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Let G be a graph, and the number of components of G is denoted by c(G). Let

t be a positive real number. A connected graph G is t-tough if tc(G − S) ≤ |S|
for every vertex cut S of V(G). The toughness of G is the largest value of t for

which G is t-tough, denoted by τ (G). We call a graph G Hamiltonian if it has

a cycle that contains all vertices of G. Chvátal and other scholars investigate

the relationship between toughness conditions and the existence of cyclic

structures. In this paper, we establish some su�cient conditions that a graph

with toughness is Hamiltonian based on the number of edges, spectral radius,

and signless Laplacian spectral radius of the graph.
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1. Introduction

Let G = [V(G),E(G)] be a finite simple undirected graph with vertex set V(G) =
{v1, v2, . . . , vn} and edge set E(G). Write by m = |E(G)| the number of edges and

n = |V(G)| the number of vertices of the graph G, respectively. The set of neighbors

of a vertex v in graph G is denoted by NG(v). Let vi ∈ V(G), we denote by di = dvi =
dG(vi) = |NG(vi)| the degree of vi. Denote by δ(G) [1(G)] or simply δ (1) the minimum

(maximum) degree of G. Let (d1, d2, . . . , dn) be a nondecreasing degree sequence of G,

that is, d1 ≤ d2 ≤ · · · ≤ dn. For convenience, we use (0x0 , 1x1 , · · · , kxk , · · · ,1x1 )

to denote the degree sequence of G, where xk is the number of vertices of degree k in

the graph G. We denote a bipartite graph with bipartition (X,Y) by using G[X,Y]. We

denote the cycle and the complete graph on n vertices by using Cn and Kn, respectively.

We use Km,n to denote a complete bipartite graph with two parts having m, n vertices,

respectively. Let G andH be two disjoint graphs. We denote by G+H the disjoint union

of G and H, which is a graph with vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H). If

G1 = G2 = . . . = Gk, we denote G1 + G2 + · · · + Gk by kG1. We denote by G ∨ H the

join of G andH, which is a graph obtained from the disjoint union of G andH by adding

edges joining every vertex of G to every vertex of H. Let Kn−1 + v denote the complete

graph Kn−1 together with an isolated vertex v. Other undefined symbols reference can

be seen in Bondy and Murty (1982) and Bauer et al. (2006).

The adjacency matrix of G is A(G) = (aij), where aij = 1 if vi and vj are adjacent

in G and aij = 0 otherwise. Let D(G) be the degree diagonal matrix of G, i.e., D(G) =
diag{dG(v1), dG(v2), . . . , dG(vn)}. The matrix Q(G) = D(G)+ A(G) is called the signless

Laplacian matrix of G. The largest eigenvalue of A(G), denoted by µ(G), is called to be

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.1019039
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.1019039&domain=pdf&date_stamp=2022-10-14
mailto:guidongy@163.com
https://doi.org/10.3389/fncom.2022.1019039
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2022.1019039/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Cai et al. 10.3389/fncom.2022.1019039

the spectral radius of G. The largest eigenvalue of Q(G), denoted

by q(G), is called to be the signless Laplacian spectral radius ofG.

A cycle (path) containing every vertex of a graph is called

a Hamilton cycle (path) of the graph. Graph G is called a

Hamilton graph if it has a Hamilton cycle, and then we also call

G Hamiltonian. The number of components of G is denoted by

c(G). Let t be a positive real number. A connected graph G is

t-tough if tc(G − S) ≤ |S| for every vertex cut S of V(G). The

toughness of G is the largest value of t for which G is t-tough,

denoted by τ (G). If G is a complete graph, take τ (Kn) = ∞ for

all n ≥ 1. If G is not a complete graph, τ (G) = min{ |S|
c(G−S)

: S ⊆
V(G), c(G − S) ≥ 2}, where the minimum is taken over all cut

sets of vertices in G. Obviously, a t-tough graph is s-tough for all

s < t.

On the one hand, more than 40 years ago, Chvátal (1973)

introduced the concept of toughness. From then on a lot of

research has been obtained, mainly relating to the relationship

between toughness conditions and the existence of cyclic

structures. Historically, most of the research was based on

some conjectures in Chvátal (1973). D. Bauer etc. (Bauer et al.,

1991, 1995a,b, 1999), surveyed results on toughness and its

relationship to cycle structure. If we want to know more about

the Hamiltonian problems related to toughness, we can refer to

Bauer et al. (2006) and Huang et al. (2022). On the other hand,

the problem of determining whether a graph is Hamiltonian

is an NP-complete problem. In recent years, the study of

Hamiltonian problem using spectrum graph theory has received

extensive attention, and some meaningful results are obtained,

such as Fiedler and Nikiforov (2010), Zhou (2010), Lu et al.

(2012), Yu and Fan (2013), Liu et al. (2015), Li and Ning (2016),

Feng et al. (2017), Zhou et al. (2018), and Yu et al. (2019). We

would naturally think of what a t-tough graph is Hamiltonian

when adding to other conditions. Inspired by the above results,

in this paper, we establish some sufficient conditions that a graph

with toughness is Hamiltonian based on the number of edges,

spectral radius, and signless Laplacian spectral radius of the

graph.

2. Preliminary

At the beginning of this section, we first give some

definitions. Let G be a graph on n vertices. A vector X ∈ Rn is

called to be defined on the vertex setV(G) of the graphG, if there

is a one-to-one mapping ϕ from vertex set V(G) of the graph to

the components of the vector X; simply written Xu = ϕ(u).

When µ is an eigenvalue of the adjacency matrix A(G)

corresponding to the eigenvector X if and only if X 6= 0,

µXv =
∑

w∈NG(v)

Xw, for each vertex v ∈ V(G). (2.1)

The Equation (2.1) is called the characteristic equation of G.

When q is an eigenvalue of signless Laplacian matrix Q(G)

corresponding to the eigenvector X if and only if X 6= 0,

[q− dG(v)]Xv =
∑

w∈NG(v)

Xw, for each vertex v ∈ V(G). (2.2)

The Equation (2.2) is called the signless Laplacian characteristic

equation of G.

Lemma 2.1. Hoàng (1995) let t ∈ {1, 2, 3} and G be a t-tough

graph with a non-decreasing degree sequence d1 ≤ d2 ≤ · · · ≤
dn. If for all integers k with t ≤ k < n

2 , dk ≤ k implies

dn−k+t ≥ n− k, then G has a Hamilton cycle.

Lemma 2.2. Yuan (1988) let G be a connected graph with n

vertices andm edges. Then

µ(G) ≤
√
2m− n+ 1,

and the equality holds if and only if G = Kn or G = K1,n−1.

Lemma 2.3. Yu and Fan (2013) let G be a graph with n vertices

andm edges. Then

q(G) ≤
2m

n− 1
+ n− 2.

If G is connected, the equality holds if and only if G = K1,n−1

or G = Kn. Otherwise, the equality holds if and only if

G = Kn−1 + v.

Lemma 2.4.Hoàng (1995) every Hamiltonian graph is 1-tough.

Lemma 2.5. Let the graph G be not a complete graph with

minimum degree δ(G), and G is t-tough, then δ(G) ≥ 2t.

Proof Let δ(G) = dv, S = NG(v), then |S| = |NG(v)| = δ(G).

We can get c(G− S) ≥ 2. Because G is not a complete graph, by

τ (G) = min{
|S|

c(G− S)
: S ⊆ V(G), c(G− S) ≥ 2},

then

t ≤ τ (G) ≤
|S|

c(G− S)
≤

δ(G)

2
,

thus, we can get δ(G) ≥ 2t.

The proof is completed.�

Lemma 2.6. Jung (1978) let G be a graph without a Hamiltonian

cycle and at least 11 vertices. Then

(i) there exist two non-adjacent vertices x, y such that d(x)+
d(y) ≤ |V(G)| − 5 or

(ii) there exist for some t ≥ 1 vertices x1, x2, . . . , xt such that

G− x1 − · · · − xt has at least t + 1 components.

Corollary 2.7. Let t ∈ {1, 2, 3}, and G be a t-tough graph without

a Hamiltonian cycle with at least 11 vertices. Then there exist two

non-adjacent vertices x, y such that d(x)+ d(y) ≤ |V(G)| − 5.

Proof Because G has no Hamiltonian cycle, G is not a complete

graph. If there exist for some s ≥ 1 vertices x1, x2, . . . , xs such

that G− x1 − · · · − xs has at least s+ 1 components, by
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τ (G) = min{
|S|

c(G− S)
: S ⊆ V(G), c(G− S) ≥ 2},

then

t ≤ τ (G) ≤
s

s+ 1
< 1,

a contradiction.

The proof is completed.�

The closure of a graph G, denoting by Cn(G), is the graph

obtained from G by recursively joining pairs of nonadjacent

vertices whose degree sum is at least n until no such pair remains,

refer to Bondy and Chvátal (1976).

Lemma 2.8. Bondy and Chvátal (1976) a graphG is Hamiltonian

if and only if Cn(G) is Hamiltonian.

3. Main results

Theorem 3.1. Let G be a t-tough (t ∈ {1, 2, 3}) and simple

connected graph with n(≥ 8t) vertices andm edges. If

m ≥

(

n− 2t

2

)

+ 3t2, (3.1)

then

(i) G is Hamiltonian when t ∈ {1, 2} and n ≥ 8t.

(ii) G is Hamiltonian when t = 3 and n > 9t.

Proof Suppose that G is not a Hamilton graph. By Lemma 2.1,

there exists a positive integer k for t ≤ k < n
2 and dk ≤ k, such

that dn−k+t ≤ n− k− 1. Then we have

2m =
k
∑

i=1

di +
n−k+t
∑

i=k+1

di +
n
∑

i=n−k+t+1

di

≤ k2 + (n− 2k+ t)(n− k− 1)+ (k− t)(n− 1)

= n2 − n+ 3k2 + (1− 2n− t)k

= 2

(

n− 2t

2

)

+ 6t2 − (k− 2t)(2n− 3k− 5t − 1),

thus

m ≤

(

n− 2t

2

)

+ 3t2 −
(k− 2t)(2n− 3k− 5t − 1)

2
. (3.2)

Since

(

n− 2t

2

)

+ 3t2 ≤ m ≤

(

n− 2t

2

)

+ 3t2 −

(k−2t)(2n−3k−5t−1)
2 , thus (k− 2t)(2n− 3k− 5t − 1) ≤ 0. Next,

we discuss three cases.

Case 1 t = 1.

In this case, n ≥ 8t = 8, (k−2)(2n−3k−6) ≤ 0. By Lemma

2.5, δ(G)≥ 2t = 2. Since δ(G) ≤ dk ≤ k, then k ≥ 2.

Case 1.1 (k − 2)(2n − 3k − 6) = 0, i.e., k = 2; or k 6= 2 and

2n− 3k− 6 = 0.

Case 1.1.1 k = 2.

In this case, G is a graph with d2 ≤ 2, dn−1 ≤ n − 3,

dn ≤ n − 1, and we have (n − 2)(n − 3) + 6 ≤
n
∑

i=1
di ≤

(n−2)(n−3)+6 by (3.1) and (3.2). Thus, all inequalities of (3.2)

become equality. In this time, G must be with degree sequence

[22, (n− 3)n−3, n− 1].

If two 2-degree vertices ofG are non-adjacent,Gmust be the

graph K1∨ (Kn−3−uv+wu+zv), where u, v ∈ V(Kn−3),w, z /∈
V(Kn−3), is Hamiltonian, a contraction.

If two 2-degree vertices of G are adjacent, G must be the

graph K1 ∨ (K2 + Kn−3), but τ [K1 ∨ (K2 + Kn−3)] ≤ 1
2 , a

contraction.

Case 1.1.2 k 6= 2 and 2n− 3k− 6 = 0.

In this case, we can get n ≤ 11 because k < n
2 , and hence

n = 9, k = 4. Then d4 ≤ 4, d6 ≤ 4, d9 ≤ 8, and we have

48 ≤
9
∑

i=1
di ≤ 48 by (3.1) and (3.2). Thus, all inequalities of (3.2)

become equality. G must be with degree sequence (46, 83), and

G = K3 ∨ (3K2) is Hamiltonian, a contradiction.

Case 1.2 (k− 2)(2n− 3k− 6) < 0.

In this case, k ≥ 3 and 2n−3k−6 < 0. Since k < n
2 , we have

n ≥ 2k+ 1. From these results, we have 4k+ 2 ≤ 2n ≤ 3k+ 5,

that is k ≤ 3. Thus, we have k = 3, n = 7. A contradiction with

known condition n ≥ 8.

Case 2 t = 2.

In this case, (k−4)(2n−3k−11) ≤ 0. By Lemma 2.5, δ(G)≥
2t = 4. Since δ(G) ≤ dk ≤ k, then k ≥ 4.

Case 2.1 (k − 4)(2n − 3k − 11) = 0, i.e., k = 4; or k 6= 4 and

2n− 3k− 11 = 0.

Case 2.1.1 k = 4.

In this case, G is a graph with d4 ≤ 4, dn−2 ≤ n − 5,

dn ≤ n − 1, and we have (n − 4)(n − 5) + 24 ≤
n
∑

i=1
di ≤

(n−4)(n−5)+24 by (3.1) and (3.2). Thus, all inequalities of (3.2)

become equality. During this time, G is the graph with degree

sequence (44, (n− 5)n−6, (n− 1)2), and n ≥ 8t = 16 for t = 2.

Let S is the set containing four 4−degree vertices of G, and there

exist two non-adjacent vertices in S by Corollary 2.7.

By Lemma 2.8, Cn(G) is also not Hamiltonian. According to

the definition of Cn(G), all points except the vertices of S form

a complete graph Kn−4 in Cn(G). Let us discuss graph Cn(G). If

one vertex of the Kn−4 is adjacent to one vertex of S, it must be

adjacent to all vertices of S. Moreover, there are at least 2 vertices

of the Kn−4 adjacent to all vertices of S because there exist two

non-adjacent vertices in S by Corollary 2.7.

If there are 2 vertices of the Kn−4 adjacent to all vertices of

S, then Cn(G) ⊇ K2 ∨ (Kn−6 + K2,2). Since K2 ∨ (Kn−6 + K2,2)

is Hamiltonian, then Cn(G) is Hamiltonian, a contradiction.

If there are 3 vertices of the Kn−4 adjacent to all vertices

of S, then Cn(G) ⊇ K3 ∨ (Kn−7 + 2K2). Since K3 ∨
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(Kn−7 + 2K2) is Hamiltonian, then Cn(G) is Hamiltonian,

a contradiction.

If there are 4 vertices of the Kn−4 adjacent to all vertices of

S, then Cn(G) ⊇ K4 ∨ (Kn−8 + 4K1). Since K4 ∨ (Kn−8 + 4K1)

is Hamiltonian, then Cn(G) is Hamiltonian, a contradiction.

If there are more than 4 vertices of the Kn−4 adjacent to

all vertices of S, Cn(G) ⊇ Ki ∨ (Kn−4−i + 4K1)(i > 4). Since

Ki∨ (Kn−4−i+4K1) is Hamiltonian, then Cn(G)is Hamiltonian,

a contradiction.

Case 2.1.2 k 6= 4 and 2n− 3k− 11 = 0.

In this case, we can get 16 ≤ n ≤ 21 because k < n
2 and

16 = 8t ≤ n, hence n = 16, k = 7. Then d7 ≤ 7, d11 ≤ 8,

d16 ≤ 15, and we have 156 ≤
16
∑

i=1
di ≤ 156 by (3.1) and (3.2).

Thus,
16
∑

i=1
di = 156, and all inequalities of (3.2) become equality.

The corresponding permissible graphic sequence is (77, 84, 155).

Then there are no two vertices x, y that are not adjacent such

that d(x)+ d(y) ≤| V(G) | −5. By Corollary 2.7, we can get G is

Hamiltonian, a contradiction.

Case 2.2 (k− 4)(2n− 3k− 11) < 0.

In this case, k ≥ 5 and 2n−3k−11 < 0. Since k < n
2 , we have

n ≥ 2k+ 1. From these results, we have 4k+ 2 ≤ 2n ≤ 3k+ 10,

that is k ≤ 8. Thus, we have 16 = 8t ≤ n ≤ 17.

When n = 16, we have k = 7 from 4k+2 ≤ 2n ≤ 3k+10. At

this time 2n−3k−11 = 0, which contradicts to 2n−3k−11 < 0.

When n = 17, we have k = 8 from 4k+ 2 ≤ 2n ≤ 3k+ 10.

In this case, d8 ≤ 8, d11 ≤ 8, d17 ≤ 16. We have 180 ≤
17
∑

i=1
di ≤

184 by (3.1) and (3.2). Then,
17
∑

i=1
di = 184 or

17
∑

i=1
di = 182 or

17
∑

i=1
di = 180.

When
17
∑

i=1
di = 184 or

17
∑

i=1
di = 182. The corresponding

permissible degree sequence and its properties are as follows

in Table 1. By Corollary 2.7, we can get G is Hamiltonian, a

contradiction.

When
17
∑

i=1
di = 180, The corresponding permissible degree

sequence and its properties are shown in the follows in Table 2.

From Table 2, we can find that:

(1) for degree sequence (4, 810, 166) and (5, 7, 89, 166). They

are not graphic, a contradiction.

(2) for degree sequence (62, 89, 166). If the corresponding

graphs are not Hamiltonian, there must exist two non-adjacent

6-degree vertices by Corollary 2.7, and the corresponding

graphs are isomorphic to K6 ∨ (C9 + 2K1) or K6 ∨ (C4 + C5 +
2K1) or K6 ∨ (C6 + K3 + 2K1). We can find these graphs are

Hamiltonian, a contraction.

(3) the other degree sequence except (4, 810, 166),

(5, 7, 89, 166), and (62, 89, 166) in Table 2, there are

no two vertices x, y that are not adjacent such that

d(x) + d(y) ≤| V(G) | −5. By Corollary 2.7, we can get

that G is Hamiltonian, a contradiction.

Case 3 t = 3.

In this case, (k − 6)(2n − 3k − 16) ≤ 0. By Lemma 2.5,

δ(G) ≥ 2t = 6. Since δ ≤ dk ≤ k, then k ≥ 6.

Case 3.1 (k− 6)(2n− 3k− 16) = 0, i.e., k− 6 = 0 or k 6= 6 and

2n− 3k− 16 = 0.

Case 3.1.1 k = 6.

In this case, G is a graph with d6 ≤ 6, dn−3 ≤ n − 7, dn ≤

n−1.We have (n−6)(n−7)+54 ≤
n
∑

i=1
di ≤ (n−6)(n−7)+54

by (3.1) and (3.2), thus
n
∑

i=1
di = (n− 6)(n− 7)+ 54. During this

time, we have the corresponding permissible degree sequence of

G is (66, (n− 7)n−9, (n− 1)3), and we have n > 9t = 27 because

t = 3. Let S is the set containing six 6−degree vertices of G.

By Lemma 2.8, Cn(G) is also not Hamiltonian. According to

the definition of Cn(G), all points except the vertices of S form a

complete graph Kn−6 in Cn(G). Let us discuss the graph Cn(G).

If one vertex of the Kn−6 is adjacent to one vertex of S, it must be

adjacent to all vertices of S. Moreover, there are at least 2 vertices

of the Kn−6 adjacent to all vertices of S because there exist two

non-adjacent vertices in S by Corollary 2.7.

If there are 2 vertices of the Kn−6 adjacent to all vertices of

S, then Cn(G) ⊇ K2 ∨ (Kn−8 + C6). Since K2 ∨ (Kn−8 + C6) is

Hamiltonian, then Cn(G) is Hamiltonian, a contradiction.

If there are 3 vertices of the Kn−6 adjacent to all vertices of

S, then Cn(G) ⊇ K3 ∨ (Kn−9 + C6). Since K3 ∨ (Kn−9 + C6) is

Hamiltonian, then Cn(G) is Hamiltonian, a contradiction.

If there are 4 vertices of the Kn−6 adjacent to all vertices of

S, then Cn(G) ⊇ K4 ∨ (Kn−10 +C6) or Cn(G) ⊇ K4 ∨ (Kn−10 +
2C3). Since K4 ∨ (Kn−10 + C6) and K4 ∨ (Kn−10 + 2C3) are

Hamiltonian, then Cn(G) is Hamiltonian, a contradiction.

If there are 5 vertices of the Kn−6 adjacent to all vertices of

S, then Cn(G) ⊇ K5∨ (Kn−11+3K2). Since K5∨ (Kn−11+3K2)

is Hamiltonian, then Cn(G) is Hamiltonian, a contradiction.

If there are 6 vertices of the Kn−6 adjacent to all vertices of

S, then Cn(G) ⊇ K6 ∨ (Kn−12 + 6K1), so Cn(G) is Hamiltonian,

a contradiction.

If there are more than 6 vertices of the Kn−6 adjacent to

all vertices of S, Cn(G) ⊇ Ki ∨ (Kn−6−i + 6K1)(i > 6). Since

Ki ∨ (Kn−6−i + 6K1)(i > 6) is Hamiltonian, then Cn(G)is

Hamiltonian, a contradiction.

Case 3.1.2 k 6= 6 and 2n− 3k− 16 = 0.

In this case, we can get 28 ≤ n ≤ 31 because k < n
2

and n > 9t = 27. Since 2n − 3k − 16 = 0, then n = 29,

k = 14. So d14 ≤ 14, d18 ≤ 14, d29 ≤ 28. We have

560 ≤
29
∑

i=1
di ≤ 560 by (3.1) and (3.2), thus

29
∑

i=1
di = 560. The

corresponding permissible degree sequence is (1418, 2811). For

this degree sequence, we can get that there are no two vertices

x, y that are not adjacent such that d(x)+ d(y) ≤| V(G) | −5. By

Corollary 2.7, we can get G is Hamiltonian, a contradiction.
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TABLE 1 The degree sequence of G and its properties.

Degree sequence The degree sum of any two vertices |V(G)| − 5

n = 17

k = 8 (811 , 166) ≥ 16 12

2m = 184

(61 , 810 , 166) ≥ 14 12

n = 17 (72 , 89 , 166) ≥ 14 12

k = 8 (811 , 141 , 165) ≥ 16 12

2m = 182 (811 , 152 , 164) ≥ 16 12

(71 , 810 , 151 , 165) ≥ 15 12

TABLE 2 The degree sequence of G and its properties.

Degree sequence The degree sum of

any two vertices

|V(G)| − 5

(41 , 810 , 166) ≥ 12 12

(62 , 89 , 166) ≥ 12 12

(74 , 87 , 166) ≥ 14 12

(61 , 72 , 88 , 166) ≥ 13 12

n = 17 (61 , 810 , 141 , 165) ≥ 14 12

(51 , 71 , 89 , 166) ≥ 12 12

(51 , 810 , 151 , 165) ≥ 13 12

(61 , 71 , 89 , 151 , 165) ≥ 13 12

(73 , 88 , 151 , 165) ≥ 14 12

k = 8 (811 , 121 , 165) ≥ 16 12

(811 , 142 , 164) ≥ 16 12

(71 , 810 , 131 , 165) ≥ 15 12

(71 , 810 , 141 , 151 , 164) ≥ 15 12

(811 , 131 , 151 , 164) ≥ 16 12

(811 , 141 , 152 , 163) ≥ 16 12

2m = 180 (61 , 810 , 152 , 164) ≥ 14 12

(72 , 89 , 141 , 165) ≥ 14 12

(72 , 89 , 152 , 164) ≥ 14 12

(811 , 154 , 162) ≥ 16 12

(71 , 810 , 153 , 163) ≥ 15 12

Case 3.2 (k− 6)(2n− 3k− 16) < 0.

In this case, k ≥ 7 and 2n−3k−16 < 0. Since k < n
2 , we have

n ≥ 2k+ 1. From these results, we have 4k+ 2 ≤ 2n ≤ 3k+ 15,

that is k ≤ 13. Thus, we have n ≤ 27. A contradiction with

known condition n > 9t = 27.�

Theorem 3.2 Let G be a t − tough(t ∈ {1, 2, 3}) and simple

connected graph with n vertices andm edges. If

µ(G) ≥
√

n2 − 4tn− 2n+ 10t2 + 2t − 1,

then

(i) G is Hamiltonian when t ∈ {1, 2} and n ≥ 8t.

(ii) G is Hamiltonian when t = 3 and n > 9t.

Proof Suppose that G is not Hamiltonian. Since Kn is

Hamiltonian, then G 6= Kn. By theorem conditions, we can get

n ≥ 8 when t ∈ {1, 2, 3}, thus τ (K1,n−1) ≤ 1
n−1 ≤ 1

7 < 1. Thus,

G 6= K1,n−1.

By Lemma 2.2,

√

n2 − 4tn− 2n+ 10t2 + 2t − 1 ≤ µ(G) <
√
2m− n+ 1,

then

m >

(

n− 2t

2

)

+ 3t2.

By Theorem 3.1, we get G is Hamiltonian, a contradiction.

�

Theorem 3.3 Let G be a t − tough(t ∈ {1, 2, 3}) and simple

connected graph with n vertices andm edges. If

q(G) ≥
n2 + 10t2 − 4nt + 2t − n− 2+ (n− 1)(n− 2)

n− 1
,

then

(i) G is Hamiltonian when t ∈ {1, 2} and n ≥ 8t.

(ii) G is Hamiltonian when t = 3 and n > 9t.

Proof Suppose that G is not a Hamilton graph. Since Kn is

Hamiltonian, then G 6= Kn and G 6= Kn−1 + v. By theorem

conditions, we can get n ≥ 8 when t ∈ {1, 2, 3}, thus τ (G) ≤
1

n−1 ≤ 1
7 < 1. So, G 6= Kn, G 6= K1,n−1.

By Lemma 2.3,

n2 + 10t2 − 4nt + 2t − n− 2+ (n− 1)(n− 2)

n− 1
≤

q(G) <
2m

n− 1
+ n− 2,

then

m >

(

n− 2t

2

)

+ 3t2.

By Theorem 3.1, we get G is Hamiltonian, a contradiction.

�
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4. Concluding remarks

We suggest the following general problems.

Problem 1 Let G be a t − tough(t ∈ {1, 2, 3})
and simple connected graph with n vertices and m

edges. If

m ≥

(

n− 2t

2

)

+ 3t2,

then

(i) when t ∈ {1, 2} and n ≥ 8t, G is pancyclic.

(ii) when t = 3 and n > 9t, G is pancyclic.

Problem 2 Let G be a t − tough(t ∈ {1, 2, 3}) and simple

connected graph with n vertices andm edges. If

µ(G) ≥
√

n2 − 4tn− 2n+ 10t2 + 2t − 1,

then

(i) when t ∈ {1, 2} and n ≥ 8t, G is pancyclic.

(ii) when t = 3 and n > 9t, G is pancyclic.

Problem 3 Let G be a t − tough(t ∈ {1, 2, 3}) and simple

connected graph with n vertices andm edges. If

q(G) ≥
n2 + 10t2 − 4nt + 2t − n− 2+ (n− 1)(n− 2)

n− 1
,

then

(i) when t ∈ {1, 2} and n ≥ 8t, G is pancyclic.

(ii) when t = 3 and n > 9t, G is pancyclic.
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