), and exponents get smaller,

which translates into a position closer to the origin on the γ -

scaling line. Hence, after finding the differences in position on

the γ -scaling line with respect to age, and the relation with

their exponents, we decided to analyze their susceptibility. We

found that there is a strong and negative correlation between

susceptibility and position on the line. In other words, subjects

with smaller effective exponents show higher susceptibility in

their MEG data, see Figure 10 for details. Since older subjects

have lower position on the line, this means that the older subjects

also have higher dynamical susceptibility (see Figure 9). This

result may seem to contradict the prediction of quasicriticality,

but recall that the susceptibility depends on multiple parameters

of the network. We will show below a potential parameter that

may be causing this trend on the γ -scaling line.

It is well-known that as external noise is decreased, i.e.,

approaching criticality, the variance of avalanche sizes, var(S),

will diverge (Pinto and Muñoz, 2011). Since the susceptibility

displays similar behavior, we are interested in looking at the

relation between var(S) and dynamical susceptibility χ across

ages of individuals. In Figure 11, one can see that there is

indeed a clear correspondence between them. Furthermore, as

age increases, there is a correspondence with an increase in the

variance of avalanche sizes.

As stated in the Background section, there is an important

relation between susceptibility and branching parameter κ . This

FIGURE 10

There is a negative correlation between position on the line and

susceptibility. This correlation suggests that subjects with

smaller exponents have higher susceptibility (correlation

r = −0.87,p < 0.001).

relation states that the peak of maximum susceptibility will

move toward lower values of the branching parameter as ps

is increased. Our analysis of susceptibility showed that older

subjects have higher values of susceptibility than younger ones.

Since we cannot extract the parameter κ from this data, and we

know that there is a relation between κ and σ , we determine

σ instead experimentally. However, one of the most striking

results is the fact that the branching ratios did not significantly

change across age groups. We used both MR. Estimator and

naive methods and find that, regardless, this parameter does not

change with age, see Figure 12 for more details.

Quasicriticality also predicts that with increasing external

noise there will be an increase of avalanche concatenation,

which in turn would result in smaller exponents. We mentioned

before that the LTF, as the coefficient of variation, measures

the level of variability in activity in the network. Similarly,

the firing rate of a network can give clues on the level of

activity in the subject given that an increase in the firing

rate increases the probability of larger avalanches. Hence, we

also analyzed the variability in activity across the different
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FIGURE 11

Variance of the avalanche size, var(S), for each individual; orange indicates the youngest half and blue the oldest half. (A) var(S) as a function of

the age of individuals. We find a correlation with age of r = 0.213 with p < 0.001 in the log-linear scale. (B) var(S) vs. susceptibility, χ , for each

subject. We find a correlation with susceptibility of r = 0.8449 with p < 0.001 in the log-linear scale.

FIGURE 12

Branching ratio does not significantly change with age. (A) Naive method: r = 0.02, p ≈ 0.57. (B) MR. Estimator : r = −0.007, p ≈ 0.87.

age groups by calculating the LTF and the firing rate density

for each subject as defined in Methods. LTF is found to be

reduced with age, and the firing rate density is found to increase

with age. Although we see variability around the average,

the trend is very consistent, p < 0.001 in both cases, see

Figure 13 for more details. It is important to remember that

an increase in external noise will result in a lower value of

LTF, but a low value of LTF does not necessarily imply an

increase in ps since there are other parameters that can influence

this variability.

One of the goals of this study is to find potential biomarkers

by using the framework of quasicriticality. Thus, given the vast

amount of information contained in this large MEG dataset,

we decided to see if we could use our framework to predict

gender from the data. We used the position on the γ -scaling line

measure to investigate whether the magnitude of the duration

and size exponents are different between male and female

subjects. Indeed, there is a significant difference, suggesting that

this approach may hold promise as a biomarker. We found

that male subjects have a slightly higher position magnitude

compared to female subjects (see Figure 14).

4.2. CBM model fits the age related
reduction in exponents

Motivated by the lower exponent values among older

subjects, we sought to create a model that can account for

this experimental finding. As mentioned in Methods previous

literature (Otte et al., 2015) indicates that natural/healthy aging

involves the weakening of weak weights and enhancement

of strong connections in functional connectivity. We ran

simulations with our CBM with different weight distributions

to mimic this trend. In our CBM the steepness of these

distributions is characterized by the bias parameter B. We ran

CBM simulations with bias parameter B = 0.6 and B = 1.8.

Recall from Section 3, that a higher value of B means a more

positively skewed distribution of weights while a lower value of

B would correspond to a flatter distribution. We observed that

simulations with a bias of B = 0.6 have a lower susceptibility

peak but larger exponent values than the simulations with larger

bias. These simulations were run under the same probability of

spontaneous activations, ps = 10−3, and on a network with 256

nodes, 5 incoming neighbors, and refractory period of one time
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FIGURE 13

Age positively correlates with firing rate density and shows a negative correlation with LTF. (A) Firing rate density vs. age shows a significant

positive correlation (r = 0.19, p < 0.001). The statistical significance of this relationship is not dependent on the three outlier values that are

above 0.015. (B) LTF vs. age shows a significant negative correlation (r = −0.21, p < 0.001).

FIGURE 14

There is a small but statistically significant di�erence in position

on the line between male and female subjects. The box plot

shows the distribution of the female and male subjects’ data and

where they land on the line. For female subjects (mean = 0.64,

SD = 0.10), while for male subjects (mean = 0.66, SD = 0.09).

The two-tailed t-test gives t = −2.97 and p < 0.01 (indicated by

the two stars).

step. These results indicate that making connectivity weights

steeper reduces the size and duration exponents (Figure 15 and

Tables 1, 2). These results from the CBM simulations fit the

trend of the MEG experimental results where there is an overlap

of exponents along the γ -scaling line whenever the system is

around the peak of maximum susceptibility.

Thus, our computational model can capture the trends

observed in the data when it is supplied with similar

connectivity parameters.

5. Discussion

We began this paper by suggesting that neural biomarkers

could be based on quantities that are homeostatically regulated

for health, like functional neuronal activity. The principle of

FIGURE 15

Simulation on the γ -scaling line. Probability of spontaneous

activation ps = 10−3, and bias parameter B = 0.6 (red diamonds)

and B = 1.8 (blue circles). The three points for each bias

represent three di�erent κ values around the peak of maximum

susceptibility taken from Tables 1, 2. We can see that as we

increase the bias parameter, the exponents get smaller while

increasing susceptibility.

quasicriticality predicts that neural networks will operate in a

quasicritical region associated to a critical point, even in the

face of perturbations, by moving along a dynamical scaling line.

We hypothesized that a patient’s position along this scaling

line could therefore contain valuable health information about

their relation to their “normal state” and various factors that

might perturb them from it. Here we used a large MEG data

set to conduct a first test to see if this quasicritical framework

could show potential for developing biomarkers. Our first

main finding was that the majority of MEG data indeed fell

along the scaling line. The second main finding was that the

position on this line was significantly related to the age of the

subject and their gender. The third main finding was that the

susceptibility of the subjects, akin to their sensitivity to new

stimuli, was also significantly related to their position along

the scaling line. To make sense of these findings, we employed

a previously published network model, the cortical branching
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TABLE 1 Table of exponents from CBM simulations for bias B = 1.8 for κ-values around the peak of maximum susceptibility.

κ χ τ̃S τ̃T
τ̃T−1
τ̃S−1

γ log10[var(S)]

1.06 0.9 ± 0.2 1.48 ± 0.02 1.70 ± 0.03 1.46 ± 0.03 1.52 ± 0.02 8.9

1.07 0.9 ± 0.1 1.54 ± 0.02 1.84 ± 0.06 1.56 ± 0.05 1.54 ± 0.02 9.3

1.08 0.9 ± 0.2 1.61 ± 0.03 1.93 ± 0.08 1.54 ± 0.07 1.52 ± 0.02 10.3

TABLE 2 Table of exponents from CBM simulations for bias B = 0.6 for κ-values around the peak of maximum susceptibility.

κ χ τ̃S τ̃T
τ̃T−1
τ̃S−1

γ log10[var(S)]

1.11 0.44 ± 0.02 1.55 ± 0.02 1.79 ± 0.05 1.44 ± 0.04 1.53 ± 0.02 8.1

1.12 0.44 ± 0.01 1.61 ± 0.02 1.88 ± 0.06 1.44±0.05 1.53 ± 0.02 8.6

1.13 0.43 ± 0.02 1.68 ± 0.03 1.99 ± 0.08 1.46 ± 0.06 1.52 ± 0.02 8.9

model. When the model was supplied with connectivity data

that reflected the age of the patients, it qualitatively reproduced

the results found in the data—this is our fourth main finding.

Quasicriticality can thus offer a plausible explanation as to why

older subjects become more susceptible to stimuli or noise as

their distribution of neural connections become skewed with

age. We suggest that the quasicritical framework therefore

should be further investigated as a platform for developing

biomarkers of neurological health.

The observation associated with the preservation of

branching ratios is quite intriguing. We do not yet have a full

theoretical understanding of the reason behind this potential

conservation law. In quasicriticality, when the system reaches the

peak of maximum susceptibility, it will fit a branching parameter

κ , which when ps → 0, κ = 1 = σ . The fact that σ remains

stable may suggest a conservation law.

Previous work on human MEG data showed that it

contained signatures of criticality in the form of avalanche

distributions that followed power laws, both for spontaneous

activity (Shriki et al., 2013) and stimulus-evoked activity (Arviv

et al., 2015). The work by Arviv et al. (2015) even examined

the scaling relation but did not find it to be well-satisfied.

They speculated that this was because there were not enough

stimulus-evoked data to conclusively evaluate its validity (Arviv

et al., 2015). In the present work, we expanded on these

pioneering results by exploring an MEG data set of spontaneous

activity that was almost thirty times larger (n = 21 vs. n =
604) and, at the same time, we broaden the framework to that

of quasicriticality, a more explanatory framework. Because of

this, we were able to examine the scaling relation more fully,

finding that it fit within experimental error for the vast majority

of patients.

Many other groups have noted connections between

criticality and neurological health. Broadly speaking, these

works have used distance from the critical point, variously

assessed by the branching ratio, the quality of the power

laws/avalanche shape collapse, the extent of multifractality, or

the degree to which the exponent relation is satisfied as the

relevant variables. For example, this approach has been taken

with respect to sleep and sleep deprivation (Meisel et al., 2013;

Priesemann et al., 2014), epilepsy (Meisel et al., 2012, 2015; Arviv

et al., 2016; Hagemann et al., 2021), hypoxia (Roberts et al.,

2014), stroke (Rocha et al., 2022), schizophrenia (Alamian et al.,

2022), and Alzheimer’s disease (Jiang et al., 2018), to name a

few. For overviews, seeMassobrio et al. (2015), Zimmern (2020),

and Fekete et al. (2021).

Although our present work shows a few similarities with

these previous studies, we are the first, to our knowledge, to

indicate how the position along the scaling line may be used

as a potential biomarker. Strictly speaking, our work does not

evaluate distance to the critical point, but rather how the system

configures itself in exponent space as it continues to maintain

its activity homeostatically in the quasicritical region close to

the Widom line, i.e., the line of maximal susceptibility. More

concretely, two patients could be equally close to the critical

point by some measure but could still lie on different portions of

the scaling line. This illustrates that we are taking a qualitatively

different perspective from that of previous studies, one that

could potentially reveal new information.

Because this work was only a first step toward using the

principle of quasicriticality to develop biomarkers, it has room

for improvements. First, the MEG recordings were rather brief,

averaging about 9 min per subject, which curtailed the statistical

power of our analyses. In the future, it would be better to have

longer recordings (30–60 min) with more neuronal avalanches.

Second, the MEG scanner used to produce this data set provided

102 time series. While this is state of the art, in the future

we would like to increase the number of channels to enhance

statistics. Third, in this work we used a data set that had only

the most basic biological information like age and gender; this

restricted the types of conclusions that we could draw. A data

set that contained information about multiple health disorders

like the degree of dementia, epilepsy, depression, or schizotypy

would have allowed many dimensions of neurological health
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to be checked for relationships with the position of each

subject in exponent space along the scaling line. These proposed

improvements should be addressed in future work.

Very generally, the concept of criticality implies that a

system must have a parameter that is precisely tuned to

the critical point. In contrast, quasicriticality allows multiple

parameters to interlock in specific ways to confine the system to

a line or surface that could be considered approximately critical.

Consistent with this, several studies have shown that as neural

systems remain close to criticality, their avalanche distribution

exponents vary in a peculiar way (Shew et al., 2015; Fontenele

et al., 2019; Ma et al., 2020). Specifically, the exponent γ (for

average size against duration) typically remains nearly fixed,

while τ̃S (for size) and τ̃T (for duration)may vary but continue to

nearly satisfy the exponent relation. The system is thus confined

to move along a line. The fundamental reason behind a nearly

constant γ and why τ̃S and τ̃T are the exponents that vary is not

known; these are intriguing open questions.

But because of these facts, we are now able to explore how

nearly critical combinations of τ̃S and τ̃T relate to biological

features. In the present work, we made first steps by linking

them to age, gender, and susceptibility. Now that this has been

established, future work could investigate how these exponents

relate to features of neurological disorders, as well as health

features like resilience, creativity, or intelligence.

To illustrate the potential utility of this, let us consider

two scenarios: (1) departures from normality, and (2) dynamics

of recovery. For (1), individual patients may have a tendency

to spend more time on a specific region of the scaling line.

Physicians could track this yearly as an indicator of what is

typical for that patient. Sudden departures from that region of

the scaling line could then signal that the patient’s brain is trying

to compensate for some new neurological stress. The presence

of this stress could be revealed in a yearly checkup by measuring

the patient’s exponents. For (2), just as a cardiologist may apply

a difficult treadmill challenge to a patient to stress test their heart

and watch its recovery, a neurologist could apply a cognitive

challenge to a patient and watch how the exponents move along

the scaling line to assess recovery. The dynamics of how the

exponents move back toward their original position may reveal

the strength of homeostasis in that patient.
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