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In comparison to other biomedical signals, electroencephalography (EEG)

signals are quite complex in nature, so it requires a versatile model for feature

extraction and classification. The structural information that prevails in the

originally featured matrix is usually lost when dealing with standard feature

extraction and conventional classification techniques. The main intention of

this work is to propose a very novel and versatile approach for EEG signal

modeling and classification. In this work, a sparse representation model

along with the analysis of sparseness measures is done initially for the EEG

signals and then a novel convergence of utilizing these sparse representation

measures with Swarm Intelligence (SI) techniques based Hidden Markov

Model (HMM) is utilized for the classification. The SI techniques utilized to

compute the hidden states of the HMM are Particle Swarm Optimization

(PSO), Differential Evolution (DE), Whale Optimization Algorithm (WOA),

and Backtracking Search Algorithm (BSA), thereby making the HMM more

pliable. Later, a deep learning methodology with the help of Convolutional

Neural Network (CNN) was also developed with it and the results are

compared to the standard pattern recognition classifiers. To validate the

efficacy of the proposed methodology, a comprehensive experimental

analysis is done over publicly available EEG datasets. The method is supported

by strong statistical tests and theoretical analysis and results show that

when sparse representation is implemented with deep learning, the highest

classification accuracy of 98.94% is obtained and when sparse representation

is implemented with SI-based HMM method, a high classification accuracy of

95.70% is obtained.
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Introduction

In order to capture the activity of the brain,
electroencephalography (EEG) signals are used which are
nothing but the electrophysiological recordings of electrical
potentials across the cortical regions of the brain (Lee et al.,
2018). The spontaneous electrical activity of the brain in
a very short span of time is thus measured by EEG. For
analyzing various neurological-related disorders, such as coma,
anesthesia, epilepsy, sleep disorders, schizophrenia, alcoholism,
brain death, and encephalopathies, EEGs are widely used (Chen
et al., 2016). During earlier times, the analysis was based only
on visual inspection and interpretation that lead to more errors
and also it required extensive training by the clinicians. With
the advent of both specialized data acquisition devices and
computer technology, identifying abnormalities have been
incorporated very successfully (Lee et al., 2019). As EEG signals
are extremely complex when compared to other biomedical
signals, specialized and versatile feature extraction and selection
methods incorporated with classification techniques have to be
utilized. In this process, the selection of the most important
features is highly useful and significant as it depicts the subsets
of discriminant patterns (Won et al., 2018). Once that is
achieved, the classification accuracy can be enhanced, the curse
of the dimensionality problem can be alleviated, and thus the
generalization capability of the system enhances gradually (Lee
et al., 2015). This kind of methodology is adopted in a typical
biomedical signal processing work and in this work since
epilepsy classification and schizophrenia classification from
EEG signals are discussed, a few important and relevant past
literature in recent years is discussed as follows.

Plenty of articles are available online for epilepsy
classification as it is a well-established research field nearly
for the past two decades, and only a few articles are available
online for schizophrenia classification as it has triggered interest
among researchers very recently. A comprehensive review of the
different machine learning techniques for epilepsy classification
was reported in Sharmila and Geethanjali (2019), and the latest
deep learning techniques utilized for epilepsy classification
from EEG signals were analyzed thoroughly in Shoeibi et al.
(2007). These two survey articles published in 2019 and 2020
review all the past works, working methodologies, statistical
feature analysis techniques used, and datasets analyzed along
with the comparison of classification accuracies obtained by
every method, thereby easing the work of other researchers
to not reproduce the past literature over and over again.
However, some prominent ideas reported in high-quality
literature during 2020 and 2021 for both epilepsy classification
and schizophrenia classification are discussed as follows. An
automated classification of epilepsy from EEG signals based on
spectrogram and CNN was utilized in Mandhouj et al. (2021)
reporting a classification accuracy of 98.25%. By means of
integrating the property of convolutions with Support Vector

Machine (SVM), a hybrid methodology called as Convolution
SVM (C-SVM) was developed in Xin et al. (2021) reporting a
classification accuracy of 99.56%. The optimal wavelet features
were selected and combined with Long-Short Term Memory
(LSTM) for epilepsy classification from EEG signals reporting
a classification accuracy of 99% (Aliyu and Lim, 2021). Based
on Jacobi polynomial transforms and Least Squares SVM,
the classification of epilepsy was done in Nkengfack et al.
(2021), reporting a classification accuracy ranging from 88.75
to 100%. The concept of synchrosqueezing transforms was
utilized with standard machine learning techniques reporting a
classification accuracy of 95.1% (Cura and Akan, 2021). A deep
neural network model based on CNN is utilized for the analysis
of robust detection of epileptic seizures from EEG signals
reporting classification accuracy in the ranges of 97.63–99.52%
(Zhao et al., 2020). A deep CNN with 10-fold cross-validation
methodology was also implemented for epilepsy classification
reporting a high classification accuracy of 98.67% (Abiyev et al.,
2020). Other works discussed in this study are for the sake of
comparing the proposed results with the previous works as
the results implemented in this work were done with those
same datasets. Different approaches for epilepsy classification
included the usage of genetic programming (Bhardwaj et al.,
2016), complex-valued classifiers (Peker et al., 2016), Empirical
Mode Decomposition (EMD) based supervised learning (Riaz
et al., 2016), weighted complex networks analysis (Diykh
et al., 2017), Support Vector Machine (SVM) based automated
seizure analysis (Zhang and Chen, 2017), and Recurrent Elman
neural network classifier (Raghu et al., 2017) are some of the
prominent works in this field of epilepsy classification. Recent
approaches utilized for epilepsy classification in the past three
years involve the usage of deep learning by means of proposing
a Pyramidal 1D-CNN (Ullah et al., 2018), Continuous Wavelet
Transforms with CNN (Turk and Ozerdem, 2019), and a
simple normalization with a 1D-CNN (Zhao et al., 2020).
Entropy-based analysis included the usage of fuzzy entropy and
distribution entropy for seizure classification (Li et al., 2018)
and a Fourier–Bessel series expansion-based rhythms splitting
depending on weighted multiscale Renyi Permutation Entropy
for epilepsy classification (Gupta and Ram, 2019). Other
approaches incorporated are the usage of orthogonal wavelet
filtering methodology (Sharma et al., 2018), matrix determinant
approach (Raghu et al., 2019), and alpha band statistical
feature-based detection of epileptic seizures (Sameer and Gupta,
2020). All these recent previous literature works are done on
different epileptic datasets depending on their classification
problem requirement, with some researchers focusing only on
a single epileptic dataset while other authors concentrate on
multiple epileptic datasets. When it comes to schizophrenia
classification, many research results reported in high-quality
literature are not available, and therefore, a selected few ones
are presented in this study to get a clear understanding. An
interesting methodology of schizophrenia classification from
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EEG was reported in Prabhakar et al. (2020a), where using three
different features such as isometric mapping features, nonlinear
regression features, and expectation maximization based
principal component features was optimized using nature-
inspired algorithms and classified with Modest Adaboost
classifier reporting a classification accuracy of 98.77%. Another
methodology for schizophrenia classification from EEG utilizes
the standard statistical features such as Hurst exponent, Sample
Entropy, and Detrend Fluctuation Analysis (DFA) with four
kinds of optimization techniques, and finally, when it was
classified with SVM, a classification accuracy of 92.17% was
reported (Prabhakar et al., 2020b). Finally, a deep learning
methodology was also involved using a 11-layer CNN for
schizophrenia classification in Oh et al. (2019) and they
reported a classification accuracy of 81.26% for subjects-based
testing and 98.51% for non-subject-based testing. All the works
proposed in the literature have its own merits and demerits,
and consistent improvement is being made by researchers
constantly with the usage of new ideas and methods so that the
performance is improved.

In recent years, the sparse representation of the signals
has received huge attention (Schoellkopf et al., 2007). The
most compact signal representation is solved by a sparse
theory that models a signal in the context of the linear
combination of atoms in an overcomplete dictionary. The
signals when represented in both multi-scale and multi-
orientation aspects such as contourlet, ridgelet, wavelet,
and curvelet transforms play an important role in the
progress of research on sparse representation. For efficient
signal modeling, a better performance is provided by sparse
representation when compared to techniques based on direct
time domain processing. On three different aspects of the sparse
representation, the focus of sparse representation research
is usually concerned, (a) pursuit techniques for solving the
optimization problems, (b) dictionary design techniques, and
(c) application of sparse representation for various tasks
(Schoellkopf et al., 2007). The primary objective in the standard
theory of sparse representation is to mitigate the signal
reconstruction errors utilizing a very few number of atoms.
In literature too, the application of sparse representation for
modeling and classification has been well explored. Sparse
representation for signal classification (Schoellkopf et al., 2007)
and EEG classification based on sparse representation with
deep learning (Gao et al., 2018) are the two most important
applications of sparse concepts in biomedical signal processing.
A widely utilized generative model is HMM which usually
deals with sequential data and it assumes that based on a
specific state of hidden Markov chain, the conditioning of every
observation is done (Rezek and Roberts, 2002). It is a very
famous probabilistic model where the general assumption is
that a signal is generated by means of the utilization of a
double-embedded stochastic process. For analyzing sequential
data, HMMs are highly useful as the dynamics of the signal is

encoded by a discrete-time hidden state process which projects
as a Markov chain. At each instant of time, the appearance of the
signal is encoded by an observation process and it is conditioned
on the present state. For biomedical signal analysis especially
the EEG, HMMs are highly useful and a few applications
utilizing them for various aspects of EEG signal processing are
ensemble HMM for analyzing EEG, parallel HMM to classify
the multichannel EEG patterns, detection of various brain
diseases from EEG signals using HMM and an obstructive sleep
apnea detection approach using a discriminative HMM from
EEG (Eberhart et al., 2001). Swarm Intelligence combined with
HMMs serves as a good combination and has been successfully
implemented in our work.

The main contributions of this work are as follows:

a) An efficient sparse representation model with sparseness
measures analysis with the usage of Analysis Dictionary
Learning Algorithm (ALDA) for the biosignal datasets
has been implemented and no literature in the past have
reported it for epileptic EEG signal classification and
schizophrenia EEG signals classification.

b) A swarm intelligence–based pliable HMM has been
developed and incorporated in this study and it is the first
of its kind to do after the sparse representation analysis
is done, as no literature in the past has proceeded in
this methodology.

c) The sparse-modeled features are also classified with
deep learning methodology using CNN and other
traditional pattern recognition techniques for providing a
comprehensive analysis.

d) Overall, the amalgamation of these techniques in this
proposed kind of methodology is totally new and it
can be successfully implemented in other biosignal
processing datasets, imaging applications, speech signal
processing, financial risk level assessment classification,
biometrics, etc.

In this work, sparse modeling is implemented with HMM
ideology controlled by SI techniques and it is the first of
its kind to adopt this methodology for biosignal processing
datasets, making the system more versatile and adaptable. The
organization of the work is as follows. The simplified block
diagram of the work for an easy understanding is projected
in Figure 1. Section “Sparse representation model” explains
the sparse representation model of the EEG signals. Section
“Hidden Markov model analysis” explains the modeling of
HMM followed by the usage of swarm intelligence techniques
and the incorporation of the deep learning methodology is
explained in section “Deep learning–based methodology.” The
results and discussion with experimentation and dataset details
are projected in section “Results and discussion” and conclusion
in section “Conclusion and future work.”
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FIGURE 1

A simplified block diagram of the work for easy understanding.

Sparse representation model

The notations utilized in analyzing the sparse representation
concept are explained as follows. An upper case alphabet Z
denotes a matrix and lower case letter zij expresses the ijth entry
of Z. A vector is defined by the lower-case letter, such as z. The
jth entry of z is expressed as zj. The ith row and jth column of
a particular matrix Z is defined by the matrix slices Zi: and Z:j,
respectively. For a matrix Z, the Frobenius norm is expressed as

||Z||F =
(
6i,j

∣∣zij
∣∣2)1/2

. To indicate the determinant value of a
specific matrix, det (•) is utilized.

Sparse signal representation

With the help of sparse representation, the observed signals
are decomposed into a unique product of a dictionary matrix
which will have the signal base and along with it a sparse
coefficient matrix will also be present (Schoellkopf et al.,
2007). A synthesis model and analysis model are the two
various structures of the sparse representation model. The firstly
initiated sparse model is the synthesis model and it is very widely
utilized. Assuming that the modeling of signals to be done as
Z ∈ <p×N , where the signal dimensionality is represented as p

and the total number of measurements are represented as N. The
signals could be expressed in the synthesis sparse model as

Z = DG (1)

Z ≈ DG (2)

such that ||Z-DG||2F ≤ ε, (3)

where D ∈ <p×n is considered as a dictionary, G ∈ <n×N

denotes a representation co-efficient matrix, and a very small
residual factor is given by ε ≥ 0. The number of bases is
represented by ′n′ and it is termed as dictionary atoms. To
obtain the sparse representation of the signals, it is assumed that
from the dictionary matrix D, the representation matrix G is
sparse in nature (i.e., numerous zero entities). From equations
(1) and (2), it implies that the representation of every signal is
done as a linear combination of a few atoms.

The choice of solution for the dictionary is the most
important key issue of the sparse representation which the
discovered signals are utilized to decompose. The famous
choices are either a pre-defined dictionary such as wavelets,
Discrete Fourier Transform (DFT), and Discrete Cosine
Transform (DCT) or a learned dictionary which results to match
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the contents of the signals in a better manner (Schoellkopf
et al., 2007). In real-world applications, a better performance
is exhibited by the learned dictionary when compared to
the pre-defined dictionaries. The analysis model is a simple
and interesting twin of the synthesis model and it should
be considered important. Supposing that there is a matrix
� ∈ <n×p that gives a sparse coefficient matrix G by means of
being multiplied by the signal matrix G = �Z.

For the error function ||G−�Z||F , there is a minimization
problem and the equation G = �Z can be utilized as a solution
to it. The standardized optimization methods can be very well
deployed in this study as the error function is convex. To
perform optimization in the analysis model is very easy as the
error function present in the synthesis model is non-convex in
nature. Now the analysis dictionary is represented as� ∈ <n×p.
In the analysis dictionary �, the atoms are considered as its
rows rather than the consideration of atoms as columns in the
synthesis dictionary D. In order to assemble a sparse result,
the dictionary analyses the signal and so the term “analysis” is
used. To clearly distinguish and stress the importance between
analysis and synthesis models, a co-sparsity has been utilized
(Gao et al., 2018), which helps in counting the number of zero-
valued elements of �Z, which is nothing but the zero elements
co-produced by� and Z. Therefore, the cosparse model can also
be used instead of sparse model, and cosparse dictionary can also
be used instead of analysis dictionary.

Now analysis sparse model is examined more carefully. The
analysis model represented for one signal z ∈ <p, which is a
column in the signal matrix Z is now indicated utilizing an
acceptable analysis dictionary � ∈ <n×p. The ith row termed
as the ith atom in � is specified by qi. Now the analysis
representation vectors g = �z should be made sparse and it is
done by means of introducing a sparse measure M(g), so that the
behavior becomes negatively influenced by the sparsity nature of
g and therefore by mitigating M

(
g
)
, it gives the sparsest solution

represented as
� = arg min

�

M(g)

s.t g = �z
(4)

By utilizing l0 norm thoroughly by means of setting
M(g) =

∣∣∣∣g∣∣∣∣0, the sparsest solution is obtained. Such a
constraint leads to often NP hard problem and the optimization
problem becomes combinatorial. To have easier optimization
problems, the other sparsity measures such as the l1 norm
are utilized. It is also known that utilizing l1 norm can
lead to the solution becoming too sparse as it often over-
penalizes large elements.

Sparseness measures analysis

For estimation and appraisal of the sparseness of a vector,
the lp norms are highly useful and are popularly used, where

p = 0, 1, or 2. An NP-hard problem is often yielded by the
l0 norm, and therefore, l1 norm has its convex evaluation
utilized often (Gao et al., 2018). For a vector g, the l1 -norm is
expressed to be the total sum of the absolute values of g; i.e.,∣∣∣∣g∣∣∣∣1 = 6i

∣∣gi
∣∣.

For non-negative vectors, g ∈ <+, the l1 -norm of g is
expressed as

∣∣∣∣g∣∣∣∣1 = 6igi . The l1 -norm is usually smooth
and differentiable for non-negative vectors and therefore
such gradient techniques are utilized in optimization. The
introduction of l2 -norm with non-negative matrix factorization
is sometimes considered as its yields sparse solutions. The results
with l0 -norm or l1 -norm are more sparser than the results with
l2 norm. The instantaneous sparsity nature of only one signal
can be expressed by the sparsity measures mentioned above and
are generally not utilized for covering and evaluating the sparsity
across various sources of measurement.

For non-negative sources, a determinant type of sparsity
measure is employed to express the joint sparseness. The
sparseness of non-negative matrices can be explicitly measured
by the determinant-sparse type and measures as it has various
good qualities. The determinant value of a non-negative matrix
is well bounded if the normalization of a non-negative matrix
is done, thereby interpolating its value between two extremes
0 and 1, and thus enhancing the sparsity. Supposing if the
non-negative matrix Y is non-sparse, then the determinant of
YYT , det(YYT) addresses toward 1. If all the entries of YYT are
similar, then the determinant value acts in a manner such that
0 ≤ det

(
YYT)

≤ 1, where det
(
YYT)

= 0. The following two
conditions are fully complacent at the time when det

(
YYT)

= 1
and are mentioned as follows:

(i) For all i ∈
{

1, 2, ..., p
}

, only a single element in yi is non-
zero

(ii) For all i, j ∈
{

1, 2, ..., p
}

, and i 6= j, yi, and yj are
orthogonal in nature, yT

i yj = 0

Thus, in the cost function, the determinant measure can
be utilized. If the determinant measure has a larger value, then
the matrix is more sparse. Therefore, with these determinant
constraints, the sparse coding problem can be now modeled as
an optimization problem and represented as

max
y

det
(

YYT
)
= min

y
− det

(
YYT

)
(5)

Formulation of sparse representation
problem

The analysis sparse representation problem description is
explained as follows. It is assumed that the observed signal
vector t ∈ <p

+ is present and it is a noisy aspect of a signal
z ∈ <p

+. Therefore, t = z + v, where v denotes additive positive
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white Gaussian noise. With the help of an analysis dictionary
� ∈ <n×p, every row which explains 1× p analysis atom is
considered so that z satisfies ||�z||0 = p− s, where s expresses
the cosparsity of the signal which is matched to be the total
number of zero elements. To define the signals with every
column as one signal, a matrix Z is utilized so that the signals
matrix can be extended. In this study, the sparse measure
is analyzed as M(.). The noise in the measured signals is
considered, and therefore, for analyzing dictionary learning, an
optimization task is formulated as

min
�,Z

M (�Z) (6)

such that ||T-Z||2F ≤ σ.
The noise level parameter is denoted by σ, the sparse

regularization is expressed as M. With the help of penalty
multipliers, a regularized version of the above equation can be
done. In such a case, X is considered as an approximation of
�Z, which tends to make the learning fast and easy. By means of
thresholding the sparsity measure on X and the product of �Z,
the analysis sparse coding is obtained.

The analysis sparse representation is expressed as

min
�,Z,X

M(X)+ λ ||T-Z||2F + β ||�Z-X||2F (7)

such that
∣∣∣∣qi

∣∣∣∣
2 = 1,∀i, where the representation coefficient

matrix is denoted by X ∈ <n×N . Now the representation matrix
X is considered as sparse. The λ and β in (7) are estimated
with the help of the famous Lower Upper (LU) decomposition
technique. To remove the scale ambiguity, a normalization
constraint is introduced

(
∀i
∣∣∣∣qi

∣∣∣∣
2 = 1

)
. The analysis dictionary

learning procedure is summarized in Algorithm 1.

Initialization: �0,X0,Z0 = T, i = 0
While convergence is not achieved do

�i+1 = min� ||�Z − X||2F s.t.∀i
∣∣∣∣qi

∣∣∣∣
2 = 1

Xi+1 = minX M(X)+ β ||�Z − X||2F
Zi+1 = minZ λ ||T − Z||2F + β ||�Z − X||2F
i = i+ 1

Algorithm 1. Analysis dictionary learning algorithm (ADLA).

For the sparse represented EEG signal, the statistical
feature parameters such as mean, variance, skewness, kurtosis,
sample entropy, approximate entropy, Shannon entropy, Hurst
exponent, Largest Lyapunov Exponent, Fractal Dimension,
Recurrence Quantification Analysis, Higher Order Cumulants,
Lempel Ziv Complexity, Kolmogorov Complexity, and Hjorth
exponent are computed. Table 1 shows the average statistical
feature parameter values for sparse represented EEG data
signals. It is noted from Table 1 that low values of mean,
variance, and skewness are observed among the Bonn dataset
(Andrzejak et al., 2001) (normal, inter-ictal, and ictal categories)
and schizophrenia dataset, while the kurtosis parameter reached
a high value in the Bonn dataset and schizophrenia dataset

(Olejarczyk and Jernajczyk, 2017). Bonn dataset does not
differentiate among the entropy features, but in the case
of schizophrenia dataset, there exists a difference in the
entropy features. All the statistical parameters for the features
such as Hurst Exponent, Largest Lyapunov Exponent, Fractal
Dimension, Recurrence Quantification Analysis, Higher Order
Cumulants, Lempel Ziv Complexity, Kolmogorov Complexity,
and Hjorth Exponent show the nonlinear behavior and it
has very close values among the group of datasets. This
justification indicates that the sparse represented data should be
further processed through the HMM with bio-inspired learning
algorithms.

Hidden Markov model analysis

To express a Markov process with unknown parameters,
HMM is often used (Rezek and Roberts, 2002). Through
observable parameters, it is hectic to understand the implicit
parameter of the process, and so it is utilized to proceed
with further in-depth analysis. Two discrete-time stochastic
processes that are related to each other are described by
HMM. Hidden state variables are applicable to the first process
and denoted as (V1,V2, ...,Vn), which emits the observed
variables with various probability factors. The second process
is applicable and related to observed variables (w1,w2, ...,wn).
The transition probability and the emission probability are the
two main parameters of HMM.

Transition Probability: P
(

Vl = vp
∣∣Vl−1 = vm

)
It implies

that the current state depends on the previous state vm.
Emission Probability: P

(
wl|Vl = vp

)
The current state vp

is used to release the observation symbol. In our model, for
every extracted sparse signal feature fi, an HMM λ(fi) is built.
The observed variables are nothing but the sparse representation
features extracted from the signal ′s′, while every hidden state
V(fi)

l of λ(fi) is assured as a state related to the feature wl. If
the sparse representation S obtains a very high probability for
the model λ(fi), it implies that S is related to the sparse signal
feature fi.

Consideration of sparse features as
observed variables

The features extracted from the sparse signal model are
termed as sparse features, and these are considered as observed
variables. Under this domain, category-based extraction and
global-based extraction are the two main categories of feature
extraction techniques. As global-based extraction methods
cannot be utilized to differentiate the various sparse features
so well, in our work we adopted category-based feature
extraction techniques.
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TABLE 1 Average statistical feature parameters for sparse represented EEG dataset signals.

Sl. No. Statistical parameters Bonn EEG dataset Schizophrenia dataset

A C E Schizophrenia Normal

1 Mean 0.10049 0.300822 0.850364 0.971108 0.189563

2 Variance 0.001707 0.001091 0.000505 3.9E-05 5.31E-05

3 Skewness 0.561381 1.5384 –0.69973 0.596389 1.523915

4 Kurtosis 64.37504 48.20223 29.77208 59.32448 77.81783

5 Sample entropy 11.7308 11.5397 11.3726 6.8751 10.289

6 Approximate entropy 1.986 1.648 1.461 1.7916 2.041

7 Shannon entropy 10.87 6.69 5.421 5.832 11.67

8 Hurst exponent 0.734 0.582 0.348 0.231 0.831

9 Largest Lyapunov 0.839 0.2311 0.469 0.415 0.942

10 Fractal dimension 0.2769 0.281 0.286 0.341 0.242

11 Recurrence quantification 0.1208 0.1176 0.2177 0.2307 0.098

12 Higher order cumulants 0.2495 0.482 0.725 0.774 0.2116

13 Lempel–Ziv complexity 341.33 334.9 326.58 406.91 312.21

14 Kolmogorov complexity 11.039 9.873 9.5684 7.8002 7.6749

15 Hjorth exponent 1.528 1.7153 1.6887 1.6002 1.726

Considering a set of n feature extraction techniques
{F1, F2, ..., Fn}, a sparse representation S is divided into n terms(
k1, k2, .., kn

)
. Assuming zjl is the lth feature which is extracted

by the method Fl. For computing the sparse representation
feature vector, an intermediate h× n matrix of term-level
feature is utilized. For every sparse signal feature fi, the sparse
representation feature vector of the signal S is represented as
follows:

k1

k2

:

kh

→


z11 z12 .. z1n

z21 z22 .. z2n

: : : :

zh1 zh2 .. zhn

→ [w1,w2, ..,wn](fi) (8)

where wl =
∑h

j=1 zjh
/

h,
(
1 ≤ l ≤ n

)
.

Over all the signal features,wl is a mean value of lth features
over all the extracted signal features.

Development of hidden Markov
model-based signal classification
model

A value is supposed to be emitted by each hidden state
and so the sequence of values is generated by the whole model
that constitutes and manages the sparse representation feature
vector. The representation of the best signal category is done by
a set of values and it is considered to be as a state in our work.
Between the sparse representation and the HMM states, there
is a one-to-one mapping that requires the transition of hidden
states to be in a stationary mode and the states to indicate the
start level v1. During the working of the classifier, the features of

test sparse representations being drawn closer to the signal are
done by the transition probability and are expressed as follows:

P
(

Vl = vp
∣∣Vl−1 = vm

)
=

{
1,
(
p = m+ 1

)
0,
(
p 6= m+ 1

) (9)

With the help of known state Vl, the feature wl and the training
data, the emission probability P

(
wl
/

Vl
)
is calculated. The HMM

model λ(fi) for every feature fi is expressed in Algorithm 2 as
follows:

The signal level feature vector is

expressed as [w1,w2, ...,wn](fi)

Input: feature vector [w1,w2, ...,wn](fi)

Output: Probability

P
([

w1,w2, ...,wn
](fi)∣∣∣ λ(fi))

For l = 1 to n do
Calculate P

(
wl
/

Vl
)(fi)

End for

Calculate P
([

w1,w2, ...,wn
](fi)∣∣∣ λ(fi))

using forward algorithm.

Algorithm 2. Expression of every feature in the HMMModel.

For each of the signal features, the HMM concept
is constructed and implemented. The calculation of the
probabilities of the sparse representations on the signal feature
models is done when a new sparse representation arrives. The
sparse representation is labeled with the signal features whose
model is highly related to the maximum probability.

To compute P (wl|Vl)
(fi), a Jaccard similarity (J) is

utilized which helps in testing the correlation between
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the value wl and Vl .

P (wl|Vl)
(fi) = J (wl|Vl)

(fi) =
H11

H11 +H10 +H01
(10)

where H11 indicates the number of sparse representations
contained with wl and Vl in fi; H01 indicates the number of
sparse representations which has only wl in fi; H10 indicates the
number of sparse representations which has only Vl in fi.

To assess whether the signal feature fi relates to the
observation wl or the state Vl, an associated factor is included
and it is specified by δl. The feature extracted from the training
data be w

′

l and the association is described as follows:∣∣∣w′l − wl

∣∣∣ ≤ δl or
∣∣∣w′l − Vl

∣∣∣ ≤ δl (11)

If the above inequalities are satisfied, then it is understood
that the observation wl or the state Vl is related to fi.

Self-Pliable mechanism of hidden
Markov model by swarm intelligence
techniques- computation of
parameters

It is very important to build a versatile HMM classifier,
and it is significant to trace the optimized sequences of the
HMM states. For the optimization of state parameters, various
strategies are utilized by means of utilizing SI techniques. In this
work, PSO, DE, WOA, and BSA are utilized. The main reasons
for selecting these four SI techniques are because they are very
easy and have a simple implementation with fast convergence
and good computational efficiency. As HMM can adapt itself to
the various optimization techniques, the HMM techniques can
be called as self-pliable one.

Particle swarm optimization
A famous population-dependent stochastic optimization is

PSO (Eberhart et al., 2001). The candidate solution of an HMM
parameter is represented by every particle in PSO. Around the
search space, the movement of the particles takes place. With
the help of the local best-known position of a particle, the
best-known positions are found. The best parameters can be
iteratively found by this technique. PSO has the extreme power
to achieve global optimization and it has a good application in
our study. The mathematical expressions concerning it are as:

ve [] = We × ve []+ ac1 × r ×
(
pbest []− presentposition[]

)
+ac2 × R×

(
gbest []− presentposition[]

)
(12)

presentposition[] = present []+ ve [] (13)

[] specifies that its specific variable is a vector. In the range of
[0,1], the variables rand R are represented.

The individual extremes are recorded by pbest[], and the
global extremes are recorded by gbest[]. The inertia weight is
represented by the constant We. The acceleration constants are
represented as ac1 and ac2.

Based on the previous velocity value and its corresponding
distance to the best particle, the updates of the velocities
of particles are done. The present [] particle’s position is
updated by (13) based on the current velocity and the
previous position value.

Parameter settings of PSO: To have various impacts
on optimization performances, various PSO parameters are
considered. The PSO parameters are selected on the following
basis:

Vmax : It is set by values of training data and it implements
the searching space granularity.

We : It decides the motion inertia of the particles and the
value is set as 0.5 in our experiment.

ac1, ac2 : indicates the accelerated weight so that it could
propagate each particle to pbest[] and gbest[], the weights of both
of them are set to 4 after a lot of trial and error basis.

To find the two types of parameters in HMM, a fitness
function is used; (i.e.) the reduced associated factor δl and the
V(fi)

l , which indicates the lth hidden state of the HMM λ (fi).
The definition of fitness function is done as follows:

fitness
(
δl,V(f1)l , ...,V(f6)l

)
= F1 −Measure,(

1 ≤ l ≤ n
)

(14)

where F1 measure is one of the metrics used for classification
accuracy. The exhaustive search is done for a total number of
the involved parameters. The set of parameters is divided into
n independent parts as training the whole parametric set is
time-consuming by PSO. Depending on the fitness function, the
parameters are thoroughly learned.

Differential evolution
It is a famous population-based approach that is widely

used by everyone and is a promising global search technique
and can be used well for HMM (Sarker et al., 2014). The
candidate solution of an HMM parameter is represented by
every evolution process in DE. Once the initial population is
generated, then by looping mutation, selection, and crossover
operations, the updation of the population is done. In the
following four steps, the DE procedure is summarized as follows:

(A) Initialization: By utilizing random number
distributions, the generations of an initial population are
done. The jth dimension of the ith individual is initialized as

zi,j = Bj + rand(0, 1)∗
(
Uj − Lj

)
,

i = 1, 2, ..., S, j = 1, 2, ...,D (15)

where the population size is S and the dimension of individual
is represented as D,
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A random number in [0,1] range which is uniformly
distributed is expressed by rand (0,1). The upper bound of the
jth dimension is expressed as Uj and the lower bound of the jth

dimension is expressed as Lj, respectively.
(B) Mutation: The differential evolution enters the main

loop after the initialization is done. A mutant individual mi

through mutation operators
(
DE/rand

)
/1 is generated by every

target individual zi in the population. The generated mi is
represented as

mi = zr1 + C∗ (zr2 − zr3), r1 6= r2 6= r3 6= i (16)

where r1, r2, and r3 are selected randomly from the present
population. To scale the difference vector, C is utilized and is
termed as the mutation control parameters.

The other generally used mutation operators for DE are
expressed as follows:

(1) "DE/best/1"

mi = zbest + C∗ (zr1 − zr2) , r1 6= r2 6= i (17)

(2) "DE/rand/2"

mi = zr1 + C∗ (zr2 − zr3)+ C∗ (zr4 − zr5) ,

r1 6= r2 6= r3 6= r4 6= r5 6= i (18)

(3) "DE/best/2"

mi = zbest + C∗ (zr1 − zr2)+ C∗ (zr3 − zr4) ,

r1 6= r2 6= r3 6= r4 6= i (19)

(4) “DE/Current − to− best/1′′

mi = zi + C∗ (zr1 − zi)+ C∗ (zr2 − zr3) ,

r1 6= r2 6= r3 6= i (20)

(5) “DE/rand − to− best/1′′

mi = zi + C∗ (zbest − zi)+ C∗ (zr1 − zr2) ,

r1 6= r2 6= i (21)

zbest represents the individual with the best
fitness function value.

However in this work, all the above-mentioned five
combinations were utilized and upon analysis,

(
DE/rand

)
/1 was

finally chosen and implemented as it was very convenient to set
and alter the values after the initialization process is done.

(C) Crossover:
To generate a trial individual ti, a crossover operation which

is binomial in nature is implemented to the target individual zi

and the mutant individual mi as follows:

ti,j =

mi,j if rand(0, 1) ≤ LR or j = jrand

z
i,j otherwise

(22)

where a randomly chosen integer in the range of [1,D]
is expressed as jrand. The crossover control parameters are
expressed as CR and it is in the range of CR ∈ [0, 1].

(D) Selection:
Selection of the better one from the target individuals zi

and crossover individual ti into the upcoming generations is
important and so the greedy selection operator is utilized in this
study. Based on the primary comparison of fitness values, this
operation is performed, and it is computed as:

zt+1
i =

{
ti, if fit(ti) < fit(zi)

zi, otherwise
(23)

where the fitness function is denoted by fit.

Whale optimization algorithm
A famous swarm-based metaheuristic algorithm is WOA

(Mirjalili and Lewis, 2016). The candidate solution of an
HMM parameter is represented by every whale in WOA. The
intelligent foraging behavior of hump back whales is mimicked
in it, and this algorithm is influenced by bubble net hunting
strategy (Mirjalili and Lewis, 2016). The main operators are
included in WOA such as

(i) Simulation and searching the prey.
(ii) Encircling behavior of the prey.

(iii) Bubble net foraging behavior of the whales.

The exploration phase is nothing but searching for prey, and
the exploitation phase is the encircling prey and spiral bubble net
attacking method. For the two phases, the mathematical model
is presented below.

(I) Initial stage: Exploitation stage
This includes the encircling prey phase/bubble net

attacking method. Based on two mechanisms, the updation
of their positions is done by the hump back whales during
the exploitation phases such as shrinking with encircling
mechanism and the spiral updation position. The former is
called encircling prey, and the latter is called spiral bubble
net attacking method. Using the following equations, the
representation of the shrinking mechanism is done as follows:

EZ(t + 1) = EZ
∗

(t)− EM.
−→
Dis, (24)

−→
Dis =

∣∣∣∣−→N.−→Z∗ (t)− EZ(t)∣∣∣∣ (25)

where the current iteration is represented by t.
The best solution of the position vector obtained so far is

represented by EZ
∗

(t), and the position vector is indicated as
−→
Z (t).

The coefficient vectors are denoted as −→M and −→N , and it is
calculated as follows:

−→
M = 2−→m .−→r −−→m
−→
N = 2.−→r

(26)
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In both the phases, over the period of iterations, −→m is linearly
decreased from 2 to 0. Here, −→r represents a random vector
in the range of [0.1]. Using the following equation, the
mathematical representation of the spiral updating position is
expressed as follows:

−→
Z (t + 1) =

−→

Dis
′

.ecq. cos
(
2πl

)
+

−→

Z
∗

(t) (27)

−→

Dis
′

=

∣∣∣∣−→Z∗ (t)−−→Z (t)∣∣∣∣ (28)

The distance of the xth humpback whale to the best solution

derived is represented by
−→

Dis
′

.
The logarithmic spiral shape is defined by a constant c and

the random number in the range of [–1,1] and is expressed by
q. The element-by-element multiplication is given by (·). The
mechanism exhibited by whale when catching a prey such as
shrinking encircling mechanism and spiral updating positions
are accomplished at the same time. The assumption is that a
probability of 50% is chosen between them so that this behavior
could be initiated. This mathematical modeling is expressed as
follows:

−→
Z (t + 1) =


−→

Z
∗

(t)−
−→
M .
−→
Dis if k < 0.5

−→

Dis
′

.ecq. cos
(
2πq

)
+

−→

Z
∗

(t) if k ≥ 0.5
(29)

where the random number k is in the range of [0,1].
(II) Prey Searching Phase (Exploration Phase):
In order to increase the exploration capability of WOA,

based on randomly selected whale, the position of the whale is
updated instead of utilizing the best whale food in the process.
To force or to propagate away from a whale and to move very far
from the best-known whale, a coefficient vector M with random
values substantially greater than 1 or less than -1 is utilized.

Mathematically, it is expressed as

−→
Z (t + 1) =

−→
Z rand(t)−

−→
M.
−→
Dis (30)

−→
Dis =

∣∣∣−→N.−→Z rand(t)−
−→
Z (t)

∣∣∣ (31)

where a random position vector selected from the current
population is expressed as

−→
Z rand.

Backtracking search optimization algorithm
A famous population-based metaheuristic algorithm is BSA

(Beek, 2006). The candidate solution of an HMM parameter
is represented by every search in backtracking mechanism
of BSA. By means of implementing mutation, crossover, and
selection of population, this algorithm achieves the optimization
purpose similar to other meta-heuristic algorithms. It has the
unique quality to remember historical populations and therefore
by completely mining the historical information, previous
generations can be benefitted. Five steps are present in the

original BSA, namely, (i) initialization (ii) Selection Phase I
(iii) Mutation (iv) Crossover, and (v) Selection Phase II. The
explanation for the 5 steps is as follows:

Step 1: Initialization:
At the outset, with the following formula, the population

A and the historical population oldA is initialized by BSA,
respectively.

Ai,j ∼W
(
lowj, upj

)
OldAi,j ∼W

(
lowj, upj

) (32)

where i = 1, 2, ..., S, j = 1, 2, ...,D.
The population size is represented by S, and the population

dimension is represented by D, respectively. The uniform
distribution is denoted by W. The lower boundaries of variables
are denoted as lowj, and the upper boundaries of variable are
denoted as uppj.

Step 2: Selection Phase I:
Based on equation (32), the updation of the historical

population oldA is done. Then there is a random change in the
locations of individuals in oldA as projected in equation (33):

if p < q
(
p, q ∼W(0, 1)

)
, then oldA = A (33)

oldA = permuting
(
oldA

)
(34)

where a random permutation of the integers from 1 to Nis done
by permuting (·) operations.

Step: 3 Mutation Process
The initial trial population is generated by the mutation

operator of BSA so that there is complete control of the
documented and authentic information along with the current
information. The expression of mutual operation is expressed as:

Mi,j = Ai,j + C∗(oldAi,j − Ai,j) (35)

where the control parameters are denoted by C, and the value
of C is chosen to be 5 in our experiment after a lot of trial
and error basis. A powerful global search ability is obtained
by this operation.

Step: 4 Crossover:
Here, it comprises of 2 steps:

(1) Initially, a binary integer value matrix map is generated
which is of size S∗D

2) Secondly, depending on the matrix map generated, the
location of crossover individual elements are determined
in population A

3) Therefore, to get the final trial population Tp, the
individual elements in A are exchanged with the respective
collaborating positive elements in population V . The
expression of crossover operation is expressed as

Ri,j =

Ai,j if mapi,j = 1
V

i,j otherwise
(36)
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Sometimes they might be an overflow of few individuals of
the trial population T than the allowed search space limits
after the crossover operation. There will be a regeneration
of individuals present beyond the boundary control based
on equation (32).

Step 5: Selection II phase:
To preserve the best favorable trial individuals, a greedy

selection mechanism is utilized. For the trial individuals and
the target individuals, the fitness values are compared. The trial
individual can get accepted to the next generation if the fitness
value of trial individuals is much less than the target individuals.
If the fitness merit and utility of trial individuals are more than
the target individual, then the target individual is retained in the
population. The definition of selection operation is expressed as
follows:

Ai =

{
Tpi , if fitness

(
Tpi

)
< fitness (Ai)

Ai, otherwise
(37)

where the objective function value of a particular individual is
f (·).

Feedback mechanism for swarm
computing techniques

To manually label all the sparse feature representations, it
is pretty time-consuming and very expensive too. Therefore, a
feedback technique is introduced that can automatically deal
and relate whether an unlabeled sparse representation is chosen
and present in a training data pool once the HMM assigns it
with the signal feature. Therefore, the best strategy is to calculate
the entropy measures of a sparse representation S so that the
signal is more discriminating than all the other signal features
on the sparse representations S. A famous information theoretic
measure it is expressed as

φ(S) = −
∑

i

P
(

fi
∣∣ S
)

log P
(

fi
∣∣ S
)

(38)

where P
(

fi
∣∣ S
)

expresses the probability of the sparse
representations S recognized as a signal feature fi. If φ(s)
is less, then the certainty about the sparse representations S
on the signal feature fi is more. To decide whether a sparse
representation should be present in the training data set, the
algorithm of feedback-based mechanism is utilized as shown in
Algorithm 3.

Input: training data D, test pool data

N, query strategy parameter φ (•), query

batch size parameter Bs

Repeat

For i=1 to |F| do
Optimized λ(fi) by utilizing current D

and PSO/DE/WOA/BSA algorithm

End for

For bs = 1 to Bs do
S
∗

bs
= arg max

S∈U
φ(S)

Move S
∗

bs from N to D

End for

Utilizing some stopping criterion

Algorithm 3. Feed back mechanism.

The gist of EEG signal classification with sparse
representation measures and a swarm computing-based
HMM methodology is as follows:

(a) Preprocessing of signals is done initially by using
Independent Component Analysis (ICA).

(b) Sparse Modeling of the signals is done.
(c) Computation and extraction of sparse feature vectors of

the entire dataset are done.
(d) Building an HMM for the assessed sparse signal features as

observed variables.
(e) The hidden states of each λ(fi) are optimized by

PSO/DE/WOA/BSA.
(f) For every λ(fi)

(
fi ∈ |F|

)
, the signal vector[

w1,w2, ...,wn
](fi) of S in sparse signal

feature fi is computed, and the output values
P
(

[w1,w2, ...,wn](fi)
∣∣∣λ(fi)) are calculated through

model λ(fi ).
(g) Return f

∗

= arg maxfi∈|F|

{
P
(

[w1,w2, ...,wn]|λ(fi
)}

.

To test the performance of every HMM, several sparse
representation features represented as observed variables are
selected randomly. For each signal representation, the test
dataset contains numerous sparse representation features. For
about ten times, each test result is executed, and the evaluation
is based on the average results.

Deep learning–based
methodology

Generally, to perform the classification in an end-to-end
manner, the deep CNN model (Zhao et al., 2020) is utilized but
in this work, once the sparse representation modeling to EEG
signals is done, then deep feature extraction happens through
the developed deep learning model, and finally, it is fed to
classification. The utilized 1D-CNN deep learning architecture
is expressed in Figure 2 as follows:

The sparse represented EEG signals are fed into the four
convolution blocks where every block is comprised of five
different layers so that the sparse representation can be learned
more deeply. For the generation of a group of linear activation
responses, multiple convolutions in parallel are computed by
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FIGURE 2

Deep learning 1D-CNN for the classification of EEG.

the first layer. In order to solve the internal variable shift, the
second layer utilized is Batch Normalization (BN). A nonlinear
activation function in the layer is passed by each linear activation
response. Rectified Linear Unit (ReLU) is the chosen activation
function and is implemented in this work. To avoid overfitting,
the concept of dropout methodology is used in the fourth
layer. Finally, translation invariance is introduced by the max
pooling layer, which serves as the last layer in the block. In
the developed deep learning architecture, the second, third, and
fourth convolution blocks are same as the first convolution
block repeating the same actions. The flattening of the feature
maps is done into a one-dimensional vector at the end of
the fourth convolution block which is connected to the Fully
Connected (FC) layer so that the features are integrated. The
activation function is chosen as ReLU for the first two FC
layers which are accompanied by a dropout layer. Softmax
activation function is implemented in the third FC layer so
that a vector of probabilities communicating to every category
is given as output. The experiments were tried with various
model parameters and the one which produced good results is
provided in this work.

Convolution layer

In order to process the data with same network structures,
CNN is widely preferred. By means of regular sampling

on time axis, the consideration of the time series data can
be done as a one-dimensional grid. The important three
layers, namely, convolution layer, activation function layer,
and pooling layer are present in any convolutional block
of the standard CNN model. The convolution operation for
the 1D EEG data utilized in this article is expressed as:

s(t) =
(
x∗w

)
(t) =

∑
a

x(a)w (t − a) (39)

The attributes of the sparse interaction are present in the
convolutional network that helps to mitigate the storage
requirements of the developed deep learning model. This
ensures that all the memory parameters are thoroughly
learned with the parameters shared by the convolution
kernel. Convolution is actually a special type of linear
operation and it is only with the help of activation function,
the nonlinear characteristics are bought in the network.
The commonly utilized activation function in CNN is
ReLU, which helps to solve the vanishing gradient issue so
that the models can learn faster and enhance the overall
performance. The spatial size of the representation is
mitigated with the help of pooling function so that the
total number of parameters along with the computation
is reduced in the network. At specific portions, the output
of the system is replaced by the pooling function, thereby
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making the representation roughly invariant to minor
input translations.

Computation of batch normalization

To the standard convolution blocks, the addition of the BN
layer along with the dropout layer is done. There is always a
close relation between the parameters of every layer where the
training of the deep neural network is done. When the input
layers are distributed, an inconsistency occurs causing an issue
called as internal covariate shifts, making it hectic to choose a
suitable learning rate. Therefore, BN process is used in this study
so that almost any deep network can be reparametrized quite
easily by means of coordinating the updation process between
multiple layers of the network. Therefore, the normalization
is considered as part of the deep learning model architecture
and it helps to normalize every mini-batch. For the mini-batch
response H, the computation of the sample mean (µ) and
standard deviation (σ ) in backpropagation during training is
done as follows:

µ =
1
m

∑
i

Hi (40)

σ =

√
δ +

1
m

∑
i

(H − µ)2i (41)

To prevent the gradient from becoming undefined, the delta
component δ is usually added and it is a very small positive value.
In order to normalize H, the following expression is utilized as:

H
′

=
H − µ

σ
(42)

The convergence of the training phase can be well accelerated by
BN so that overfitting can be avoided easily and therefore BN is
employed after every convolution layer.

Fusion of features along with
classification

A large number of parameters need to be learned by the deep
neural networks and in the case of smaller datasets, there is a
high chance for occurrence of overfitting. Therefore, to solve this
issue, dropout technology was added so that the coadaptation of
feature detection is avoided fully. The random dropping of units
with a predefined probability from the neural network seems
to be the main intention of dropout layer during the training
process. When compared to other regularization methods, this
technique can reduce the overfitting to a great extent and
therefore after each ReLU activation function, a dropout layer is
added. The high-level features of the EEG signals are indicated
by the output of the final convolutional block. The FC layer can

easily learn all the nonlinear combinations of these functions. In
this work, three FC layers have been developed. The connection
of all the neurons in the last max-pooling layer is done with
the neurons of the first FC layer. Depending on the final
classification problem, the determination of the total number
of neurons in the final FC layer is done and since a two-class
epilepsy classification problem and a two-class schizophrenia
classification problem is dealt in this study, the number of
neurons in FC3 layer is chosen to be two. A generalized
form of the binary manifestation of logistic regression is the
softmax activation function. In order to assemble a categorical
distribution over the class labels and to trace the probability of
every input element belonging to a particular label, this softmax
function is usually implemented in the ultimate layer of a deep
neural network. The respective probability of the ith sample
expressed by x(i) which belongs to each category and is indicated
by the softmax function hθ

(
x(i)
)

as follows:

hθ

(
x(i)
)
=


p(y(i) = 1| x(i); θ)
p(y(i) = 2| x(i); θ)

:

p(y(i) = k
∣∣ x(i); θ

 = 1∑k
l=1 eθT

l x(i)


eθT

1 x(i)

eθT
2 x(i)

:

eθT
k x(i)


(43)

where the softmax model parameters are expressed by
θ1, θ2, ..., θ k.

Model training

The weight parameters are required to be learned from
the EEG data for the training of the proposed model. The
standard Backpropagation algorithm was used and the loss
function utilized is cross entropy. The stochastic gradient
descent technique with Adam optimization is utilized to learn
the parameters. The hyperparameters of Adam are set as follows:
learning rate is 0.0001, beta1 value is set at 0.5 and beta2 value is
set at 0.55. The batch size is considered as 200 in our experiment
which helps in the updation of the training process. The total
number of epochs utilized in this work is expressed as 250 so
that the training of the model can be done well.

Results and discussion

For evaluating and validating this proposed model, it
has been tested on University of Bonn dataset (Andrzejak
et al., 2001) which deals with epilepsy classification and
the schizophrenia dataset from Institute of Psychiatry and
Neurology in Warsaw, Poland, which deals with schizophrenia
classification (Olejarczyk and Jernajczyk, 2017). There are five
sets of epileptic data available such as A, B, C, D, and E. Set A
and B belongs to the normal category, Set C and D belongs to the
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inter-ictal category, and set E belongs to the ictal category. The
classification problem considered in epileptic dataset are A-E,
AC-E, B-E, CD-E, ACD-E, and ABCD-E, and the classification
problem considered in schizophrenia datasets are normal versus
schizophrenia. The elaborate details of both datasets are given
in Andrzejak et al. (2001) and Olejarczyk and Jernajczyk (2017).
For both datasets, the Independent Component Analysis (ICA)
is utilized as a common pre-processing technique. As far as the
epilepsy dataset is considered, 100 single-channel recordings of
EEG signals are present in each of these sets with a sampling rate
of 173.61 Hz and time duration of 23.6 s. The respective time
series is sampled into 4097 data points and further every 4097
data point is divided into 23 chunks, thereby the total number
in each category has about 2,300 samples. For deep learning
methodology, once the sparse modeling is implemented to it,
the random division of the 2,300 EEG samples is done into ten
non-overlapping folds as a 10-fold cross-validation is adopted
here for evaluation. As far as the SI-based HMM along with the
conventional machine learning is considered, the 2,300 samples
are reduced by means of sparse feature extraction eliminating
the redundant ones. Only the essential sparse features are
considered as observed variables as expressed in the sparse
representation modeling concept and then it is proceeded
for classification by the SI-based HMM and the conventional
machine learning models. As far as the schizophrenia dataset is
concerned, there are about 225,000 samples with each channel,
and the data are represented in this study with a matrix of
[5,000 × 45]. As there are 19 such channels available there,
it is represented as [5,000 × 45 × 19]. For the deep learning
methodology, once the sparse modeling is implemented to it,
the random division of the schizophrenia EEG samples is done
into ten non-overlapping folds as a 10-fold cross-validation is
adopted in this study for evaluation. As far as the SI-based HMM
along with the conventional machine learning is considered for
schizophrenia EEG signal classification, the [5,000 × 45] data
are reduced by means of sparse feature extraction eliminating
the redundant ones. Only the essential sparse features are
considered as observed variables as represented in the sparse
representation modeling concept and then it is proceeded
for classification by the SI-based HMM and the conventional
machine learning models. The performance metrics analyzed
are the general measures used widely such as Classification
accuracy, Sensitivity, and Specificity. The details of the 1D-CNN
model utilized in this research are tabulated in Table 2.

Table 3 indicates the performance analysis of the proposed
SI-based HMM for different datasets with optimization
techniques. The highest sensitivity of 100% is attained for
Schizophrenia dataset with DE-HMM, WOA-HMM, and BSA-
HMM methods. In the case of epileptic dataset (AC-E) with
BSA-HMM, and epileptic dataset (B-E) with WOA-HMM also,
it reached 100% sensitivity. The lower sensitivity value of
69.86% is reached for epileptic dataset (AC-E) with WOA-HMM
method. The highest specificity of 100% is obtained for epileptic
dataset (AC-E) with PSO, DE, and WOA-based HMM methods.

As in the case of epileptic dataset (A-E) with DE-HMM and
epileptic dataset (B-E) with DE and BSA-based HMM methods,
it reached 100% specificity. A low specificity value of 76.83%
is reached for schizophrenia dataset with DE-HMM method.
A high classification accuracy of 95.70% is attained for epileptic
dataset (A-E) with DE-HMM method and low classification
accuracy of 82.43% is reached for epileptic dataset (ABCD-E)
with BSA-HMM method. For schizophrenia datasets, a high
classification accuracy of 91.41% is obtained with PSO-HMM,
and a low classification accuracy of 88.41% is obtained from
DE-HMM.

Table 4 shows the performance analysis of the proposed
methodology for the biosignal processing datasets in terms of
accuracy using swarm intelligence–based HMM, conventional
machine learning, and deep learning techniques. If the proposed
flow of methodology is implemented with NBC for the datasets,
then a high classification accuracy of 92.12% is obtained for
the B-E dataset. When the standard LDA is utilized, then a
high classification accuracy of 92.34% is obtained for the A-E
dataset, and low classification accuracy of 80.5% is obtained
for the ACD-E dataset. When KNN methodology is utilized,
a high classification accuracy of 90.23% is obtained for A-E
dataset and a low classification accuracy of 79.98% is obtained
for ABCD-E dataset. If the proposed flow of methodology is
implemented with Adaboost classifier for the datasets, then
a high classification accuracy of 89.34% is obtained for the
B-E dataset. When comparing all the conventional classifiers,
the SVM performs better as a higher classification accuracy
of 93.49% is obtained for the schizophrenia dataset and low
classification accuracy of 87.9% is obtained ABCD-E dataset.
Before computing the swarm intelligence–based HMM model,
the methodology was tested for the ordinary HMM model and
the highest result of only 87.34% was obtained for the A-E
dataset. This seemed to motivate the researchers to undergo
more research in fine-tuning HMM so that a better result could
be obtained. The swarm techniques were successfully computed
with HMM, and much better results were obtained. For the
PSO-HMM combination, a higher classification accuracy of
92.45% was obtained for the B-E combination and a lower
classification accuracy of 85.86% was obtained for the ACD-
E combination. For the DE-HMM combination, a higher
classification accuracy of 95.7% was obtained for the A-E
combination and a lower classification accuracy of 86.8%
was obtained for the ABCD-E combination. For the WOA-
HMM combination, a higher classification accuracy of 89.9%
was obtained for the schizophrenia dataset and a lower
classification accuracy of 82.87% was obtained for the ABCD-
E combination. For the BSA-HMM combination, a higher
classification accuracy of 92.97% was obtained for the A-E
dataset and a lower classification accuracy of 82.43% was
obtained for ABCD-E combination. For the proposed 1D-CNN
combination, a higher classification accuracy of 98.94% was
obtained for the A-E dataset, and a lower classification accuracy
of 97.05% was obtained for ACD-E combination.
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TABLE 2 Convolutional neural network (CNN) structure details utilized in this work.

Name of the block Types of layer Number of neurons Kernel size (output feature map) Stride

Conv1 Convolution 179× 20 60 1

BN 179× 20 – –

ReLU 179× 20 – –

Dropout 179× 20 – –

Max-pooling 90× 20 2 2

Conv2 Convolution 71× 40 40 1

BN 71× 40 – –

ReLU 71× 40 – –

Dropout 71× 40 – –

Max-pooling 36× 40 2 2

Conv3 Convolution 31× 60 20 1

BN 31× 60 – –

ReLU 31× 60 – –

Dropout 31× 60 – –

Max-pooling 18× 60 2 2

Conv4 Convolution 13× 80 10 1

BN 13× 80 – –

ReLU 13× 80 – –

Dropout 13× 80 – –

Max-pooling 5× 80 2 2

FC1 FC 64 – –

ReLU 64 – –

Dropout 64 – –

FC2 FC 32 – –

ReLU 32 – –

Dropout 32 – –

FC3 FC 2 – –

Comparison of results with previous
works associated with similar datasets

The authors in recent years have dealt with classification
problems as per their wish depending on their problem
requirement, and therefore, it was not mandatory to perform
the analysis of classification on every available subset of the
epileptic data. Therefore, the available results are compared with
our works and projected in Table 5.

On analyzing Table 5, it is quite evident that a wonderful
attempt has been made by the authors to attain good
classification accuracy results. As far as the A-E epileptic
dataset is considered, among the proposed methodology, the
sparse representation measures with 1D-CNN surpassed all
the other results proposed in this work and gave the highest
classification accuracy of 98.94% for A-E dataset, 97.15% for
AC-E dataset, 98.56% for B-E dataset, 97.56% for CD-E dataset,
97.05% for ACD-E dataset, and 97.34% for ABCD-E dataset.
When the swarm intelligence–based HMM is concerned, the
highest classification accuracy of 95.70% is obtained when

the sparse representation measures are implemented with DE-
HMM for the A-E dataset. Similarly, the DE-HMM gives a high
classification accuracy of 94.92% in AC-E dataset, 95.44% in B-E
dataset, 90.65% in CD-E dataset, and 88.81% in ACD-E dataset
when compared to other swarm-based HMM methods. For
the ABCD-E dataset, the sparse representation measures with
PSO-HMM provided a high accuracy of 88.9% when compared
to other swarm-based methods. It is commonly known that
deep learning outperforms most of the conventional pattern
recognition techniques and so in this work also, the highest
classification accuracy of 98.94% is obtained with the novel
idea of sparse modeling with deep learning. When the results
of the present work are compared to the previous works, the
deep learning results obtained by us have matched more or less
similar to the results obtained by the previous methods though
at many places, the classification accuracy obtained by this work
is slightly lower than the earlier proposed works by a range
of two to four percent. In such a case, it should not induce
the research community into thinking that as the classification
results are slightly lower, the proposed methodology is not
as versatile as the other methods. It has to be observed and
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TABLE 3 Performance analysis of the proposed swarm intelligence based HMM for different datasets.

Performance metrics (%) Datasets Swarm intelligence based HMM

PSO-HMM DE-HMM WOA-HMM BSA-HMM

Sensitivity Epileptic dataset (A-E) 93.26936 91.40875 83.12805 95.83567

Epileptic dataset (AC-E) 79.03875 89.84875 69.86516 100

Epileptic dataset (B-E) 94.53375 90.88625 100 85.69125

Epileptic dataset (CD-E) 88.38541 89.83978 83.87825 84.27894

Epileptic dataset (ACD-E) 85.34346 88.38376 82.47892 82.47892

Epileptic dataset (ABCD-E) 87.46243 85.38761 81.17835 81.48923

Schizophrenia dataset 92.97457 100 100 100

Specificity Epileptic dataset (A-E) 90.36875 100 86.52344 90.1125

Epileptic dataset (AC-E) 100 100 100 83.4325

Epileptic dataset (B-E) 90.36875 100 77.02032 100

Epileptic dataset (CD-E) 89.19385 91.46782 87.47892 85.56672

Epileptic dataset (ACD-E) 86.37892 89.23872 86.37892 86.38997

Epileptic dataset (ABCD-E) 90.34678 88.22389 83.35781 84.37781

Schizophrenia dataset 89.85625 76.8375 79.81938 81.27457

Classification accuracy Epileptic dataset (A-E) 91.81906 95.70435 84.82575 92.97409

Epileptic dataset (AC-E) 89.51938 94.92435 84.93258 91.71625

Epileptic dataset (B-E) 92.45125 95.44312 88.51016 92.84563

Epileptic dataset (CD-E) 88.78963 90.65381 85.67858 84.92283

Epileptic dataset (ACD-E) 85.86119 88.81124 84.42892 84.43445

Epileptic dataset (ABCD-E) 88.90460 86.80575 82.87462 82.434445

Schizophrenia dataset 91.41541 88.41875 89.90969 90.63729

TABLE 4 Performance analysis of sparse representation based swarm HMM and deep learning for the biosignal processing datasets in
terms of accuracy.

Classifier A-E AC-E B-E CD-E ACD-E ABCD-E Schizophrenia

NBC 91.37582 87.34981 92.12783 85.01358 82.10368 81.89451 87.03481

LDA 92.34589 86.24951 91.34591 86.93169 80.50275 83.67912 85.56921

KNN 90.23578 85.34917 89.25791 85.87615 81.28507 79.98205 88.45917

Adaboost 88.98659 83.45691 89.34725 87.58941 77.28905 75.91632 86.68113

SVM 93.45781 91.87543 92.46915 91.34721 88.56891 87.90982 93.49812

HMM 87.34591 81.12678 83.45916 84.33861 79.48697 71.26748 81.36991

PSO-HMM 91.81906 89.51938 92.45125 88.78963 85.86119 88.90460 91.41541

DE- HMM 95.70435 94.92435 95.44312 90.65381 88.81124 86.80575 88.41875

WOA-HMM 84.82575 84.93258 88.51016 85.67858 84.42892 82.87462 89.90969

BSA-HMM 92.97409 91.71625 92.84563 84.92283 84.43445 82.43444 90.63729

1D-CNN 98.94919 97.15912 98.56781 97.56789 97.05981 97.34862 98.19864

noted that in the field of machine learning, the classification
accuracies may be more or less in the range of plus or minus
3–5%, but what has to be observed carefully is the ease of
methodology and implementation strategy. If that aspect is
considered, the proposed methodology surpasses many earlier
techniques as no strong mathematical model has been built
in earlier models, whereas a strong mathematical model for
sparse representation with the hybrid SI-based HMM along
with deep learning is done in this work. Moreover, swarm
intelligence field is like an ocean and there are hundreds

of algorithms developed in the past two decades by various
researchers. This work is just a starting step to use the concept
of sparse modeling with SI-based HMM. In the upcoming
years, a variety of other SI algorithms shall be implemented
to HMM to test its ability and check its performance with the
sparse representation models, and the authors are confident
of obtaining much higher classification accuracy. As far as the
schizophrenia classification analysis is concerned, very high-
quality literature is not available online as it is an emerging
field. All the important works in schizophrenia classification are
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TABLE 5 Performance comparison of our works with the previous works – Epilepsy dataset.

References A-E AC-E B-E CD-E ACD-E ABCD-E

Bhardwaj et al., 2016 98.64 – – – 98.61 98.89

Peker et al., 2016 99.50 – – – – 99.13

Riaz et al., 2016 99.00 – – – – 96.00

Diykh et al., 2017 100 – 99.76 – 96.50 94.00

Zhang and Chen, 2017 – – – – – 98.87

Raghu et al., 2017 99.70 – – – – –

Ullah et al., 2018 100 – 99.6 99.7 – 99.7

Li et al., 2018 – – – 91.00 – –

Sharma et al., 2018 100 – – – – –

Raghu et al., 2019 99.45 96.50 96.06 96.85 96.00 97.20

Gupta and Ram, 2019 99.50 – 99.50 99.00 – 98.60

Turk and Ozerdem, 2019 99.50 – 99.50 – – –

Sameer and Gupta, 2020 98 – 96 96.33 – 97.40

Zhao et al., 2020 99.52 – 99.11 98.03 – 98.76

Proposed technique 1:
Sparse representation measures with PSO-HMM [2022] 91.81 89.51 92.45 88.78 85.86 88.90

Proposed technique 2:
Sparse representation measures with DE-HMM [2022]

95.70 94.92 95.44 90.65 88.81
86.80

Proposed technique 3:
Sparse representation measures with WOA-HMM [2022]

84.82
84.93

88.51
85.67 84.42

82.87

Proposed technique 4:
Sparse representation measures with BSA-HMM [2022]

92.97
91.71

92.84 84.92 84.43 82.43

Proposed technique 5:
Sparse representation measures with 1D-CNN [2022] 98.94 97.15 98.56 97.56 97.05 97.34

discussed in the introduction section of the article with their
respective classification accuracies, where reference (Prabhakar
et al., 2020a) reported 98.77%, reference (Prabhakar et al.,
2020b) reported 92.17%, and reference (Oh et al., 2019) reported
81.26% for subject-based testing and 98.51% for non-subject-
based testing. However, when comparing our results with the
previous works, the concept of sparse representation with 1D-
CNN produced a very high classification accuracy of 98.19%,
and the concept of sparse representation with SI-based HMM
produced an accuracy of 91.41% for PSO-HMM, 88.41% for
DE-HMM, 89.90% for WOA-HMM, and 90.9% for BSA-
HMM. Every swarm intelligence technique is so inspiring and
it would take a life time to understand why a particular
combination with sparse representation measures performs
better with HMM or deep learning. Possible ways to obtain
better results in SI-based HMM is to fine-tune the parameters
much more carefully, varying the hyperparameters depending
on the problem requirement, increasing the iteration numbers
if the pre-requisite conditions are not satisfied, enhancing the
essential parameters of the algorithm depending on the SI
techniques considered, and updating the state space model of
the HMM effectively by efficient techniques. Better results could
also be obtained by means of utilizing other hybrid deep learning
methods for the efficient classification of biomedical signals.
An interesting classification tool based on fuzzy similarities

which are characterized by a low computational complexity, and
high utility for real-time applications is proposed in Versaci
et al. (2022). Although it was tested on a NdT problem, due to
the transversality of the approach, the method could be easily
applied to the problem studied in this work too, and the authors
wanted to implement a similar strategy utilized in Versaci et al.
(2022) to the analysis of neurological disorders in future.

Conclusion and future work

An efficient modality through which brain signals
corresponding to different states can be acquired easily is
by means of using EEG. In this article, sparse representation
and modeling of EEG signals are done initially, and later,
an HMM classification model was proposed to compute the
hidden states in the HMM, four different types of SI techniques
were incorporated to make the HMM very flexible. This
kind of methodology involving sparse representation with
a pliable HMM for biosignal classification seems to be very
efficient and easy to handle. An exhaustive analysis of the
proposed SI-based HMM for epileptic and schizophrenia
datasets was computed and comprehensively analyzed. The
sparse representation modeling was also combined with deep
learning, and conventional machine learning techniques and
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exhaustive analysis are provided. When the proposed sparse
representation measures were combined with SI-based HMM,
the highest accuracies reported are 92.45% for PSO-HMM,
95.7% for DE-HMM, 89.9% for WOA-HMM, and 92.97%
for BSA-HMM. When the proposed sparse representation
measures were utilized with deep learning by utilizing a CNN,
high accuracy of 98.94% was obtained. Future works aim to
develop more efficient sparse representation models by means
of introducing more advanced concepts in the synthesis and
analysis side. Though the sparse representation–based swarm
HMM methods did not provide very high classification accuracy
when compared to other previous works, the careful selection of
the swarm intelligence algorithm with HMM would aid a very
high classification accuracy with less error rate in the upcoming
years. Future works also aim to hybrid the sparse representation
measures with other nature-inspired algorithms such as Ant
Colony Optimization (ACO), Artificial Bee Colony (ABC),
Genetic Bee Colony (GBC), Cuckoo Search Optimization
(CSO), Spider Monkey Optimization (SPO), Bat algorithm, and
Firefly algorithm, so that the hidden states of the HMM can
be well computed in order to assess its performance on the
biomedical signal datasets. Other work plans to incorporate in
future include the usage of sparse representation measures with
efficient deep learning techniques, such as Long Short-Term
Memory (LSTM), Bidirectional LSTM, Gated Recurrent Unit
(GRU), Bidirectional GRU, and hybrid deep learning techniques,
for efficient classification of epilepsy and schizophrenia from its
respective datasets. This proposed kind of methodology is also
planned to be implemented in other image processing datasets,
stock market datasets, speech processing datasets, and other
beneficial datasets to check its performance assessment. In the
upcoming years, the work can be integrated with Very Large
Scale Integration (VLSI) technology to produce some good
advancement in medicine and technology for the betterment of
human health care.
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