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Introduction: Working memory (WM) plays a key role in many cognitive

processes, and great interest has been attracted by WM for many decades.

Recently, it has been observed that the reports of the memorized color

sampled from a uniform distribution are clustered, and the report error for

the stimulus follows a Gaussian distribution.

Methods: Based on the well-established ring model for visuospatial WM,

we constructed a spiking network model with heterogeneous connectivity

and embedded short-term plasticity (STP) to investigate the neurodynamic

mechanisms behind this interesting phenomenon.

Results: As a result, our model reproduced the clustering report given stimuli

sampled from a uniform distribution and the error of the report following a

Gaussian distribution. Perturbation studies showed that the heterogeneity of

connectivity and STP are necessary to explain experimental observations.

Conclusion: Our model provides a new perspective on the phenomenon of

visual WM in experiments.

KEYWORDS
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Introduction

Working memory (WM), the ability to maintain and manipulate information
internally, is critical for cognition and executive control of behavior (Alan, 1992). Thus,
the precision of information in WM is important for subsequent cognition and behavior.
However, precision fades, and errors arise in WM over time (Shintaro et al., 1989;
Weiwei and Luck, 2009; Hyeyoung et al., 2017; Rosanne et al., 2019). Errors in WM are
thought to originate from random noise, which causes neural representation to diffuse
away from the initial state. The continuous attractor models (Albert et al., 2000; Klaus
et al., 2014; Sebastian and Bays, 2018) have shown the drift of memorized information
caused by noise in WM. Recently, Panichello et al. (2019) reported an interesting
phenomenon in a color delayed-estimation task, where the participants were requested
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to remember the stimulus’s color that was uniformly sampled
from a color wheel and presented to them in a brief period and
then they reported the cued color stored in WM after various
delay periods. The authors found that the reports were clustered
and that the report error followed a Gaussian distribution. They
used a stochastic differential equation (SDE) to explain the
memory error using the diffusion driven by noise in the neural
representation and the drift toward discrete attractor states.
They further transformed the SDE into the Fokker–Planck
equation (FPE) and obtained the evolution of the probability
density function of the memory trace, which fits well with the
experimental data. However, the neural mechanism underlying
this phenomenon requires further investigation.

In this study, we constructed a spiking network model to
explore the neural mechanism underlying the clustering report
and Gaussian distribution of report error. The model follows
the tradition of the ring model for WM, which was originally
proposed to investigate spatial WM (Albert et al., 2000) and
was then applied to explore the mechanism underlying the WM
capacity limit (Wei et al., 2012) and other characteristics of
WM (Fredrik et al., 2009). We introduced the heterogeneity to
the connectivity of the ring model to generate “discrete-like”
attractor state and the short-term plasticity (STP) to control the
drift of the memory trace (Gianluigi et al., 2008; Alan et al., 2012;
Alexander et al., 2019). Our model successfully reproduced
the clustering report and Gaussian distribution of report error,
which are consistent with experimental observations (Panichello
et al., 2019).

Materials and methods

Neuronal dynamics

The neurons are modeled as leaky integrate and fire neurons
(Henry, 1988), and the subthreshold membrane potential V (t)
obeys the dynamics as follows (Alan, 1992):

Cm
dV(t)
dt

= −gL (V (t)− VL)+ Isyn(t) (1)

where Cm is the membrane capacitance, gL is the leaky
conductance, VL is the resting potential, and Isyn(t) is the
total synaptic current input to a neuron. When the membrane
potential V (t) exceeds the threshold potential Vth, the model
neuron fires a spike, and the membrane potential V (t) is reset
to Vres. During the refractory period for τ ms after a spike,
the membrane potential is maintained as Vres. The parameters
are set as follows: Cm = 0.5 nF, gL = 0.025 µS, and τ = 2 ms
for pyramidal cell (or E neuron); Cm = 0.2 nF, gL = 0.020 µS,
and τ = 1 ms for inhibitory interneuron (or I neuron); and
VL =-70 mV , Vth =-50 mV , and Vres =-60 mV for both E and
I neurons following literature (Todd and Miller, 1997; Wang,
1999).

Synaptic dynamics

The synaptic current includes the recurrent synaptic
currents, task-irrelevant background noise, and task-relevant
inputs. The recurrent currents INMDA and IGABA are mediated
by the N-methyl-D-aspartic acid receptor (NMDAR) and
γ Aminobutyric Acid receptor (GABAR), respectively.
Considering that NMDAR mediated current plays a key role in
the persistent activity of network during the delay period (Wang,
1999), we omitted the fast excitatory recurrent current mediated
by α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptor (AMPAR). The task-irrelevant background noise
IAMPA,n is mediated by AMPAR. The task-relevant currents Ie
encodes the stimuli to E neurons. Each neuron receives a total
synaptic current as:

Isyn (t) = INMDA + IGABA + IAMPA,n + Ie (2)

We assumed that I neurons did not receive external input;
thus, Ie = 0 for I neurons. The currents mediated by AMPAR,
NMDAR, and GABAR to neuron i are modeled as follows:

Ii,AMPA,n = (Vi − VE) gAMPA,nSAMPA,n

Ii,NMDA = (Vi − VE)
∑
j

gji,NMDASj,NMDA

1+
[
Mg2+

] [
exp (−0.062Vi) /3.57

]
(3)

Ii,GABA = (Vi − VI)
∑
j

gji,GABASj,GABA

[
Mg2+]

= 1 mM, VE = 0 mV , and VI = −70 mV ; gAMPA,n

of IAMPA,n are 2.48 nS for E neuron and 1.9 nS for I neuron. The
AMPAR- and GABAR-related gating variables are determined
by the presynaptic spike train {tk}:

dS
dt
= −

S
τS
+

∑
k

δ(t − tk) (4)

where τS = 2;ms for AMPAR and τS =

10; ms for GABAR.
We introduced STP to recurrent connections mediated by

NMDAR, as described in Gianluigi et al. (2008). The dynamics
of the available resources xj(t) and utilization of resources uj(t)
of presynaptic neuron j are described as follows:

ẋj =
1
τx

(
1− xj

)
− xjuj

∑
k

δ (t − tk)

u̇j =
1
τu

(
U − uj

)
+ U(1− uj)

∑
k

δ (t − tk) (5)

where the parameter U ∈ (0, 1] and τu modulate the level
of facilitation. The parameter τx controls the depression.
We set τu = 1, 650;ms and τx = 250;ms. Then, the
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NMDAR-related gating variable can be modeled as second-
order dynamics (Albert et al., 2000):

dy
dt
= −

y
τy
+ ux

∑
k

δ(t − tk)

dS
dt
= −

S
τS
+ αSy(1− s) (6)

where τS = 100;ms, αS = 1;ms−1, and τy = 2 ms.

Network architecture

The network contains 512 E and 128 I neurons. Following
the tradition of the ring model (Albert et al., 2000), each
E neuron is placed on a circle according to its preferred
color, indicated as θi (0 < θi ≤ 2π) on the color wheel
(Panichello et al., 2019). The arrow in each E neuron indicates
the preferred color in Figure 1A. We assumed that all
connections from or onto I neurons are uniform, and we set
gEI
ji,NMDA = GEI

NMDA, gIE
ji,GABA = GIE

GABA, and gII
ji,GABA =

GII
GABA. The synaptic conductance between E neurons

obeys gEE
ji,NMDA = GEE

NMDAW(1θj,i), 1θj,i =
∣∣θj − θi

∣∣ | if∣∣θj − θi
∣∣ < π, otherwise, 1θj,i =

∣∣θj − θi
∣∣− π, W(1θj,i) is

the footprint of the connection between E neurons shown at the
top of Figure 1A:

W
(
1θj,i

)
= J−i +

(
J+i − J−i

)
exp

[
−
(
1θj,i

)2

2σ2
i

]
(7)

where σi reflects the effective cross-interaction
range of E neuron i. By normalizing footprint

1
2π

2π

∫
0
W
(
1θj,i

)
dθj = 1, we obtain J−i =

2π−
√

2π σiJ+i
2π−
√

2πσi
.

To explain the experimental observation in Panichello
et al. (2019), we specifically tailored the connections
between neurons to a heterogenous connectivity. We

let J+i = J̄Nyi/(
N∑

j =1
yj), where the intermediate variable

yi = 1− 1
b

[
1− 1

√
2π

exp
( (

i− N
8 −

[ 4i
N
] N

4
)2

S2
N

)]
is a periodic

function of neuron labels (preferring direction) and shown
in the top panel of Figure 1A. The parameter b controls
the heterogeneity of J+i . When b → +∞, the connectivity
is homogeneous.

[ 4i
N
]

denotes the floor of 4i
N . SN is the

scale parameter related to neuron number N. We set
SN = 10 for N = 512. J̄ is the maximum value of J+i and

FIGURE 1

Network model structure, simulation protocol, and sample raster plot of simulation. (A) Model schemes. The network is composed of excitatory
E neurons (Exc) and inhibitory I neurons (Inh) (bottom). E neurons are placed on a ring, labeled by their preferred directions (shown by arrows)
representing the preferred color labeled by the angle in a color wheel. yi is used to determine the J+i (top). The EE connections between E
neurons are structured as a Gaussian function of the difference between the preferred directions (middle). At middle, the orange dot line shows
the sample normalized connection strength from neuron to other E neurons, and the black thick line shows the envelope curve revealing
heterogeneous connection scheme. The connections onto and from the I neurons are uniform. (B) Simulation protocol. A cue array is
presented to the network from 50 to 150 ms, followed by a delay period up to 3,000 ms. (C) Sample cue array of two random directions.
(D1–D4) The raster plot of E neurons labeled with their preferred direction during simulation. The blue line shows the decoding angle θd,1, and
the red line shows the decoding angle θd,2. The two vertical dash black lines indicate the cue period. (D1) There is one activity bump when
presenting one color. (D2–D4) Three conditions of activity bumps when presenting two colors.

Frontiers in Computational Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.1030073
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-1030073 January 7, 2023 Time: 14:53 # 4

Lei et al. 10.3389/fncom.2022.1030073

J−i = J̄ + 1−J̄
1−
√

2πσ̄erf( 1
2
√

2σ̄
)
, where erf (x) is a Gaussian error

function, and parameter σ̄ determines the gap between J−i
and J+i . And σi of each neuron i can be determined by

J−i =
2π−
√

2π σiJ+i
2π−
√

2πσi
. The overall heterogenous connectivity is

shown in middle panel of Figure 1A.

Simulation protocol

The simulation protocol is illustrated in Figure 1B. The
stimuli are presented to the network during the cue period from
50 to 150 ms. The E neuron θi receives input from the α-th
stimulus, which is located at θα on the color wheel, and the total
input to neuron θi is as follows:

Ie (θi) =
n∑
α

I0
√

2πσs
exp

[
−
(θi − θα)

2

2σ2
s

]
(8)

where n is the number of stimuli, σs is the effective range of
the external input. We set σs = 2◦. Two random stimuli cue
array are shown in Figure 1C.

In addition to the external input, each neuron receives a
background Poisson spike train {tk} with a mean arrival rate
of 1 kHz, which is transferred into background noisy currents
through the AMPAR.

We used the custom code in MATLAB to simulate our
model using the RK2 method. We varied the parameters U,
b, j, and σ̄ to explore the dynamics of the network. For a
single set of parameters, we made statistics on the data of
4,000 trials, giving each set of parameters. We found that the
parameters set U = 0.8, b = 1.2, J̄ = 4.9, and σ̄ = 4.0◦

can reproduce the experimental observations in Panichello
et al. (2019) and we presented the results based on these
parameters value without specific statement throughout the
manuscript.

Decoding method

We followed the previous subpopulation vector method to
decode the neural activity (Wei et al., 2012). We divided the
neurons into different populations according to the stimulus
and calculated the population vector of the subpopulation
of the α-th stimulus as the memory trace of the stimulus:
θd, α = arg

[∑
j∈Nα

rj (t) exp
(
iθj
)]

, where rj(t) is the firing
rate of E neuron j that prefers θj, Nα is a subpopulation
of E neurons that are related to the α-th stimulus. The
number of subpopulations equals to the number of input
colors. We calculated the firing rate of each neuron at each
time. One neuron belongs to one closet activity bump if
its firing rate is higher than baseline activity (2 Hz). Then
we can segment the whole population of E neurons into
subpopulations.

Results

Dynamic representation of memorized
information

The activity pattern of the network was consistent with
previous studies (Albert et al., 2000; Christos and Wang, 2004;
Wei et al., 2012). During the cue period, the stimulus evoked
spikes of neurons whose preferred color was close to that of
the stimulus. The responses of the neurons formed a localized
activity bump in the raster plots (Figures 1D1–D4). The activity
bump persisted throughout the delay period given one stimulus
(Figure 1D1). There were three different consequences for
the two stimuli. Each activity bump persisted throughout the
delay period (Figure 1D2); two activity bumps may merge into
one activity bump (Figure 1D3). One of the activity bumps
persisted, but the other activity bump faded during the delay
period (Figure 1D4). Once the activity bump fades away, the
network forgets the stimulus information, and the network can
only randomly report a color.

The localized activity bump can be decoded as a memory
trace using the subpopulation vector decoding method
(described in the Section “Materials and methods”). The
decoded memory traces are shown as red or blue lines in the
raster plot (Figures 1D1–D4). The memory trace can deviate
from the original input color, leading to the clustering report
and report error.

Clustering report and report error
distribution

In our simulation, we presented one or two colors sampled
from 0 to 360◦ with equal probability, which is consistent
with what Panichello et al. (2019) have performed in their
experiment. If the activity bump persists throughout the delay
period, we use the memory trace during the recall period
θd, α (tend) as the report of the network. If the activity bump
fades, we choose a random value of the color as the network
report. The report error is the difference between the input
stimulus and network report: θd, α (tend)− θα, which is then
rescaled to [−180◦, 180◦].

After the simulation, we performed statistical analysis on
reports and report errors to obtain the probability density
distribution of both, as performed in Panichello et al. (2019),
which are shown in Figure 2.

When presenting one color, we statistically obtained the
distribution of report error in the simulation (Figure 2A), as
well as the distribution of report in the simulation (Figure 2B).
In Figure 2A, the distribution of report error is shown as a blue
histogram fitted by a Gaussian curve (red line). The black line is
the Gaussian fit of report error in the experiment by Panichello
et al. (2019). The red line almost overlaps with the black line,
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FIGURE 2

The distribution of report error and report in the simulation.
Panels (A,B) show the results given one color, and panels (C,D)
show the results given two concurrent stimuli. (A,C) The
distribution of report error. The blue histogram shows the
distribution of report error of the network, and the red line is the
Gaussian fit curve of the histogram. The black line is the
Gaussian fit curve of distribution of report error in the
experiment (from Panichello et al., 2019). (B,D) The distribution
of report. The blue histogram shows the distribution of report of
the network, and the red line is the smooth line of the
histogram. The green line indicates the distribution of input
color. The parameters are set as follows: U = 0.8, b = 1.2,
J̄ = 4.9, and σ̄ = 4.0◦.

indicating that our model reproduces the distribution of report
error. In Figure 2B, the green line shows the distribution of
input color, the blue histogram indicates that the report of the
network is clustering, and the smooth red line of the histogram
indicates clusters clearly.

We also presented two colors in the simulation. The
difference between the two stimuli is larger than 25◦, which
is similar to the stimuli presented to the participants in the
experiment (Panichello et al., 2019). The simulated distribution
of report error is close to that of the experiment (Figure 2C).
The report of the network is clustering, given two stimuli
(Figure 2D). In brief, our network model reproduces the typical
phenomena that the report of a stimulus sampled from a
uniform distribution is clustering and the report error follows
a Gaussian distribution.

Effects of heterogeneous connection
on memory reports

As shown in Figure 2, our model can reproduce the
clustering report and the Gaussian-like distribution of report
error observed in the experiment (Panichello et al., 2019). The
discrete attractors in the WM model are thought to be the
mechanism leading to clustering report (Panichello et al., 2019).
In our model, we introduced heterogeneity into the connectivity
of the original ring model (Albert et al., 2000). The hallmark
of the original ring model is its continuous attractor owing

to the translation invariance of connectivity. The introduction
of heterogeneity breaks up the translation invariance, and a
continuous attractor does not exist, leading to discrete-like
attractors in the network. Thus, when we set b = 10, 000 to
make the heterogeneity of the connections sufficiently small
to be negligible, the continuous attractor returns, and the
report of the network is not clustering (Figures 3B, D). In
particular, the distribution of report (red line) almost overlaps
with the distribution of the stimulus (green line), indicating that
heterogeneity is necessary for the clustering report. At the same
time, the report error follows a Gaussian distribution, but the
deviation of the report error is much smaller than that from the
experiment (Figures 3A, C).

Effects of STP on memory reports

We then removed the STP mechanism from Equation 6
by replacing ux with constant 1 to explore the effects of STP
on the network report. We set b = 1.2, J̄ = 4.9, and σ̄ =

4.0◦ to ensure that the heterogeneous connection was the same
as that in Figure 2. We found that the network reports were
still clustering (Figures 4B, D), indicating that STP has a
slight effect on the clustering report. However, the STP has a
significant effect on the distribution of report error. We can
see that the histogram of the report error significantly deviated
from the experimental observation. First, the distribution of
the simulated report error has a plateau and deviates from

FIGURE 3

The distribution of report and report error with short-term
plasticity (STP) but without heterogenous connectivity. Panels
(A,B) show the results given one stimulus, and panels (C,D) show
the results given two stimuli. (A,C) The distribution of report
error. The blue histogram shows the distribution of report error
of the network, and the red line is the Gaussian fit curve of the
histogram. The black line is the Gaussian fit curve of distribution
of report error in the experiment (from Panichello et al., 2019).
(B,D) The distribution of report. The blue histogram shows the
distribution of report of the network, and the red line shows the
smooth line of the histogram. The green line indicates the
distribution of input color. The parameters are set as follows:
U = 0.8, b = 10,000, J̄ = 4.9, and σ̄ = 4.0◦.
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FIGURE 4

The distribution of report error and report with heterogenous
connectivity but without short-term plasticity (STP). Panels (A,B)
show the distribution when presenting one stimulus, and panels
(C,D) show that when presenting two stimuli. (A,C) The
distribution of report error. The blue histogram shows the
distribution of report error in the simulation, and the red line is
the Gaussian fit curve of the histogram but the negative part is
truncated. The black line is the Gaussian fit curve of distribution
of report error in the experiment (from Panichello et al., 2019).
(B,D) The distribution of report. The blue histogram shows the
distribution of report in the simulation, and the red line shows
the smooth line of the histogram. The green line indicates the
distribution of input color. The parameters are set as follows:
b = 1.2, J̄ = 4.9, and σ̄ = 4.0◦. The SSE (the sum of squares
due to error) of Gaussian fit in panels (A,C) is 0.0013/0.00003.

the Gaussian distribution (Figures 4A, C). The plateau of the
simulated report error can be clearly seen in the inset of the
Figures 4A, C. Second, the width of the histogram of the report
error given two stimuli is smaller than that given one stimulus.
However, experimental observations indicate that the deviation
of the report error increases with the number of stimuli. Third,
the width of the distribution of the simulated report error is
much smaller than that of experimental observation, indicating
that the drift of the activity bump in the network without STP is
not enough. Thus, the distribution of report error given by the
network without the STP is inconsistent with the experimental
observation.

Effects of STP on the spatiotemporal
pattern of the membrane potential of
our model

Because of the presence of heterogeneous connections, it is
difficult to reveal the dynamic mechanism of STP in an analytical
manner, as in Alan et al. (2012) and Alexander et al. (2019).
However, we were able to analyze the dynamic effects of STP on
the activity bump by analyzing the change in the spatiotemporal
pattern of the membrane potential of E neurons in the network
with or without STP when presenting one stimulus.

We recorded the membrane potential Vi of every E neuron
i at 1-ms intervals and then drew the spatiotemporal pattern,

that is, the heat map of Vi in Figures 5A–D. We also calculated
the mean value V̄i and standard deviation σi of Vi during the
last 1, 000 ms of the simulation to clarify the difference between
the two spatiotemporal patterns. First, in our model, we set U =
0.8, and the STP is depression; thus, the STP plays an inhibitory
role in the activity of E neurons. As a result, the width of the
activity bump between the slender yellow area in Figure 5A with
STP was narrower than that in Figure 5B without STP. Second,
the membrane potential of neurons outside the activity bump
exhibited a slow subthreshold oscillation owing to the effect of
the STP (Figure 5A). However, the membrane potential of the
E neurons outside the activity bump showed a uniform noisy
pattern with smaller fluctuations (Figure 5B).

We further calculated the mean and standard deviation
of the membrane potential of each E neuron during the last
1, 000 ms of the delay period. We found that STP increased
the mean membrane potential V̄i of E neurons outside the
activity bump and also increased the V̄i of E neurons inside the
activity bump (Figure 5C). At the same time, STP increased
the standard deviation σi of E neurons outside the activity
bump but decreased the standard deviation σi of the membrane
potential of neurons inside the activity bump (Figure 5D). STP
can decrease the stability and increase the drift of the activity
bump by increasing the membrane potential and enlarging the
fluctuation of the membrane potential of E neurons outside the
activity bump. As a result, the STP can enhance the drift of
the activity bump elicited by the stimulus to discrete attractors
determined by heterogeneous connectivity.

FIGURE 5

The spatiotemporal pattern and statistics of membrane
potential, Vi. (A) The spatiotemporal pattern of the model with
short-term plasticity (STP). The color bar shows that
Vi ∈ [−70 mV,−50 mV], and two vertical dash black lines
indicate the cue period. The stimulus color θα =1 = 190◦.
(B) The spatiotemporal pattern of the model without the STP.
The stimulus color θα =1 = 85◦. (C) The mean membrane
potential V̄i of every E neuron during the last 1,000 ms. The
blue and red lines indicate the statistical results with the effect of
STP or without it, respectively. (D) The standard deviation σi of E
neurons during the last 1,000 ms. The blue and red lines
indicate the same condition in panel (C).
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The spatiotemporal pattern of the
variables of STP

Besides the effects of STP on membrane potential of
E neurons in the network, we further investigated the
spatiotemporal pattern of the variables of STP to reveal the
mechanism of the enhancement of the drift of the activity bump

FIGURE 6

The spatiotemporal pattern of the variables of short-term
plasticity (STP). The cue stimulus is θα =1 = 190◦ for panels
(A1–A3) and θα =1 = 135◦ for panels (B1–B3), respectively. The
spatiotemporal pattern of utilization of resource u (top), available
resource x (middle), and the overall plasticity ux (bottom).

by STP. We first explored the situation that a cue (190◦) is far
from the peak of the connectivity. The cue elicits the activity of
neurons preferred 190◦ during cue period. The synaptic strength
from these activated neurons to neuron whose preferred color is
larger than 190◦ are stronger than to neuron whose preferred
color is smaller than 190◦ due to that 190◦ is closer to one
peak of connectivity (225◦) than to the other peak (135◦).
The asymmetric connections to the initially activated neurons
lead to asymmetric spatiotemporal pattern of variables of STP:
utilization of resource u, available resource x,and the overall STP
ux, respectively (Figures 6A1–A3). This depressed plasticity
leads to weaker synaptic outputs from neuron whose synapse
was depressed as shown in blue area in Figure 6A3. Therefore,
the neurons closer to the peak of connectivity (225◦) received
more asymmetric synaptic inputs, driving the elicited activity
bump far from the initial cue location toward the peak of the
connectivity and leading to a larger deviation of report error.
Due to the mobility of activity bump induced by STP, the plateau
of distribution of the report error (Figure 4) was eliminated.
We then investigated the situation that a cue (135◦) is close
to the peak of the connectivity. The spatiotemporal pattern of
STP variables is almost symmetry (Figures 6B1–B3) because the
initially activated neurons during the cue period have almost
symmetric influence on their projected neurons. As the result,
the activity bump will stay near the peak of the connectivity with
small fluctuation. In summary, consistent with the analysis on
membrane potential of E neurons, STP causes a larger deviation

FIGURE 7

Distribution of the report error and report from the stochastic differential equation (SDE) in Panichello et al. (2019). Panel (A) shows the results
using parameters fitted by experimental data in literature (Panichello et al., 2019), and panel (B) shows the results based on the same
parameters, except for heterogeneity controlling parameters. The top rows of panels (A,B) show the distribution of report error. The bottom
rows of panels (A,B) show the distribution of report. The blue histograms denote the distribution of report error in the simulation. The red lines
are the smooth curve of the histogram. The black lines denote the Gaussian fit of distribution of report error in the experiment. The green lines
indicate the distribution of input color. The delay period times are 3,000, 5,000, and 20,000 s for the left, middle, and right column, respectively.
The parameters in panel (A) are set as follows: {wj} {6.26, 8.22, 9.75, 7.89, 7.48, 10.28, 7.23, 7.75, 9.62, 7.74, 6.48, 11.27} × 10−2.

The parameters in panel (B) are set as follows: {wj} {6.26, 8.22, 59.75, 7.89, 7.48, 60.28, 7.23, 7.75, 59.62, 7.74, 6.48, 61.27} × 10−2.
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FIGURE 8

Result of heterogeneous connection with three peaks. Panels
(A,B) show the distribution when presenting one stimulus, and
panels (C,D) show that when presenting two stimuli. (A,C) The
distribution of report error. The blue histogram shows the
distribution of report error in the simulation, and the red line is
the Gaussian fit curve of the histogram. The black line is the
Gaussian fit curve of distribution of report error in the
experiment. (B,D) The distribution of report. The blue histogram
shows the distribution of report in the simulation, and the red
line shows the smooth line of the histogram. The green line
indicates the distribution of input color. The parameters are set
as follows: U = 0.8, b = 1.2, J̄ = 4.9, and σ̄ = 4.0◦.

by increase the mobility of the activity bump far from the peak of
activity bump, leading to a larger deviation of the distribution of
the report error and eliminating the plateau of the distribution of
the report error by the network with heterogenous connectivity
but without STP.

Conclusion and discussion

In this study, we constructed a spiking neuron network
model with two main mechanisms: heterogeneous connection
and STP. The model can reproduce the distribution of the report
error and report observed in the experiment (Panichello et al.,
2019). We found that the heterogeneity connection between
E neurons plays a key role in clustering report and the STP
enhances the drift of the activity bump to modulate the report
error.

As mentioned in the Section “Introduction,” Panichello et al.
(2019) used the SDE, dθ = βLG(θ)dt + σLdW, to describe the
evolution of the memory trace. The βL sets the gain of the
drift, and the σ2

L is the variance of the Gaussian white noise.

L is the number of input color. G(θ) =
12∑
j
wj

d
dθ φ( 2π

12 j,
2π
12 ,

where the φ is a von Mises distribution. They assumed that
the evolution of the memory trace is controlled by discrete
attractors (drift role) and Gaussian white noise (diffusion role).
They further determined the distribution of memory traces
using FPE and fitted their experimental data. Although this

distribution obtained from the FPE fits the experimental data
well, it is difficult to obtain similar results by direct simulation
of the SDE. Here, we solve the SDE using the modified Euler–
Heun method (Christopher and Nie, 2017). We first used the
parameters in Panichello et al. (2019): β1 = 0.0917, σ1 =

3.637 × 10−4, and {wj} are shown in the caption of Figure 7.
When we get the evolved angle θ, following the fit of FPE by
Panichello et al. (2019), we use the guess rate λ to determine
if the report angle θ is replaced by a random guess angle.
Because the input contains only one angle (Load 1 condition
in experiment), we set the swap rate α as zero. We found that
reports by SDE can be clustered but obviously deviate from
the experimental data given different delay periods of 3,000,
5,000, and 20,000 s for the left, middle, and right panels of
the bottom row in Figure 7A, respectively. The distribution of
report error exhibits a bimodal distribution but not a Gaussian
distribution (top row in Figure 7A). We further changed the
parameter {wj} to enhance the effects of the heterogeneity in
SDE but did not change βi and σ̄i of SDE. For the new set of
values {w}, we added a fixed value at the four peaks of original
values {wj} (shown in the caption of Figure 7) to make a stronger
heterogeneity of von Mises distribution used in Panichello’s
model. Although the distributions of report were clustered
(bottom row in Figure 7B), the distribution was inconsistent
with the experimental observations. The distribution of report
error exhibits a multimodal but not a Gaussian distribution.
In brief, the results from directly solving the SDE indicate
that memory traces driven by discrete-like attractors and
Gaussian white noise cannot explain the clustering report and
Gaussian distribution of report error. In contrast, our model
with heterogeneous connectivity and STP can account for
experimental observations. For our model, several points are
worthy of noting.

First, we directly introduced heterogeneity to the
connectivity in our model. This heterogeneity in connectivity
may result from synaptic plasticity due to repetitive exposure to
external stimuli during development (Li et al., 2022). Another
possible mechanism is the synaptic plasticity such as Hebbian
learning. Considering that Hebbian learning rule drives the
synaptic weight approach to the direction of the principal
component of external inputs, this mechanism could be used to
explain the observation that the experience is likely to be used
for getting the wrong guess of color to modify the distribution
(Panichello et al., 2019). Thus, the heterogeneity in the network
is still not clear.

Second, in the original ring model, the connectivity is
translation invariance, which implies that the network can elicit
one activity bump located at any position and the activity bump
just diffuses along with time owing to the noise (Albert et al.,
2000). Heterogeneity breaks up the translation invariance and
impairs the stability of the activity bump (Song et al., 2003),
which implies that the heterogeneity of connectivity prefers the
drift of the activity bump. Moreover, the connection between
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neurons located at two peaks of connectivity is asymmetry in our
model, which causes the activity bump drift toward the peak of
the connectivity (Huang et al., 2015). Besides the heterogenous
connectivity, the random connectivity can also break up the
translation invariance and generate attractors in the network
(Hansel and Mato, 2013). However, the random connectivity
will lead to random location of attractors, which is inconsistent
with the experimental observations. One recent research on the
color memorizing and retrieval showed that individual subjects
partitioned the continuum hues into discrete categories and
exhibited focal colors in their own mnemonic strategy (da
Fonseca et al., 2019), which says that the connectivity should not
be random.

Third, the heterogeneity of connectivity in our model leads
to discrete-like attractors, and the activity bump approaches
the attractors, leading to clustering report. However, the drift
driven by the asymmetric connection between neurons causes
the report error to deviate from a Gaussian-like distribution
(Figures 4, 7). Therefore, we had to introduce a new mechanism
to modulate the drift of the activity bump. Previous research has
shown that the STP may induce a traveling wave in the ring
model (Alan et al., 2012) or control the stability of the WM
(Itskov et al., 2011; Alexander et al., 2019). Thus, we used the
STP to modulate the drift of the activity bump and reproduce
typical phenomena in the experiment. We chose a larger value
of the baseline of the utilization of resource (U = 0.8). The
larger U implies that the larger portion of available ready
transmitter can be released into cleft. Thus, the large U favors the
depression of the synaptic efficacy. The experiments showed the
release probability of neural transmitter varies from 0.1 to 0.9 in
different synaptic connections and different species (Branco and
Staras, 2009). The smaller U makes the bump more stable which
is inconsistent with the experimental results.

Fourth, our model can reproduce not only the clustering
report with four clusters, which is consistent with the report
distribution of humans in the experiment (Panichello et al.,
2019), but also the clustering report with three clusters
by changing the structure of the heterogeneous connection.
We only adjusted the parameters controlling the number of
peaks and simulated the model. We can see that the report
was clustered with one stimulus (Figure 8B) or two stimuli
(Figure 8D). The report error followed a Gaussian distribution

(Figure 8). In summary, our model can account for the
clustering report and the Gaussian distribution of report error.
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