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Medical image fusion has an indispensable value in the medical field. Taking advantage
of structure-preserving filter and deep learning, a structure preservation-based two-
scale multimodal medical image fusion algorithm is proposed. First, we used a two-scale
decomposition method to decompose source images into base layer components and
detail layer components. Second, we adopted a fusion method based on the iterative
joint bilateral filter to fuse the base layer components. Third, a convolutional neural
network and local similarity of images are used to fuse the components of the detail
layer. At the last, the final fused result is got by using two-scale image reconstruction.
The contrast experiments display that our algorithm has better fusion results than the
state-of-the-art medical image fusion algorithms.

Keywords: medical image fusion, scale decomposition, structure preservation, bilateral filter, CNN

INTRODUCTION

Medical imaging technology has developed rapidly, and medical images of various modalities have
significant applications in clinical diagnosis and disease analysis (Wang S. et al., 2020; Li et al.,
2021). There are some common medical imaging technologies, such as CT, MRI, PET, and single-
photon emission computed tomography (SPECT). Due to different imaging technologies, various
kinds of medical images contain complementary characteristics. For the same organ or the same
tissue of the human body, medical images with different imaging technologies reflect various
pathological characteristics. CT can well show dense structures, such as bones, while MRI has a
higher spatial resolution for soft tissues. PET and SPECT are more conducive to display functional
information of different tissues of the human body. However, limited by the equipment, the quality
of medical images is often unsatisfying. Two or more medical images are merged into one image
with comprehensive features by fusion methods for the sake of improving the accuracy of clinical
diagnosis (Li et al., 2017; Amala Rani and Lalithakumari, 2019; Huang et al., 2020). Medical image
fusion aims at extracting more useful information of input images, improving the application of
medical images, and helping doctors understand image contents better. Therefore, the study of
medical image fusion is significant (Tirupal et al., 2020).

The existing image fusion methods include pixel-level image fusion methods, feature-level
image fusion methods, and decision-level image fusion methods (Dolly and Nisa, 2019; Zhao
et al., 2021). The pixel-level fusion methods fuse multiple registered images and preserve the
maximum amount of information. Feature-level fusion algorithms extract different features from
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input images, such as textures and details, and then merge
all the features into one image. Feature-level image fusion has
lower requirements for image registration so it will lose part
of source images’ detailed information. Decision-level fusion
is performed by the high-level abstracted information, so the
detailed information will be lost severely (Kim et al., 2016; Liu Z.
et al., 2019). In conclusion, pixel-level fusion algorithms are the
simplest methods with the lowest computation cost. Therefore,
we propose a pixel-level medical image fusion algorithm.

In general, pixel-level image fusion methods contain spatial
domain methods and transform domain methods (Yu and Chen,
2020). In spatial domain, the fusion operation is performed on
pixels (Ashwanth and Swamy, 2020; Zhu et al., 2020). Spatial
domain fusion algorithms include principal component analysis
(PCA)-based image fusion method (Benjamin and Jayasree,
2018), guided filtering (GFF)-based image fusion method (Li
et al., 2013), improved sum-modified-Laplacian (ISML)-based
image fusion algorithm (Liu et al., 2015a), nuclear norm
minimization (NNM)-based image fusion algorithm (Liu et al.,
2015b), convolutional neural network (CNN)-based image fusion
algorithm (Liu et al., 2017b), and so on. In transform domain
image fusion algorithms, source images are first decomposed
into low- and high-frequency components through multi-scale
transformations. And then appropriate fusion rules are used to
fuse different components. Finally, the final fused result can be
obtained through inverse transformation. At present, scholars
around the world have proposed many image fusion methods in
the transform domain (Mao et al., 2020), such as the wavelet-
based image fusion methods proposed in Sumir and Gahan
(2018), Panigrahy et al. (2020b), and Rahmani et al. (2020),
the image fusion algorithms using non-subsampled contourlet
transform (NSCT) proposed in Das and Kundu (2012), Zhu
et al. (2019), Liu J. et al. (2020), and Panigrahy et al. (2020a),
and the image fusion algorithms using non-subsampled shearlet
transform (NSST) (Liu et al., 2017a; Ganasala and Prasad, 2020;
Panigrahy et al., 2020c). These algorithms have achieved good
fusion effects. However, traditional transform domain image
fusion algorithms need to perform frequency decomposition and
synthesis during fusion, which often have problems, such as fused
image distortion and structural information loss of the source
images (Zeng et al., 2020). However, in spatial domain, image
fusion often needs to block the images during fusion, which often
produces serious blocking effects. To maintain the structural
and detailed information, Zhu et al. (2018) proposed an image
fusion method based on image cartoon-texture decomposition
and sparse representation. In recent years, many structure-
preserving filters have appeared (Tomasi and Manduchi, 1998;
Farbman et al., 2008; Xu et al., 2011; He et al., 2019). These
filters can well maintain the structural information in the images
while smoothing textures, which is beneficial to restore the
structures and neighborhood details of source images. Therefore,
structure-preserving filters are increasingly used in image fusion.
The proposed algorithm also applies a structure-preserving filter
to overcome block effects and maintain structural information.
Recently, deep learning-based fusion algorithms became a
hotspot (Tomasi and Manduchi, 1998; Zhu et al., 2018). A multi-
focus image fusion method by using CNN is proposed in

Farbman et al. (2008), which regards the generation process of
the information feature focus map as a classification problem,
and the fusion rule can be regarded as the classifiers used in
general classification tasks. Liu S. et al. (2019) proposed a residual
network-based multi-focus image fusion method. Subsequently,
deep learning has also been applied in medical image fusion.
Liu et al. (2015b) also proposed a CNN-based medical image
fusion algorithm, which achieved satisfying fusion results. These
algorithms can effectively integrate the design of fusion rules
and the generation of a decision map, greatly simplifying the
steps of image fusion. However, for the sake of obtaining better
image fusion results, deep learning-based medical image fusion
algorithms need to train a great number of samples. In the
training of the network, the training data sets should have
ground-true images, but it is not easy to obtain ground-true
images of medical images.

Recently, deep learning-based fusion algorithms became a
hotspot (Wang et al., 2021a,b). A multi-focus image fusion
method by using CNN is proposed in Liu et al. (2017c), which
regards the generation process of the information feature focus
map as a classification problem, and the fusion rule can be
regarded as the classifiers used in general classification tasks.
Liu S. et al. (2019) proposed a residual network-based multi-
focus image fusion method. Subsequently, deep learning has
also been applied in medical image fusion. Liu et al. (2017b)
proposed a CNN-based medical image fusion algorithm, which
achieved satisfying fusion results. Wang K. et al. (2020) proposed
a CNN-based multi-modality medical image fusion algorithm.
This algorithm uses the Siamese convolutional network to
generate the weight map. The source images are decomposed
by contrast pyramid and then fused based on the weight map.
These algorithms can effectively integrate the design of fusion
rules and the generation of a decision map, greatly simplifying
the steps of image fusion. However, for the sake of obtaining
better image fusion results, deep learning-based medical image
fusion algorithms need to train a great number of samples. In
the training of the network, the training data sets should have
ground-true images, but it is not easy to obtain ground-true
images of medical images.

For the sake of solving the above-mentioned problems of
image fusion algorithms, we proposed a two-scale medical image
fusion algorithm based on structure preservation. Aiming at
different imaging modes of multimodal medical images, a two-
scale decomposition operation is adopted to decompose source
images into base layer components and detail layer components.
In this algorithm, we used different strategies to fuse different
components, making the fusion process more comfortable for
the human visual system. In the fusion of the base layer
components, an iterative joint bilateral filter is applied to improve
the decision map, and the weighted sum strategy is used to
fuse the base layer components in the spatial domain. In the
proposed algorithm, the CNN is adopted to fuse components
of the detail layer to produce an image fusion weight map. The
components of the detail layer are then fused by employing
a multi-scale method and a fusion strategy based on local
similarity. In the proposed algorithm, we made full use of the
structure-preserving property of the iterative bilateral filter. In
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addition, the application of CNN also improves the performance
of medical image fusion. Compared with previous algorithms,
the main contribution of our method consists of three points.
(1) We use a two-scale decomposition method to decompose
source images into base layer components and detail layer
components, which can make full use of scale information. (2)
For the sake of retaining more information, a fusion strategy
based on an iterative joint bilateral filter is adopted to fuse base
layer components. (3) A new fusion rule based on CNN and
local similarity was applied to the detail layer to maintain more
detailed information.

The rest of this article is as follows. Section “Related
Works” introduces the related works. Section “The Proposed
Algorithm” describes the proposed fusion method and its
implementation steps. Section “Experiments and Discussion”
shows the experimental results and analysis of this algorithm.
Finally, in Section “Conclusion” we conclude our fusion method.

RELATED WORKS

Two-Scale Image Decomposition
For a given source image I, it can be decomposed into the
base layer component Ib and the detailed layer component
Id. Ib can be obtained through the following optimization
problem:

arg min || I − Ib ||
2
F + η

(
|| gx ∗ Ib

||
2
F + || gy ∗ Ib

||
2
F

)
(1)

where gx =
[
−1 1

]
and gy =

[
−1 1

]T are horizontal and
vertical gradient operators, respectively. The regularization
parameter η is set to 5. The optimization problem is a Tikhonov
regularization problem, and it can be resolved efficiently by
fast Fourier transform (FFT). By subtracting the base layer
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FIGURE 1 | The framework of the fusion algorithm.
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FIGURE 2 | The structure of convolutional neural network.
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component from the source image, we can get the detail layer
component Id , that is

Id
= I − Ib (2)

Iterative Joint Bilateral Filter
A bilateral filter is non-linear and it can achieve edge
preservation during denoising (Tomasi and Manduchi, 1998).
In bilateral filtering, the filtered pixel value of a point depends

A B C D E

F G H I J

FIGURE 3 | Source image sets for fusion testing. (A–C,E) CT images. (D) MR-T1 image. (F–H) The corresponding MRI images. (I) The corresponding MR-T2 image.
(J) Proton density-weighted MR image.

A B C D

E F G H

FIGURE 4 | The output images obtained after each step of Group (a). (A,B) The source images. (C) The base layer component of panel (A). (D) The detail layer
component of panel (A). (E) The base layer component of panel (B). (F) The detail layer component of panel (B). (G) The fused base layer component. (H) The fused
detail layer component.

A B C D

FIGURE 5 | Ablation study of CNN. (A,B) The source images.
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on the neighborhood pixels. Furthermore, the weights of
the neighborhood pixels are determined by the distance and
similarity of the two pixels.

The bilateral filter can be represented as

Jp =
1
kp

∑
q∈�

exp(−

∣∣∣∣p–q
∣∣∣∣2

2σ2
s
−

∣∣∣∣Ip − Iq
∣∣∣∣2

2σ2
r

)Iq (3)

where I is the input image. p and q are the coordinates of the
pixels. Ip and Iq denote the pixel values of the corresponding
positions. � is a sliding window centered on p. Jp is the output.
σs and σr control the weight of spatial domain and range

domain, respectively. kp =
∑

q∈� exp(−||p–q||2
2σ2

s
−
||Ip−Iq||

2

2σ2
r

) is
a normalization.

The weight of the bilateral filter is unstable in practical
applications, so some artificial textures will appear near the edges.
For the sake of improving the stability of weight, a joint bilateral
filter (Zhan et al., 2019) is introduced. It can deal with the
problem of the stability of weight by introducing a guide image
as the basis for calculating the range weight.

In this article, the iterative joint bilateral filter is used to refine
edges. In filtering operation, J1 represents the initial input guide
image and Jt+1 denotes the output of the t-th iteration, that is

Jt+1
p =

1
kp

∑
q∈�

exp(−

∣∣∣∣p–q
∣∣∣∣2

2σ2
s
−

∣∣∣∣∣∣Jt
p − Jt

q

∣∣∣∣∣∣2
2σ2

r
)Iq (4)

where kp is used to normalize,

kp =
∑
q∈�

exp(−

∣∣∣∣p–q
∣∣∣∣2

2σ2
s
−

∣∣∣∣∣∣Jt
p − Jt

q

∣∣∣∣∣∣2
2σ2

r
) (5)

where σs is set to 8 and σr is set to 0.2.

Convolutional Neural Network
Convolutional neural network is widely used in behavior
cognition, pose estimation, object recognition, neural network
conversion, and natural language processing. It is one of the most
commonly used models in deep learning. It is composed of input
layer, hidden layer, and output layer. The hidden layer contains
convolutional layer, pooling layer, and fully connected layer.
There are three structural characteristics in the CNN model,
which are local receptive field, weight sharing, and pooling.
The local receptive field represents the connection between a
single neuron and the neurons in the corresponding region

of the previous layer. As the number of layers deepens, the
corresponding receptive field of a single neuron in each layer
increases in the original image, and the information expressed
becomes more and more abstract. Weight sharing means that the
weight of the convolution kernel of feature mapping is spatially
invariant. The receptive field and weight sharing decrease the
number of parameters for neural network training. Pooling is also
called down-sampling, which can reduce data dimensions. The
core idea of CNN is to combine these three structures to obtain
the deep features of images.

The calculation formula of the convolution kernel is

yl
j = f (

∑
i∈Mj

yl−1
i ∗k

l
ij + bl

j) (6)

where Mj represents the feature map from the input. kl
ij

represents the convolution kernel connected to the i-th feature
map of the previous layer. ∗ represents convolution operation. bl

j
represents the bias. f (·) represents the activation function.

In CNN-based image fusion algorithms, the generation of
a decision map can usually be considered as a classification
problem. Specifically, the decision map can be acquired through
activity level measurement. Measuring the activity level of a
source image is closely related to feature extraction. The higher
the activity level means that the image block is clearer. Image
fusion is similar to classification tasks. Therefore, the fusion rule
in this process is equal to the classifiers in image classification.
According to these ideas, a CNN-based multi-focus image fusion
algorithm is proposed in Liu et al. (2017c). The advantage of this
algorithm is that it solves the difficulties of manually designing
activity level measurement and the fusion rule. Therefore, the
CNN-based image fusion algorithm solves the problem of fusion
by designing the CNN model. By training a large number of
image data to obtain the CNN model, it is more effective
than manually designing the fusion rule. In Liu et al. (2017b),
combining with the CNN model, Liu et al. used a multi-scale
method and a local similarity-based fusion rule to obtain a high-
quality fusion result. We applied this method to fuse detail
components in our fusion algorithm.

THE PROPOSED ALGORITHM

Aiming at obtaining a satisfying medical image fusion result, we
proposed a two-scale medical image fusion algorithm based on
structure preservation. The framework of this fusion method is
shown in Figure 1. First, through the method in Section “Two-
Scale Image Decomposition,” we decompose source images into

TABLE 1 | Objective evaluation results of ablation study.

Method MI QAB/F SSIM VIFF UIQI Q QW QE RAB/F
Q

Without CNN 3.9219 0.7546 0.4912 0.4600 0.4646 0.8395 0.8071 0.7854 0.3786

CNN 4.3328 0.7869 0.4990 0.4684 0.4770 0.8636 0.8300 0.8185 0.3839

Abbreviations: MI, mutual information; QAB/F, metric; SSIM, structural similarity; VIFF, visual information fidelity; UIQI, Universal Image Quality Index; Q, QW, QE, Piella
index; RAB/F

Q , metric.
The bold values are the best metric values.
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base and detail layers. After that, these scale components are
fused by appropriate fusion methods. Finally, the fused image is
obtained through scale reconstruction.

For ease of description, we suppose that the two source
images are IA and IB , and in this article, we have given
the fusion steps of two images only. The process of multiple
images fusion is similar to the fusion of two images. Traditional
multi-scale decomposition methods need more than two scales
to get a satisfactory fusion image. In the proposed algorithm,
we decomposed the source images by using the two-scale
decomposition method in Liu Y. et al. (2016). Equations 1, 2 are
employed to decompose source images IA and IB into base layer

components Ib
A , Ib

B and detail layer components Id
A , Id

B . The
following are descriptions of the fusion rules of base and detail
layer components.

Base Layer Fusion
First, a local structure preservation filter is used to smooth the
base layer components Ib

A and Ib
B . This filter is defined as

Sp = µk +
σ2

k
σ2

k + σ2
d
(Ip − µk) (7)

A B C D E

F G H I J

FIGURE 6 | The fusion results of Group (a). (A,B) The source images. (C–J) The fusion results of GFF, CNN, CSMCA, NSCT-PCNN, NSCT-PCLLE, NSST-PAPCNN,
RGF-CNM, and the proposed algorithm.

A B C D E

F G H I J

FIGURE 7 | The fusion results of Group (b). (A,B) The source images. (C–J) The fusion results of GFF, CNN, CSMCA, NSCT-PCNN, NSCT-PCLLE, NSST-PAPCNN,
RGF-CNM, and the proposed algorithm.
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where p represents the pixel position. µk and σ2
k are the mean

and variance of the image pixel values in a sliding window
�k with radius r, respectively. The size of the window �k
is (2r + 1)× (2r + 1). σ2

d is a constant. The mean value µk
represents the average smoothing intensity of the filter, and its
variance σ2

k reflects and measures the changes in local sharpness
of the image. In Eq. 7, if σ2

k � σ2
d , there is Sp = Ip for pixel

p; if σ2
k � σ2

d , then Sp = µk . Therefore, we set σ2
d as the

minimum variance of the source image to achieve smoothing of
tiny pixels. In this study, after many experiments, we found that
our algorithm works best when r is set to 3 and σ2

d is set to 0.01.
In this article, a two-stage gradient is adopted to describe

the salient area of the image. The gradient image Gp can be

defined as
Gp =

(
Sp ⊗ L

)2 (8)

where ⊗ represents convolution. L is the gradient detection
template, In this article, for getting more detailed information,
we introduced a gradient detection template in Zhan et al. (2019),
that is

L =
1
6

 1 4 1
4 −20 4
1 4 1

 (9)

Since holes may be generated in homogeneous regions
when performing gradient operation on the image, we adopted
morphological closure operation to fill the image holes in this

A B C D E

F G H I J

FIGURE 8 | The fusion results of Group (c). (A,B) The source images. (C–J) The fusion results of GFF, CNN, CSMCA, NSCT-PCNN, NSCT-PCLLE, NSST-PAPCNN,
RGF-CNM, and the proposed algorithm.

FIGURE 9 | The fusion results of Group (d). (A,B) The source images. (C–J) The fusion results of GFF, CNN, CSMCA, NSCT-PCNN, NSCT-PCLLE, NSST-PAPCNN,
RGF-CNM, and the proposed algorithm.
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A B C D E

F G H I J

FIGURE 10 | The fusion results of Group (e). (A,B) The source images. (C–J) The fusion results of GFF, CNN, CSMCA, NSCT-PCNN, NSCT-PCLLE, NSST-PAPCNN,
RGF-CNM, and the proposed algorithm.

article, that is

M̂p = 1−
(
1− Gp ⊗ E

)
⊗ E (10)

where E denotes the sliding square structure element with
radius r .

By using Eq. 10, we can obtain the structural gradients M̂A
p

and M̂B
p of each base layer component. Then, the weight map

is constructed by using the strategy of taking the larger absolute
value. For the image value at the pixel p at the same position, the
obtained binary weight map Bp can be calculated as follows.

Bp =

{
1 M̂A

p ≥ M̂B
p

0 M̂A
p < M̂B

p
(11)

Bp is obtained by selecting the saliency structure between Ib
A

and Ib
A during image fusion. For the sake of making the fused

image have more spatial continuity, we can get the basic weight
map Wp by performing average filtering on Bp with a window
size of 5 × 5. To make the image look more natural, the iterative
joint bilateral filter is employed to transfer the edge information
in source images into the weight map. The final decision map Wp
is obtained through three iterations, that is

Wp = bilteral_filter(Ip,Wp, σs, σr) (12)

Finally, the weighted sum fusion method is used to acquire the
fused base layer component.

Ib
F = Ib

AWp + Ib
B(1−Wp) (13)

Detail Layer Fusion
Combined with CNN, the Laplacian pyramid and the fusion
strategy based on local similarity are adopted for the fusion of
detail layer components in the proposed algorithm. The CNN
structure adopted is shown in Figure 2.

It has two identical branches and each branch has three
convolutional layers and a max-pooling layer. In each
convolutional layer, an ReLu is added for non-linear mapping,
which has fast convergence speed and a simple gradient
operation. The size of the neuron’s receptive field depends on
the size of the convolution kernel. Choosing an appropriate
convolution kernel size is significant for CNN. If the convolution
kernel is too small, local features cannot be extracted effectively;
and if the kernel size is too large, the information representation
capability is reduced and the image cannot be represented well.
Therefore, during net training, the kernel size and step of each
convolutional layer are set to 3 × 3 and 1, respectively. And the
scale factor and span of the max-pooling layer are set to 2 × 2
and 2, respectively. The 256 feature maps are connected to a
256-dimensional feature vector through a fully connected layer.
The output is a fully concatenated two-dimensional vector of the
256-dimensional feature vector.

In this algorithm, the two detail layer components Id
A and

Id
B are input into the two branches of the CNN to generate a

fusion weight map W. Then, Laplacian pyramid decomposition
is performed on each detail layer component, which is denoted
by L {A}l and L {B}l , respectively (l denotes the decomposition
scale). The weight map W is decomposed by Gaussian pyramid
and expressed by G {W}l .

The local energy maps of L {A}l and L {B}l are calculated as{
El

A
(
x, y

)
=
∑

m
∑

n L {A}l
(
x+m, y+ n

)2

El
B
(
x, y

)
=
∑

m
∑

n L {B}l
(
x+m, y+ n

)2 (14)

Then, we calculate the local similarity measurement of L {A}l

and L {B}l , that is

Ml(x, y) =
2
∑

m
∑

n L {A}l (x+m, y+ n)L {B}l (x+m, y+ n)
El

A(x, y)+ El
B(x, y)

(15)
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From Eq. 15, we can know that the range of Ml(x, y) is [−1, 1].
The closer the value is to 1, the higher the local similarity of L {A}l

and L {B}l is. The threshold t is set to fuse pixels with different
similarities using different fusion rules. If Ml(x, y) ≥ t, L {A}l and
L {B}l are fused through the weighted average fusion method, that
is

L {F}l (x, y) = G {W}l (x, y) · L {A}l (x, y)+ (1− G {W}l (x, y))

·L {B}l (x, y) (16)

If Ml(x, y) < t, the fusion will be carried out by maximizing
the local energy, that is

L {F}l (x, y) =

{
L {A}l (x, y), if El

A(x, y) ≥ El
B(x, y)

L {B}l (x, y), if El
A(x, y) < El

B(x, y)
(17)

Ultimately, the fused detail layer component Id
F is

reconstructed from the Laplacian pyramid L {F}l. Then the
fused image IF is reconstructed by fused base layer component Ib

F
and detail layer component Id

F , that is

IF = Ib
F + Id

F (18)

EXPERIMENTS AND DISCUSSION

In the study, five groups of medical images are chosen for
testing, to evaluate the performance of the proposed fusion
algorithm. These test images are displayed in Figure 3 and are all
from http://www.med.harvard.edu/aanlib/home.html. These test
image sets contain five groups, among which groups (a), (b), and
(c) include three CT images of bones and three MRI images of
corresponding soft tissues. Group (d) includes an MR-T1 image
and a corresponding MR-T2 image. Group (e) includes a CT
image and a proton density-weighted MR image. All experiments
are carried out under the computer configuration of 2.9 GHz
CPU and 8 GB RAM, MATLAB version of R2018a, and the
operating system of Win10 64-bit.

To verify the effectiveness of the proposed algorithm
(abbreviated as DWTRP-CNN), we first conducted fusion on
the test images and compared the proposed algorithm with
commonly used fusion algorithms. These algorithms include (1)
the guided filtering based image fusion method proposed in Li
et al. (2013) (abbreviated as GFF); (2) the CNN-based medical
image fusion method proposed in Liu et al. (2017b) (abbreviated
as CNN); (3) an image fusion algorithm by using convolutional
sparse morphological component analysis proposed in Liu Y.
et al. (2019) (abbreviated as CSMCA); (4) a medical image fusion
method based on pulse coupled neural network and improved
spatial frequency in NSCT domain proposed in Das and
Kundu (2012) (abbreviated as NSCT-PCNN); (5) a multimodal
medical image fusion algorithm based on phase consistency
and local Laplacian energy in NSCT domain proposed in Zhu
et al. (2019) (abbreviated as NSCT-PCLLE); (6) a parameter
adaptive pulse coupled neural network-based medical image
fusion algorithm in NSST domain proposed in Yin et al. (2019)
(abbreviated as NSST-PAPCNN); and (7) the rolling guidance

filtering multimodal medical image fusion by combining CNN
and nuclear norm minimization proposed in Liu S. et al. (2020)
(abbreviated as RGF-CNM). To make it fair, when using the
above-mentioned fusion algorithms for testing, the parameter
settings of these algorithms have the same parameters in the
articles published by the authors.

We also choose six indicators for objective evaluation of the
proposed algorithm, namely, Mutual Information (MI) (Qu et al.,
2002), QAB/F metric (Xydeas and Petrovic, 2000), Structural
Similarity (SSIM) (Wang et al., 2004), Visual Information Fidelity
(VIFF) (Han et al., 2013), Universal Image Quality Index (UIQI)
(Wang and Bovik, 2002), Piella index (Q, QW, QE) (Piella
and Heijmans, 2003), and RAB/F

Q metric (Sengupta et al., 2020).
MI reflects the useful information that remained in a fused
image. The QAB/F index is an objective measure based on edge
information and is adopted to assess whether the fused image
retains more edge information. SSIM represents the structural
similarity between the fused image and the source images. VIFF
measures the fidelity of the visual information of the fused
image relative to the source images. UIQI measures image
distortion through correlation loss, brightness distortion, and
contrast distortion. The Piella index comprehensively reflects the
similarity of intensity, contrast, and structure between the fused
image and the source images. RAB/F

Q metric reflects the edge and
orientation strengths. For all of these indexes, the higher value
means that the performance of the fusion method is better.

Figure 4 shows the output images obtained after each step
of our fusion method applied in Group (a). Figures 4A,B are
the source images. Figures 4C,D are the base layer component
and the detail layer component of Figure 4A, respectively.
Figures 4E,F are the base layer component and the detail
layer component of Figure 4B, respectively. Figures 4G,H are
the fused base layer component and the fused detail layer
component, respectively. It can be seen from Figure 4 that
the proposed algorithm can extract the basic information and
detailed information of source images and fuse them effectively.

To verify the effectiveness of CNN for detail layer fusion, we
conducted an ablation study on Group (a). Figure 5 shows the
fusion results of the ablation study. Figures 5A,B show the source
images. Figure 5C is the fusion result without CNN, that is, the
detail layers are fused by the method which is the same as the
method for fusing base layers. Figure 5D is the fusion image of
the proposed algorithm.

Table 1 shows the objective evaluation results of the ablation
study. It can be seen from Table 1 that the fusion algorithm with
CNN has better objective evaluation results. The ablation study
proves the effectiveness of CNN for detail layer fusion.

We tested all the methods in the test image sets in Figure 3
and the fused images are displayed in Figures 6–10. Figure 6
shows the fusion results of Group (a). Figures 6A,B show the
source images. And Figures 6C–J are the fusion results of GFF,
CNN, CSMCA, NSCT-PCNN, NSCT-PCLLE, NSST-PAPCNN,
RGF-CNM, and the proposed algorithm, respectively.

Figure 6 shows that the fused image of our algorithm
has a higher contrast, shows more structural information and
textural information, and introduces less useless information
among these algorithms. And the edges of Figure 6C are
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not clear enough, and GFF lost some structural information.
Figure 6D retains the spatial information of source images,
but some edges are lost. Figure 6E has low contrast, and
the fusion effect is not ideal. Figure 6F shows that the

CSMCA does not get a good fused image, and cannot be able
to retain useful information effectively. Although Figure 6G
retains more useful information of source images, but a small
number of artifacts are produced. There are unwanted artifacts

TABLE 2 | Objective evaluation results of Group (a).

MI QAB/F SSIM VIFF UIQI Q QW QE RAB/F
Q

GFF 3.4313 0.7789 0.4865 0.4865 0.4493 0.8147 0.7889 0.7843 0.3824

CNN 3.0757 0.7683 0.4764 0.5453 0.4451 0.7945 0.7805 0.7819 0.3810

CSMCA 2.5864 0.7280 0.4388 0.4752 0.3414 0.5721 0.6024 0.6171 0.3715

NSCT-PCNN 1.2824 0.5764 0.3990 0.3313 0.2678 0.4257 0.4381 0.4443 0.3441

NSCT-PCLLE 3.2906 0.7325 0.4861 0.4625 0.4512 0.8077 0.7878 0.7799 0.3734

NSST-PAPCNN 2.4665 0.6859 0.4637 0.4559 0.3950 0.6996 0.7030 0.5812 0.3683

RGF-CNM 4.1236 0.7808 0.4986 0.5105 0.4760 0.8475 0.8231 0.7947 0.3844

DWTRP-CNN 4.3328 0.7869 0.4990 0.4684 0.4770 0.8636 0.8300 0.8185 0.3839

The bold values are the best metric values.

TABLE 3 | Objective evaluation results of Group (b).

MI QAB/F SSIM VIFF UIQI Q QW QE RAB/F
Q

GFF 4.1027 0.6057 0.6671 0.5213 0.4734 0.5022 0.5077 0.5009 0.3544

CNN 3.8871 0.5855 0.6433 0.5775 0.4145 0.4639 0.5096 0.4884 0.3502

CSMCA 3.6764 0.6062 0.6441 0.5273 0.3774 0.3818 0.4771 0.4634 0.3525

NSCT-PCNN 4.4815 0.5787 0.6532 0.5104 0.4552 0.4019 0.4830 0.4586 0.3506

NSCT-PCLLE 4.1448 0.5618 0.6655 0.5708 0.4688 0.5022 0.5134 0.4859 0.3466

NSST-PAPCNN 3.8906 0.5228 0.6814 0.5931 0.4576 0.5028 0.5374 0.4858 0.3420

RGF-CNM 4.4565 0.6130 0.6800 0.5804 0.4870 0.4536 0.5119 0.4822 0.3570

DWTRP-CNN 4.9866 0.8185 0.6814 0.5584 0.5634 0.5551 0.5317 0.5113 0.3575

The bold values are the best metric values.

TABLE 4 | Objective evaluation results of Group (c).

MI QAB/F SSIM VIFF UIQI Q QW QE RAB/F
Q

GFF 2.9724 0.6567 0.6598 0.6146 0.4472 0.2462 0.3401 0.4045 0.3560

CNN 3.5573 0.6454 0.5050 0.7817 0.2930 0.2098 0.2897 0.3700 0.3528

CSMCA 3.0675 0.6509 0.6752 0.6266 0.5557 0.1904 0.3211 0.3912 0.3513

NSCT-PCNN 2.8244 0.5922 0.5382 0.6118 0.3777 0.1840 0.3243 0.3713 0.3396

NSCT-PCLLE 3.3006 0.6111 0.6392 0.7402 0.4883 0.2332 0.2917 0.3623 0.3430

NSST-PAPCNN 3.1406 0.5525 0.5564 0.6229 0.3141 0.1664 0.2522 0.3114 0.3371

RGF-CNM 3.4611 0.5414 0.6412 0.6863 0.3720 0.2323 0.3082 0.2920 0.3401

DWTRP-CNN 3.8684 0.8569 0.6854 0.6645 0.6088 0.3040 0.3986 0.4272 0.3567

The bold values are the best metric values.

TABLE 5 | Objective evaluation results of Group (d).

MI QAB/F SSIM VIFF UIQI Q QW QE RAB/F
Q

GFF 3.2966 0.5892 0.6982 0.6020 0.5022 0.4847 0.5482 0.4916 0.3398

CNN 3.6331 0.5915 0.7038 0.7405 0.5203 0.3218 0.5248 0.4476 0.3383

CSMCA 3.3221 0.6079 0.7131 0.6405 0.5570 0.483 0.5159 0.4493 0.3381

NSCT-PCNN 2.9174 0.4276 0.6266 0.6606 0.3989 0.3738 0.5048 0.4461 0.3150

NSCT-PCLLE 3.8238 0.5714 0.7303 0.7731 0.5807 0.5331 0.5754 0.5006 0.3354

NSST-PAPCNN 3.2064 0.4081 0.6527 0.6169 0.4294 0.4031 0.5250 0.4640 0.3193

RGF-CNM 4.1837 0.6338 0.7318 0.7436 0.5504 0.3717 0.5494 0.4725 0.3464

DWTRP-CNN 4.5808 0.8423 0.7320 0.7801 0.6038 0.5570 0.5837 0.5266 0.3473

The bold values are the best metric values.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 January 2022 | Volume 15 | Article 803724

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-803724 January 25, 2022 Time: 15:21 # 11

Liu et al. Image Fusion

TABLE 6 | Objective evaluation results of Group (e).

MI QAB/F SSIM VIFF UIQI Q QW QE RAB/F
Q

GFF 3.4014 0.6171 0.7709 0.4688 0.6538 0.2954 0.4988 0.4935 0.3538

CNN 3.3405 0.6232 0.6745 0.5078 0.3448 0.2977 0.5127 0.5081 0.3576

CSMCA 3.1097 0.5933 0.7568 0.4745 0.5622 0.2731 0.4830 0.4840 0.3402

NSCT-PCNN 3.7688 0.5683 0.7257 0.4157 0.4307 0.2818 0.4623 0.4854 0.3398

NSCT-PCLLE 3.3127 0.5841 0.7153 0.4892 0.5427 0.3005 0.5002 0.4884 0.3474

NSST-PAPCNN 3.2213 0.5902 0.7180 0.5031 0.5496 0.3116 0.5207 0.5058 0.3546

RGF-CNM 3.5551 0.6131 0.7786 0.5206 0.5140 0.3247 0.5352 0.4896 0.3597

DWTRP-CNN 3.7814 0.6326 0.7864 0.5316 0.6764 0.3352 0.5286 0.5319 0.3556

The bold values are the best metric values.

TABLE 7 | The running times of all fusion algorithms.

Time(s) Group (a) Group (b) Group (c) Group (d) Group (e)

GFF 0.0550 0.0346 0.0363 0.0449 0.0661

CNN 10.3217 10.6671 10.3465 10.7059 10.2416

CSMCA 85.1345 84.7032 85.8902 86.4450 85.4226

NSCT-PCNN 39.5787 39.9496 39.6413 39.6515 39.7292

NSCT-PCLLE 2.1394 1.7340 1.7377 1.7313 1.7528

NSST-PAPCNN 4.0287 4.0262 3.9829 4.5434 4.1555

RGF-CNM 34.2282 34.6446 33.4955 35.2557 33.6108

DWTRP-CNN 11.3148 11.5726 10.8541 11.5949 11.1146

The bold values are the best metric values.

in Figure 6H. The contrast in Figure 6I is high, but the
edges are blurred.

Table 2 shows the objective evaluation results of Group (a) for
all test algorithms. As seen in Table 2, our fusion algorithm has

the highest values on MI, QAB/F, SSIM, Piella, and UIQI. The
maximum values of MI and QAB/F indicate that our algorithm
retains more useful information and edges.

In Table 2, the highest indicators of SSIM and Piella indicate
the highest structural similarity between the fused image and
the source images obtained by our algorithm. The maximum
value of UIQI indicates that the correlation, brightness, and
contrast of the fused image and the source images obtained by
our algorithm are closest. Although the VIFF of our algorithm is
not the highest, from the visual effects of Figure 6, our fusion
algorithm is the best. In all comparison algorithms, the VIFF
value of CNN is the highest, which is better than our method.
However, the other seven evaluation indexes are lower than our
fusion algorithm, and the value of MI is far from ours, which
indicates that CNN is not ideal in preserving the information of
source images. Therefore, our algorithm is an effective medical
image fusion algorithm.

      

      

      

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A B C D E F

FIGURE 11 | The fusion results of multi-focus image fusion and infrared and visible image fusion. (C) The fusion result without CNN. (D) The fusion result with CNN.
(A–F) The fused images. (A1–F1) The one source images of each group. (A2–F2) The other one source images.
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Figure 7 gives the fusion results of Group (b). In Figure 7, the
contrasts of Figures 7C,E are low, and the image in Figure 7F
loses more useful information. In addition, Figures 7F,I produce
different degrees of blocking effects and artifacts. Figures 7D,G,H
fuse the two source medical images well, but still lose a small part
of detailed and textural information, and do not get the best visual
effects. Compared to the contrasting algorithms, the fused image
of our algorithm has the best visual effect.

Table 3 shows the objective evaluation results of Group (b)
for all test algorithms. Table 3 shows that the proposed algorithm
gives the best objective evaluation results except VIFF and QW.
It indicates that the proposed algorithm retains the most useful
information and edges, the structural similarity of fused image
and source images is the highest, and the correlation, brightness,
and contrast are the closest. In other contrast algorithms,
the values of SSIM, VIFF, and QW of NSST-PAPCNN fusion
algorithm are the highest, but other evaluation indexes are lower
than the proposed algorithm, especially MI and QAB/F. From the
visual effects and objective evaluation, the proposed algorithm
achieves a satisfying fusion effect.

Figures 8–10 show the fusion results of groups (c), (d), and
(e). Similar to Figures 6, 7, the proposed method retains more
structural and detailed information of the input medical images,
has higher contrast and brightness, and introduces less useless
information, such as blocking effects and artifacts from the fusion
results of Figures 8C–J, 9C–J, 10C–J.

From the comprehensive view of the objective indicators
in Tables 4–6, the proposed algorithm has higher objective
evaluation indicators than other algorithms. In addition, Table 7
shows the running times of these algorithms. Compared to
others, the running time of our algorithm is also relatively
competitive. Therefore, the proposed algorithm is an effective
and robust medical image fusion algorithm.

In addition, we applied the proposed algorithm to multi-
focus image fusion and infrared and visible image fusion. In
Figures 11A1–F1 are the one source images of each group.
Figures 11A2–F2 are the other one source images. Figures 11A–
F are the fused images. As shown in Figure 11, the proposed
fusion algorithm is also effective in multi-focus image fusion and
infrared and visible image fusion.

CONCLUSION

In this article, we proposed a two-scale multimodal medical
image fusion algorithm based on structure preservation. The
proposed algorithm decomposes the source images by two-scale

decomposition, which fully uses the multi-scale information of
the images. Our algorithm also adopts the structure preservation
characteristic of the iterative joint bilateral filter and applies CNN
in medical image fusion. From the visual effects and objective
measures, the contrast experiments show that the proposed
algorithm has better performance than the compared algorithms.
However, the speed of the proposed algorithm is not ideal. In
future, the computational speed of the proposed algorithm will
be optimized for practical application in clinical practice.
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