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The real world is essentially an indefinite environment in which the probability space,

i. e., what can happen, cannot be specified in advance. Conventional reinforcement

learning models that learn under uncertain conditions are given the state space as

prior knowledge. Here, we developed a reinforcement learning model with a dynamic

state space and tested it on a two-target search task previously used for monkeys. In

the task, two out of four neighboring spots were alternately correct, and the valid pair

was switched after consecutive correct trials in the exploitation phase. The agent was

required to find a new pair during the exploration phase, but it could not obtain the

maximum reward by referring only to the single previous one trial; it needed to select

an action based on the two previous trials. To adapt to this task structure without prior

knowledge, the model expanded its state space so that it referred to more than one

trial as the previous state, based on two explicit criteria for appropriateness of state

expansion: experience saturation and decision uniqueness of action selection. Themodel

not only performed comparably to the ideal model given prior knowledge of the task

structure, but also performed well on a task that was not envisioned when the models

were developed. Moreover, it learned how to search rationally without falling into the

exploration–exploitation trade-off. For constructing a learning model that can adapt to an

indefinite environment, the method of expanding the state space based on experience

saturation and decision uniqueness of action selection used by our model is promising.

Keywords: reinforcement learning, dynamic state space, target search task, experience saturation, decision

uniqueness, exploration-exploitation trade-off, indefinite environment

INTRODUCTION

Uncertainty is classified into two types. The first is where the state or probability space of the
situation or environment is defined and fixed, as in the case of rolling a die. We cannot predict
which roll will emerge, but we do know that a number from 1 to 6 will appear; thus, it is possible
to utilize this prior knowledge. The other is the case where even the probability or state space of
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the environment is neither given nor hypothesized in advance.
An environment with the latter type of uncertainty is defined
as an indefinite environment, and adaptation to such an ever-
changing indefinite environment is a critical issue for living
systems (Shimizu, 1993).

Learning is a primary ability of animals, allowing them to
adapt to their environment. Reinforcement learning is a form of
learning in which the agent learns to take a certain action in an
uncertain environment, or without being explicitly informed of
the correct answer. Instead, the agent learns a policy based on
the state at the previous time-step to maximize the cumulative
reward (Sutton and Barto, 1998). In particular, reinforcement
learning models employing partially observable Markov decision
process (POMDP)methods represent the most popular approach
to coping with situations in which the current state is uncertain
(Jaakkola et al., 1995; Thrun et al., 2005) and remain a thriving
research area that attracts many researchers (e.g., Ahmadi et al.,
2020; Bhattacharya et al., 2020; Bouton et al., 2020; Xie et al., 2020;
Maliah and Shani, 2021). In particular, some recent POMDP
models can learn policies frommultiple past states or generate an
infinite number of distributions within the probability or feature
space, which has greatly improved the adaptability of machine
learning to complex environments (Doshi-Velez, 2009; Doshi-
Velez et al., 2015; Hausknecht and Stone, 2015; Azizzadenesheli
et al., 2016; Igl et al., 2018). However, the current state of
the environment functions as prior knowledge in reinforcement
learning models. Even in the abovementioned advanced POMDP
models, possible environmental states are generated within a
given probability or feature space (Figures 1A,B). Therefore,
these architectures may not achieve high learning performance
in any unknown environment.

Infinite hidden Markov models (iHMMs) enable learning
based on the arbitrary length of previous states without prior
knowledge, even about the probability space (Beal et al., 2002;
Teh et al., 2006; Mochihashi and Sumita, 2007; Mochihashi
et al., 2009; Pfau et al., 2010; Doshi-Velez et al., 2015).
This approach, by using Dirichlet process hierarchically, can
dynamically generate states referring to arbitrary length of
previous states, and is applied to, for example, inference of words
within sentences (Mochihashi and Sumita, 2007; Mochihashi
et al., 2009). However, this approach does not include explicit
criteria for determining the appropriateness of state generation
and its termination, raising concerns about whether it learns both
dynamically and reproducibly.

With respect to our own experience, the state space is
not uniquely and unilaterally provided to us in an indefinite
environment; instead it is subjectively determined through
our interaction with that environment. And even under such
circumstances, we aim to ensure that the desired results are
achieved. When we cannot obtain our desired outcomes, we
will not blindly roll a die; instead, we seek an causal attribution
(Heider, 1958; Kelley, 1967, 1973). That is, we will attempt to
change our view of the situation we face or the state of the
environment and make a deterministic or unique decision based
on sufficient experience. This view is supported by findings in
humans and animals: children prefer deterministic decisions, that
is, infer unobserved causes whenever observed causes appear to

act only stochastically (Schulz and Sommerville, 2006); when a
rodent is presented an ambiguous conditional stimulus (CS) that
is followed by an unconditional stimulus (US) in one context but
not in another, the contextual information is recruited by the
animal to determine the situation uniquely (Fanselow, 1990).

Here, we propose a reinforcement learning model with a
dynamic state space that performs well in a two-target search
task that was previously used in a physiological experiment with
non-human primates (Kawaguchi et al., 2013, 2015; Figure 2,
see also Supplementary Figure 1). Briefly, subjects were required
to gaze at one light spot from among four identical stimuli. If
the correct spot (designated by green in Figure 1) was selected,
a reward was delivered. After training, the subjects learned to
saccade alternately to two targets in a valid pair, and received a
reward for several correct trials in a row (the exploitation phase).
If the valid pair was changed without instruction, they started
searching for a new valid pair aftermaking errors (the exploration
phase). In this task, by simply hypothesizing that the previous
state is the previous trial, the agent cannot maximize the total
reward. To do so, the agent must consider the two previous trials
together as the previous state. Thus, this task can address the
issue of how the two previous trials together can come to be
regarded as the previous state without prior knowledge of the task
structure. Our proposedmodel is given no prior knowledge of the
task structure other than the action of gazing at one of the four
spots. Instead, it starts learning using the immediately preceding
trial as the starting state, and expands and contracts the state
space in the direction of previous trials based on the criteria of
experience saturation and the decision uniqueness of the action
selection (Figure 1C). The model performed comparably to the
optimal model, in which prior knowledge of the task structure
was available. We consider the dynamic learning mechanism
proposed in this study to be a crucial component for systems to
adapt to indefinite environments.

METHODS

The Reinforcement Learning Model
We developed a reinforcement learning model with a dynamic
state space. The basic structure of the model was grounded in
the conventional reinforcement learning (Rescorla and Solomon,
1967) as follows. The action value function, Q(SN = si, AN = aj)
for the pair of a particular state, si, and an action, aj, at the Nth
trial were updated by the following equation:

Q (SN+1,AN+1)← Q (SN ,AN)+ αδ (SN ,AN) , (1)

where α is the learning rate, set to 0.1 in the range that showed
desirable results revealed by the parameter search (see Figure 7).
δ is the reward prediction error, given by

δ(SN ,AN) ≡ r − Q(SN ,AN), (2)

where r is the reward delivered forAN taken at SN in theNth trial.
If the correct spot was selected, a reward r = 1 was delivered,
otherwise r = 0 was given. In the following, we will refer to
whether a reward has been obtained or not as (reward) outcome.
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FIGURE 1 | Differences in the basic schemes between previous models and the model presented in the current study. (A) In the conventional reinforcement learning

scheme, observed variables and state variables are not distinguished. That is, the current state si is set based on the observation of the environment oi ,t−1 at the time

t−1 and has a corresponding Q-table Qi , which provides an action at. (B) In the partially observable Markov decision process (POMDP) model, the environment

provides only a partial observation o?,t−1 to identify the current state. The agent has a set of beliefs or stochastic distribution for the possible states {bi}, and renews

them through actions a and their reward outcomes r. Note that similar to the conventional scheme, the possible states are provided to the POMDP model in advance,

in the form of beliefs. (C) Our dynamic state scheme also hypothesizes that the agent receives only partial information from the environment. However, unlike POMDP,

these observations are temporarily stored in working memory and serve to generate a new state not prepared a priori, based on the two criteria experience saturation

and decision uniqueness.

AN was selected according to the stochastic function, Pπ (AN =

aj|SN = si), under SN = si. A policy, π , i.e., Pπ is the softmax
function, defined by

Pπ
(

aj
∣

∣si
)

≡
exp(βQ

(

si, aj
)

)
∑4

k exp(βQ (si, ak))
, (3)

where the parameter β , termed the inverse-temperature, was set
to 7 in the range that provided desirable results revealed by the
parameter search (see Figure 8). For action selection, the state
that refers to the longest history of recent trials among generated
states was used.

Expanding and Contacting the State Space
Our model was designed to avoid the need for stochastic
decisions as much as possible. Specifically, when the model did
not have a value function for a particular action that required
a much larger value compared with others following extensive
experience with the state, it expanded the range of the state
backward in time. We illustrate the algorithm of this expansion
in Figure 3A.

The initial state space of the model calculation was set as
a particular combination of the four possible actions, namely
gazing at the right-up (RU), left-up (LU), left-down (LD), or
right-down (RD) spot, and the outcome (correct or error) from
one trial. The initial Q-value for each action was set to 0.5. The
model monitored the stochastic mean policy for each state si,
given by

Pπ
mean,Nupdate,si

(a|si) ≡
1

Nupdate,si

Nupdate,si
∑

l=1

Pπ
l (a|si) (4)

where Nupdate,si is the number of times that the Q-values for the
state si were updated. Then, it calculated the information gain or
the Kullback-Leibler divergence (KLD) obtained by updating the
stochastic policy (step 1 in Figure 3A):

Update_KLDsi
(

Pπ
mean,Nupdate,si

(a|si)||P
π
mean,Nupdate,si

−1(a|si)
)
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FIGURE 2 | Overview of the two-target search task. (A) Schematic of several trials before and after a valid pair change. The pair change triggers the transition from

the exploitation phase to the exploration phase. Dashed lines, empty arrows and green spots denote valid pairs, gazes and correct targets, respectively. Note that the

subjects were not instructed to move their eyes by the green spot before gaze shift. (B) Valid pairs are randomly altered after a series of correct trials.

≡

4
∑

j

Pπ
mean,Nupdate,si

(

aj|si
)

log
Pπ
mean,Nupdate,si

(

aj|si
)

Pπ
mean,Nupdate,si

−1

(

aj|si
) . (5)

We referred to this as the Update_KLD. Nupdate,si - 1 indicates
the number of trials since the model last encountered state si
and calculated the mean P(a|si). We used the Cesàro average
to test whether the decision uniqueness would be improved
by promoting state expansion when the number of trials
experienced in the state of interest becomes large.

Next, the model judged whether the Update_KLD of the state
si fell below the criterion for experience saturation, ζ (step 2),

Update_KLDsi
< ζ (6)

indicating that information can no longer be gained by updating.
The value of ζ was determined to be 10−6 in the range that
showed desirable results revealed by the parameter search (see
Figure 5). When the Update_KLDsi was < ζ , the distribution of
Pπ
mean,Nupdate,si

(a|si) was compared with Pπ
ideal

(a|s). Pπ
ideal

(a|s) is the

action selection probability that only one action will be selected
and was obtained as follows. First, the ideal policy, Qideal(a|si),
was obtained by setting the largest value within Q(a|si) to 1 and
the other values to zero. For example, if theQ(a|si) were, {0.1, 0.4,
0.2, 0.1}, the Qideal(a|si), would be set to {0, 1, 0, 0}. Thereafter,

the Pπ
ideal

(a|s) was calculated from Qideal(a|si) using the softmax
function in Equation (3). For comparison, another KLD was
calculated, as described below (step 3):

D_KLDsi

(

Pπ
mean,Nupdate,si

(a|si)||P
π
ideal(a|s)

)

≡
∑

j

Pπ
mean,Nupdate,s

(

aj|si
)

log
Pπ
mean,Nupdate,s

(

aj|si
)

Pπ
ideal

(

aj|s
) (7)

We called this the Decision-uniqueness KLD (D_KLD). When
the D_KLD was below the criterion for a preference for
deterministic action selection, η (step 4),

D_KLDsi < η (8)

the agent had uniquely selected an action for state si, and the
Q-table was not expanded any further. η was set to 3, the
median of the range between values of > 1 and < 5, which
produced fair performance revealed by the parameter search (see
Figure 6). When the D_KLD did not meet the criterion, it was
also compared to the parent D_KLD (step 5), defined as the
D_KLD of the parent state from which the current state si had
been expanded (e.g., Figure 3B). In step 6, when the D_KLD is
judged to be less than its corresponding Parent D_KLD, as in
Equation (9),

D_KLDsi < Parent D_KLDsi + bias (9)
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FIGURE 3 | Expansion and contraction of the state space. (A) Flowchart of

the expansion and contraction process. (B) An example of state expansion

derived from a parent state in Q-table. The direction of the arrow represents

the target that the agent looked at, and o and x represent the correct answer

and error, respectively. The example in the figure shows that a new state is

generated from the state that the agent looked at LD and was rewarded one

trial ago, to the state that it looked at LD and was rewarded one trial ago after

it looked at RD and was rewarded two trials ago. The numbers in the Q-table

represent Q-values. The initial Q-value for each action is set to 0.5.

the D_KLD value is saved as the parent D_KLD, and the state is
expanded as depicted in the Q-table of Figure 3B (step 7). That
is, the new state (child state) is the combination of the parent
state and the state of one more previous trial to which the parent
state refers. In the schematic example in Figure 3B, a new state
is generated from the state that the agent looked at LD and was
rewarded one trial ago, to the state that it looked at LD and was
rewarded one trial ago after it looked at RD and was rewarded
two trials ago. The initial Q-value for each action is set to 0.5. On
the other hand, if Equation (9) does not hold, the current state
being processed (see flowchart in Figure 3A) is pruned (step 6’).
When the current state consists of only the previous one trial, it
is not erased because there is no parent state with which it could
be compared. The bias is set to be −1 in all calculation except in
the case shown in Figure 9.

Models Used for Comparison
In the Results section, we compare our dynamic state model with
three models with state spaces of fixed sizes. The first model was
called the fixed 4-state model, the state space of which consisted
of four elements. In other words, this model selected the next
action based on the previous four possible actions, ignoring their
reward outcomes. We called the second model the fixed 8-state
model, which had a state space comprising eight elements, that is,
the combination of four actions and their outcomes (i.e., correct
or error) from the previous trial. In any case, since the action
selection in these two models was based only on the previous
one trial, they did not show good performance in the two-target
search task. By contrast, as the best model for the two-target
search task (because it assumed that the task structure was known
and made decisions based on the actions and reward outcomes
of the last two trials), the “fixed 8by8-state model” was used to
evaluate the performance of our dynamic state model.

For further comparison, we also created a simple POMDP
model (Thrun et al., 2005). The model referred only to the
action of the previous one trial and its reward outcome (eight
total cases). Instead, to estimate the current valid pair, the belief
for each target pair (i.e., right [R], left [L], up [U], and down
[D] pairs; Figure 2B) was calculated. Specifically, the value of
the belief, bk, about the pair k inferred from the previous gaze
(e.g., the R pair and U pair in the case of RU) was increased or
decreased depending on the reward outcome, while normalizing
the total of the beliefs to 1. Because the above-mentioned eight
cases existed for each of the four possible pairs, the Q-table
consisted of 32 total rows. Then, the composite Q-value was
obtained as

4
∑

k

bkQk(si, aj) (10)

the sum of the 4 rows within the Q-table corresponding to the
previous state si, weighted by the relevant belief bk. The next
action was selected by substituting the composite Q-value into
the softmax function (3). The Q-value for the selected action aj
and each belief bk was updated using the reward prediction error
δk, as in Equation (2), multiplied by the learning rate and belief,
αbkδk

(

si, aj
)

.
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FIGURE 4 | Changes in the proposed model with learning. (A) Time course of the correct response rate and comparison with fixed state models. (B) Increase in the

number of states. (C) Changes in the states referred to in each action selection. (D) Analysis of the model’s behavior during the second trial of the exploration phase.

“c” and “e” denote correct and error response, respectively. (E) Enlarged view of the 0–15% area of the select rate in (D).

We also compared the proposed model with iHMMs, which
hierarchically use a Dirichlet process as models to dynamically
generate states based on history without prior knowledge
(Supplementary Figure 2A). The model starts from the base

state, which has no defining conditions, and probabilistically
generates new states (Supplementary Figure 2B). As in the
proposed model, states other than the base state consist of
combinations of previous actions and their reward outcomes.
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FIGURE 5 | Effects of threshold modulation of experience saturation. Formats are identical to Figure 4. (A) Correct response rates. (B) Corresponding number of

states. (C,D) States referred to in each action selection (C) and analysis of the model’s behavior in the second trial of the exploration phase (D) at a low value of ζ =

10−9. (E,F) Same plots as (C,D) for a high value of ζ = 10−3.
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FIGURE 6 | Effects of threshold modulation of the degree of decision uniqueness. Formats are identical to Figure 5. (A) Percentage of correct answers. (B) Changes

in number of states. (C,D) States referred to in each action selection (C) and the model’s behavior in the second trial of the exploration phase (D) at a low value of η =

1. (E,F) Same plots as (C,D) for a high value of η = 5.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 February 2022 | Volume 15 | Article 784592

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Katakura et al. Dynamic State Reinforcement Learning Model

FIGURE 7 | Effects of modulation of learning rate. Formats are identical to Figures 5, 6. (A) Percentage of correct answers. (B) Changes in number of states. (C,D)

States referred to in each action selection (C) and the model’s behavior in the second trial of the exploration phase (D) at a low value of α = 0.02. (E,F) Same plots as

(C,D) for a high value of α = 0.8.
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FIGURE 8 | Effects of modulation of inverse temperature in the softmax function used for action selection. Formats are identical to Figures 5–7. (A) Percentage of

correct answers. (B) Changes in number of states. (C,D) States referred to in each action selection (C) and the model’s behavior in the second trial of the exploration

phase (D) at a low value of β = 3. (E,F) Same plots as (C,D) for a high value of β = 11.
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FIGURE 9 | Effects of the presence or absence of the parent–child comparison bias. (A,B) Percentage of correct answers (A), and changes in the number of states

(B) in the two-target search task. (C,D) The same plots for the four-armed bandit task. The number in each circle in the inset of C represents the reward probability for

each target. (E,F) The same plots for the alternative version of the four-armed bandit task. This version includes the two targets with the highest reward probabilities,

as shown in the inset in (E).
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Nodes consisting of an action and its result of one previous
trial are generated directly below the base state. Below
these nodes are nodes that refer to the information of the
last two trials. As the tree further branches downward, the
number of trials to be referred to increases. The Chinese
restaurant process was used to implement the Dirichlet process
(Supplementary Figures 2C,D) (Teh et al., 2006). Tables (filled
tables in Supplementary Figures 2C,D) were prepared for
each of the four possible actions, at each of which guests
were seated (represented by the people with filled heads in
Supplementary Figures 2C,D). If the executed action is correct,
a new guest will be seated at the table. In a state si, each action aj
is selected with the following probability, where gj is the number
of guests seated at the corresponding table:

P
(

aj|si
)

=
gj

∑4
k gk + λ

(11)

The new state (child state), which considers one more previous
trial, is generated from the current state (parent state) with the
following probability:

λ
∑4

k gk + λ
(12)

where λ is the concentration parameter. In the Dirichlet process
version (Supplementary Figure 2C), the initial child state has
one unique guest (presented by a person with a brank head
in Supplementary Figure 2C) in each action table, i.e., there is
a uniform distribution. On the other hand, in the hierarchical
Dirichlet process (Supplementary Figure 2D), the initial value of
the child state is given by the distribution of the parent state. The
latter is more popular, however, the former method was also used
for a fairness of comparison, because in the proposed model, the
child state does not inherit the Q-value of the parent state for
evaluating the amount of learning (see Figure 13). In contrast
to the proposed model, these two iHMMs are vulnerable to the
parameter λ. After preliminary calculations, we selected 0.2 as the
λ value, where the Dirichlet process version performed closest
to the proposed model (see Figure 12). Similar to the proposed
model, the end of the tree, i.e., the state referring to a large
number of trials, was preferentially used for action selection. If
the selected action was incorrect, the guest was removed from
the table, and the state including a guestless table was pruned.
However, state pruning was not observed in the simulation.

Supplementary Explanation of the
Two-Target Search Task
In the two-target search task that the animals actually performed,
each trial consisted of a sequence of events of 500ms in duration,
including a fixation period. However, for simplicity, in the
present study, one time step of calculation was set to one trial (i.e.,
a combination of events in which the agent takes an action and
obtains its reward outcome). When an incorrect spot was chosen,
the same trial was repeated until the correct target was found.
The valid pair was switched pseudo-randomly. The number of
consecutive correct trials required before the valid-pair switch

was set to seven, as in our previous physiological experiments
involving monkeys.

RESULTS

Performance of the Proposed Model
In Figure 4A, we show the changes in percentage of correct
responses from the start of learning of the models. The fixed
8by8-state model is the ideal learner for the two-target search
task, i.e., with 8×8 = 64 states, so it quickly learned the current
pair and obtained a high correct response rate, with the upper
limit close to the theoretical value. On the other hand, the fixed
8-state model has only eight states, which are the combination
of the gaze action and its reward outcome on the previous
trial. In the two-target search task, even if the correct answer is
obtained by looking at one target, two targets might be correct
in the next trial. In this sense, the fixed 8-state model is not an
ideal learner for the two-target search task. In fact, the correct
response rate was not as good as the fixed 8by8-state model.
Our proposed dynamic state model exhibited a slower increase
in the correct response rate than the fixed 8by8-state model, but
its performance was comparable to that of the ideal model after
approximately 20,000 trials.

The state was expanded based on experience saturation and
action decision uniqueness. The number of states of the dynamic
state model showed a change corresponding to the change in the
correct response rate (Figure 4B). At the very beginning of the
learning process, the dynamic state model had the same eight
states as the fixed 8-state model, but the number of states began
to increase rapidly around the 3,000th trial; by the time the
correct response rate was comparable to that of the fixed 8by8-
state model, the number of states had almost stopped increasing.
Microscopically, there were also many places where the number
of states slightly decreased, which indicates that the model was
appropriately pruning unnecessary states. The fact that the final
number of states did not exceed 8 + 82 = 72 (dashed line
in Figure 4B), which means that the model refers to less than
three trials, indicates that the model appropriately expands and
contracts the number of states. Figure 4C shows the number of
former trials that the model referenced for action selection. The
fact that it did not refer to more than two trials indicates that the
number of states is not expanded more than necessary.

The increase in performance with learning of the dynamic
state model is thought to correspond to an increase in
sophisticated searching for novel target pairs during the
exploration phase. To examine this, we analyzed where themodel
looked during the second trial of the exploratory phase (see
Figure 2A). Figure 4D shows that, in the second trial of the
exploration phase, as the correct response rate increased, the
model had a high probability of looking at the diagonal side of the
incorrect gaze during the first trial of the exploration phase (“e”
in Figures 4D,E); below, this will be referred to as the diagonal
spot in the second trial of the exploration phase. This choice of
diagonal gaze is reasonable; a valid pair always comprised two
neighboring spots, so if the agent correctly answered two trials
ago and incorrectly one trial ago, then the probability was high
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that the other neighboring spot of the correct target two trials
ago (“c” in Figures 4D,E), i.e., the diagonal side of the spot that
was incorrect one trial ago, was the correct answer. The behavior
of this model was also in good agreement with the behavioral
results from our monkey experiments (Figure 3 of Kawaguchi
et al., 2015). This sophisticated behavior during the exploration
phase means that the model did not stick rigidly to the most
recent valid pair, nor did it suddenly “roll a die.” In other words,
in the dynamic state model (and the ideal model, i.e., the fixed
8by8-state model), and in monkeys that perform the two-target
search task, exploration and exploitation are not in a trade-
off relationship; rather, the models and monkeys learned how
to search.

Looking back at Figure 4B, we can see a step-like increase
in the number of states after the 60,000th trial, although
the correct rate did not considerably differ (Figure 4A). This
corresponded to a decrease in access to the state that considers
only the previous trial (Figure 4C). In more detail, during
this period, access to the “correct answer two trials ago →
incorrect answer one trial ago” state increased instead of the
“incorrect answer one trial ago” state. This step-like increase
was reflected in a slight increase in the diagonal gaze in
the second trial in the exploration period (Figure 4D) due
to further refinement of the exploration behavior. Figure 4E
shows an enlargement of the lower part of Figure 4D. Notably,
the probability of gazing at spots other than the diagonal
spot decreased further in the second trial of the exploration
period after approximately 60,000 trials, although variation was
observed in each line.

Determination of the Ranges of
Meta-Parameters for Desirable Model
Performance
Our dynamic state–space model showed good performance in
a sufficiently wide range for each of the ζ , η, α, and β meta-
parameters. Below, we will show how the model behaves beyond
and below the default range.

When the criterion for experience saturation ζ was set lower
than the default value of 10−6, the increase in the correct rate was
delayed.When ζ was 10−9, the rate of correct answers was similar
to the rate of correct answers for the fixed 8-state model (dark
purple line in Figure 5A). Similarly, the number of states stayed
at eight for an extended period and finally began to increase
after 80,000 trials (dark purple line in Figure 5B). Notably, this
corresponded to the persistence of the period in which the model
referred only to the previous one trial (Figure 5C). In the second
trial of the exploration period, the rate of gazing at the spot
diagonally opposite the spot gazed at during the first trial was
also low (red line in Figure 5D). In contrast, when ζ was set
higher than the default value, the number of trials referenced
exceeded two, while the correct rate did not substantially change.
When ζ was set to 10−3, the rate of correct responses was only
slightly lower than when ζ was set to the default value, and the
gaze pattern in the second exploratory trial was similar to the
default gaze pattern (Figure 5F). However, the number of states
that increased faster than the default was limited but exceeded

8 + 82 = 72 (light purple line in Figure 5B); indeed, the results
of the last three trials were referenced with a small but distinct
probability (dotted line in Figure 5E).

The excessive expansion and de-expansion of the number
of states observed above was also obtained by varying the
threshold for the degree of decision uniqueness. When η was
set to 1, which was smaller than the default value, the correct
response rate was similar to the correct response rate with the
default value (yellow line in Figure 6A); however, the number
of states increased rapidly over the 100,000 trials (yellow line
in Figure 6B) and the rate of referring to the results of the last
three trials continued to increase (dotted line in Figure 6C).
Associated with the increase in this rate, the rate of diagonal
gaze in the second trial of the exploration phase deteriorated (red
line in Figure 6D). In contrast, when η was set to 5, a larger
value than the default, the percentage of correct responses (brown
line in Figure 6A), number of states (brown line in Figure 6B),
number of immediate trials referenced (pink line in Figure 6E),
and behavior during the second trial of the exploration period
(Figure 6F) were all identical to the findings in the fixed 8-
state model.

We also examined the effects of changing the learning rate α, a
conventional meta-parameter for reinforcement learning. When
α was set to the lowest possible value (0.02), the correct response
rate was slightly lower than the rate observed with the default
value (light blue line in Figure 7A), the number of states was
limited but exceeded 8 + 82 = 72 (light blue line in Figure 7B),
the last three trials were referenced at a low but nearly constant
rate (dotted line in Figure 7C), and the diagonal spot was gazed
at frequently in the second trial of the exploration period (red
line in Figure 7D). However, the highest value (α = 0.8) showed
a peculiar property not described above. In particular, the correct
response rate was higher than in the fixed 8-state model but
lower than in the dynamic state–space model (dark blue line
in Figure 7A). The number of states also increased, although it
was lower than in the dynamic state–space model (dark blue line
in Figure 7B). Importantly, the rate at which only the previous
trial was referenced did not substantially decrease (pink line
in Figure 7E), although the last three trials were rarely but
sometimes referenced (dotted line in Figure 7E). Therefore, the
diagonal gaze rate did not increase enough in the second trial of
the exploration period (red line in Figure 7F).

The effects of varying the inverse temperature β in the softmax
function for action selection were as follows. When β was
lowered from the default value to 3, the correct response rate
(dark green line in Figure 8A), number of states (dark green
line in Figure 8B), number of immediate trials referenced (pink
line in Figure 8C), and the behavior during the second trial
of the exploration period (Figure 8D) all exhibited the same
properties as observed in the fixed 8-state model. However, when
the inverse temperature was increased to 11, i.e., beyond the
range of desirable results, the increases in the correct response
rate (light green line in Figure 8A), number of states (light green
line in Figure 8B), rate referencing the last two trials (red line in
Figure 8E), and rate of diagonal gaze during the second trial of
the exploration period (red line in Figure 8F) were not bad, but
delayed compared with the default case.
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In the calculations of the present model, a relatively strict
criterion was set for state expansion. That is, we used a bias
when comparing the D_KLD values of the parent and child
states (Equation 9). If the degree of decision uniqueness of the
child state was not significantly improved over that of the parent
state, the child state was pruned. However, when learning the
two-target search task, the percentage of correct responses in
the absence of a bias (black line in Figure 9A) was comparable
to the high percentage in the presence of a bias (red line in
Figure 9A). As expected, in the absence of a bias, the number of
generated states increased, although not constantly (black line in
Figure 9B). These results indicate that the default values of the
four above-discussed meta-parameters have high validity.

To check the generality and applicability of the default
values of the meta-parameters, we ran a four-armed bandit
task and examined model performance. In the bandit task,
four targets used in the two-target search task were assigned
distinct reward probabilities (Figure 9C inset).When the optimal
target selection was uniquely determined, i.e., when there was
a single target with the largest reward probability (Figure 9C
inset), the model quickly learned the behavior that yielded
the largest correct response rate, regardless of the presence or
absence of a bias (Figure 9C). In this case, the number of states
remained minimal (determined as 8, depending on the model
configuration; Figure 9D). The model learned to select only the
target with the maximum reward probability and thus did not
expand the number of states. The performance indicates that our
model, and the values of the meta-parameters used therein, are
generally and broadly applicable.

When there were multiple targets with the maximum reward
probability (in this case, two: Figure 9E inset), the correct
response rate was high (70%) in the presence or absence of a bias
(Figure 9E), while the change in the number of states differed
greatly between cases with and without a bias (Figure 9F). In the
presence of a bias, the number of states did not exceed 72, and
fewer than three trials were referred to. This result is generally
plausible. In the bandit task, where there is no history of reward
probabilities, referencing up to two trials does not improve the
uniqueness of the action decision over the parent state, where
only the last trial is referenced. After the eight states referring to
the previous trial (which are not pruned according to our model)
are saturated with experience, the states referring to the previous
two trials are repeatedly generated and pruned. The behavior of
the model without a bias is also reasonable. In the absence of a
bias, child states are not pruned if their decision uniqueness is
nearly equal to but slightly less than that of their parent state.
Therefore, the model refers back to increasingly larger numbers
of trials in search of a state that can deterministically select
its action. The question of whether it is better to have bias is
addressed in the Discussion section.

Adaptability to an Unexpected Behavioral
Task
We examined the adaptability of the model to unexpected
situations and found that our proposed dynamic state model
adapted to unexpected changes in the task requirements. We

trained the fixed 8by8-state model, which is an ideal model
for the two-target search task, and also the dynamic state
model to perform a three-target search task that has not
been attempted in monkeys (Figure 10). In this task, three
of the four spots were the correct targets in a clockwise or
counterclockwise order; the valid three-spot set was switched
after seven consecutive correct trials, as in the two-target search
task. Although there was no significant difference between the
two models until after 100,000 trials (Figure 10A), Figure 10B
shows that the dynamic state model steadily increased its
number of states. As the number of trials increased, the fixed
8by8-state model showed no increase in the correct rate,
while the dynamic state model demonstrated a steady increase
(Figure 10C) due to the increase in the number of states
(Figure 10D). Although the rate of increase in the number of
states slowed compared with the rate during the first 100,000
trials, the increase continued after the millionth trial (data
not shown).

We also created a simple POMDP model that was intended
to perform well in the two-target search task. The model
inferred which pair was currently the valid pair, although
it only referred to the previous trial. As expected, the
model performed in a manner comparable with the dynamic
state model for the two-target search task (Figure 11A).
However, in the three-target search task, the POMDP model
showed lower performance than did the dynamic state model
throughout the first 100,000 trials (Figure 11B); unlike the
dynamic state model, the POMDP model did not show
any improvement after nearly one million training trials
(Figure 11C).

Furthermore, we compared our models with other
iHMMs that also generate arbitrary numbers of states
without prior knowledge of the two-target search task
(Supplementary Figure 2). Figure 12 shows the time
dependences of the correct response rate (Figures 12A,D,H),
number of states (Figures 12B,E,I), and cumulative pair
switching counts (Figures 12C,F,J) when the proposed
model, Dirichlet version of the iHMM, and hierarchical
Dirichlet version of the iHMM were trained five times each
on the two-target search task. The proposed model showed
stable and good performance in the two-target search task.
The change in correct response rate was almost ideal (over
approximately 20,000 trials) in all five calculations (Figure 12A).
Correspondingly, the number of states increased rapidly
but did not exceed 8 + 82 = 72, which corresponds to the
case of referring up to two trials (Figure 12B). The model
exhibited smooth pair switching, and after 100,000 trials,
achieved over 7,000 pair switches with good reproducibility
(Figure 12C).

The Dirichlet model also exhibited ideal trends in correct
response rates (Figure 12D). However, in some cases,
performance declined rapidly during the learning process,
once every few calculations (pale red area in Figure 12D,
indicated by a bold arrow). In many cases, the number of
states continuously increased. Consequently, 600–800 states
that are unnecessary to perform the two-target search task were
generated (Figure 12E). In contrast, in some cases, the model
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FIGURE 10 | Changes in the proposed model as it learned a three-target search task and comparison with the fixed 8by8-state model. (A) Correct response rate for

the first 105 trials. (B) Increase in the corresponding number of the states. (C) Correct response rate for the 9 × 105th trial to the 106th trial. (D) Corresponding

number of states.

failed to increase the number of states (shown by the pale red area
in Figure 12E, also indicated by a bold arrow). This calculation
example achieved very little pair switching (Figure 12F pale
red line with a filled arrow). In the other examples, the model
steadily increased the cumulative count of pair switches, but
did not show the same reproducibility as the proposed method
(Figure 12F). In the example calculation of poor performance
shown in Figures 12D–F as pale red lines, sharp variation existed
in the number of reference trials (Figure 12G).

The Dirichlet model was compared with the proposed model,
which used a neutral initial Q-value of 0.5 (see Figure 3B) when
a new state was generated. For fairness of comparison, a neutral
distribution was used in the Dirichlet model (see Method and
Supplementary Figure 2C) as the initial value when a new state
was generated. In contrast, the hierarchical Dirichlet models,
which is more common than the Dirichlet model, inherit the

parent distribution when a new state is generated, as schematized
in Supplementary Figure 2D. Figures 12H–K show the results
of the hierarchical Dirichlet model. The model exhibited a
generally slower increase in the correct response rate than the
above two models, but the rate became high near 100,000 trials
(Figure 12H). We also encountered a calculation case where
the correct rate deteriorated rapidly (Figure 12H, pale blue line
indicated by a blank arrow). As expected, the increase in number
of states was, in general, much smaller than that of the Dirichlet
model (Figure 12I), because new states inherit the experienced
distribution of their parents; consequently, the probability of
generating a new state was low. Also, as in the Dirichlet
model, the increase in the number of states was significantly
smaller in the calculations that showed poor performance
than in the other calculations (pale blue line in Figure 12I

indicated by open arrows). Overall, the cumulative count of
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FIGURE 11 | Comparison between the proposed model and the POMDP model. (A) Correct response rate in the two-target search task. (B,C) Correct response

rates in the three-target search task for the first 105 trials (B) and for the 9 × 105th to the 106th trials (C).

pair switches decreased significantly (Figure 12J), whereas the
example defective calculations also exhibited almost no pair
switches (pale blue line in Figure 12J). The example denoted
by the pale blue line of Figure 12I had fewer than 72 states,
but this does not mean that only the last two trials were
referred to. Figure 12K shows the time evolution of the referred
state exhibited by the defective calculation example denoted
by the pale blue lines in Figures 12H–J. The model frequently
took states that refer to more than two trials (dotted line in
Figure 12K), which implies that a large number of states referred
to more than two trials and an insufficient number of states
referred to the optimal two trials on the two-target search task.
Moreover, Figure 12K shows that the states referring to one,
two, and three or more trials were rapidly switched during
training, which differs from the stable behavior of the proposed
model (Figure 4C). In conclusion, the Dirichlet and hierarchical
Dirichlet models show not bad but unstable performance, in
contrast to our proposed model.

Exploration–Exploitation Trade-Off
The balance or trade-off between exploration and exploitation
is recognized as a major challenge in reinforcement learning
(Sutton and Barto, 1998). To maximize the total reward amount
when executing a task, agents should neither rely very rigidly on
their prior successful experiences (exploitation) nor select actions
in an excessively arbitrary manner (exploration). The two-
target search task includes exploration and exploitation phases.
Therefore, our task is suitable for studying the exploration–
exploitation trade-off problem by examining the relationship
between the amount of learning in the model and the
perseverative tendency with respect to the previously valid pair.

To examine this trade-off problem, we obtained the
correlation between the total amount of learning at the time of a
valid-pair switch and the number of consecutive trials for which
the action adhered to the most recent valid pair (Figure 13). The
correlations were calculated from the 50,000th to the 100,000th
trial, when the correct response rate was considered sufficiently
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stable based on Figure 4A. The initial value of Q for each state
was set to 0.5, so the total learning was defined as the sum of the
absolute values of the differences from 0.5 within the Q table. For
example, if the model has four states, {0.1, 0.7, 0.2, 0.6}{0.1, 0.7,
0.2, 0.6}{0.1, 0.7, 0.2, 0.6}{0.1, 0.7, 0.2, 0.6}, the total amount of
learning is (|0.1 – 0.5| + |0.7 – 0.5| + |0.2 – 0.5| + |0.6 – 0.5|) ×
4 = 4. In the fixed 4-state model, the state is based only on what
was seen in the previous trial, i.e., the result is not considered
(Figure 13A). This model naturally had a low rate of correct
answers (data not shown) and, as a result, the number of pair-
switching trials was as low as 904 in this calculation example. The
number of trials with perseveration was also high (up to 20), and
a stronger correlation between the total amount of learning and
this number (r = 0.19) was observed than in the models shown
in Figures 13B,C. This indicates that, in the fixed 4-state model, a
high total amount of learning was associated with more difficulty
in switching to exploratory behavior. In other words, there was a
trade-off between exploration and exploitation.

However, in the fixed 8-state model (Figure 4A), in which
the choice of action was based not only on the action of the
previous trial but also on the result thereof, as well as the number
of trials with perseveration, the correlation between the total
amount of learning and this number was also greatly reduced
(r = 0.0021; Figure 13B). However, the number of valid-pair
switches did not significantly increase (n = 973), because this
model required a large number of trials to obtain a deterministic
behavioral decision.

The dynamic state also allowed the model to avoid the
exploration–exploitation trade-off. In our proposed model,
although the total amount of learning increased with the number
of states, the number of trials with perseveration decreased
further, and the number of valid-pair switches increased
dramatically (n = 3,916). Concerning the correlation between
the total amount of learning and the number of trials with
perseveration, a small, or even negative, value was found (r =
−0.025; Figure 13C). These results indicate that by including
the results of the action in the state, the models learned how
to take an action when they made a mistake—they learned how
to explore.

DISCUSSION

In this study, we developed a reinforcement learning model
with a dynamic state space and tested its ability to execute a
two-target search task in which the exploration and exploitation
phases alternated. To obtain a high score in this task, it is
necessary to select an action according to the actions and
reward outcomes of the two previous trials. The proposed
model was able to dynamically and reproducibly expand and
contract the state space based on two explicit criteria for the
appropriateness of state expansion: experience saturation (ζ ) and
a preference for deterministic action or decision uniqueness (η).
Thus, it demonstrated high performance, comparable with the
performance of an ideal model with a fixed state space specific
to the task, although it did not have a state space suitable
for the task in advance. In addition, regardless of a behavioral

task structure that was not assumed a priori, the proposed
model exhibited an improvement in performance that could
not be achieved with the fixed state model described above.
Furthermore, by learning how to explore during the exploration
phase, the proposed model did not exhibit a trade-off between
exploration and exploitation.

Validity of the Proposed Model
As shown in the behavioral analysis in Kawaguchi et al. (2015),
monkeys were smart enough to learn to switch their behavior
reflecting their own previous actions and their results (Shima and
Tanji, 1998), rather than to learn by trial and error which spots
to look at each time the correct target is changed. Therefore, it
was necessary for the foundation of the proposed model, or the
main models for comparison to highlight the characteristics of
the proposed model (specifically, the Fixed 8by8-state model and
the Fixed 8-state model), to have the actions taken by the subject
and their results as the states. It may not be the usual manner in
the field of reinforcement learning to define the state space the
same as the action space. The state space usually corresponds to
perceptual information, which in the case of Figure 2A would be
the single state of presentation of the four white spots. However,
it is obvious that the performance of a model using such a single
state that learns to shift its gaze by trial and error is far less than
that of monkeys, and discussions based on such a model are not
fruitful. Furthermore, even if the action space into the state space
were to be incorporated, the majority of RL researchers would
use four states, that is, states based on the definition of “seeing
one light spot among four identical stimuli” in the case of the
two-target search task, rather than using eight states that themain
models in this study based on. In fact, because we understand this
point, we also showed calculations in Figure 13A for the model
including the fixed four states. However, there is not much to
be gained by using that model as the main comparison for the
proposed model, for the same reason as mentioned above.

The dynamic state model performed as expected. Analysis
of the state space dynamics (shown in Figures 4B,C) revealed
that the model appropriately handles state space, which it readily
expands or contracts. The performance in the multi-armed
bandit task (Figures 9C–F) also indicates that the model did not
extend states if their decision uniqueness is not better than that
of their parent states. The dynamic state model is also robust.
The model meta-parameters (α, β , ζ , and η) have a sufficiently
wide range to enable the model to perform well (Figures 5–8).
Even without the bias of parent–child comparison, the model still
produces a high correct rate (Figure 9A) and a slightly high, but
limited, number of states (Figure 9B) in the two-target search
task, while it shows high correct rates (Figures 9C,E) and the
expected numbers of states (Figures 9D,F) in the multi-armed
bandit tasks.

The proposed model has an intrinsically greater ability to
adapt to an indefinite environment, compared with the POMDP
model requiring prior assumption at least for the probability
space. Indeed, in the two-target search task, the POMDP model
showed a high correct rate by estimating the current valid
pair given as prior knowledge, although it only referred to the
previous trial (Figure 11A). However, in the three-target search
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FIGURE 12 | Comparison of the proposed model and the iHMMs in terms of the reproducibility of two-target search task learning. (A–C) Time courses of the correct

response rate (A), increase in number of states (B), and increase in the cumulative number of target pair-switches (C) exhibited by the proposed model. (D–F)

Identical plots of the Dirichlet process version of the iHMM (see Supplementary Figure 2C). (G) Changes in states with each action selection in the calculation

example indicated by the filled arrows in (D–F). (H–J) Identical plots of the hierarchical Dirichlet process version of the iHMM (see Supplementary Figure 2D). (K)

Plot identical to G for the calculation example indicated by the blank arrows in (H–J). The same color in the simulations of each model denotes the same calculation.

task, where prior knowledge of the valid pair was irrelevant,
our dynamic state model performed much better than did the
POMDP model (Figures 11B,C).

The iHMMs illustrated in Figure 12 are probably the closest
to the proposed model, as they do not require the assumption
of prior knowledge of the environment. These models follow the
Dirichlet process and dynamically expand the state according
to the history of each action taken in the state. However,
unlike the proposed model, there is no explicit criterion for
determining the appropriateness of state expansion; therefore,

the state is not always easily expanded when it should be, and
may be easily expanded when it should not be. As a result,
the number of recent trials referred to in the action decision
is unstable (Figures 12G,K), resulting in less reproducibility of
the correct response rates (Figures 12D,H), a higher number of
states (Figure 12E), and a low reproducibility in the cumulative
number of pair-switches (Figures 12F,J) in the two-target search
task compared with the proposed model. Decision uniqueness
provides the purpose of state expansion, and experience
saturation determines the timing of state expansion. These two
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FIGURE 13 | Analysis of the exploration–exploitation trade-off problem. (Left

column) Amount of learning at the end of the last exploitation phase (abscissa)

and the number of consecutive trials during which the model exhibited an

action that persisted from the previous valid pair (ordinate). (Right column)

Histograms of trials with perseveration as a percentage of the total number of

trials. (A) Fixed 4-state model. (B) Fixed 8-state model. (C) Proposed model.

criteria regulate the appropriateness of state expansion, resulting
in flexible and stable model performance.

Decision uniqueness is related to an orientation toward
causal determination or causal attribution (Heider, 1958; Kelley,
1967, 1973). To our knowledge, no published models consider
experience saturation and a preference for deterministic action
or decision uniqueness in reinforcement learning, although it is
quite reasonable to assume them. For example, doctors clearly
require sufficient study and experience to be able to properly
diagnose patients; doctors would never roll the dice, despite
encountering a patient who is difficult to diagnose. Each doctor
would consult his or her colleagues and study relevant literature
to make a specific, unique decision. The validity of decision
uniqueness is supported by behavioral studies: this orientation
has also been found in children (Schulz and Sommerville, 2006);
Rodents recruit contextual information from the environment
to uniquely determine the meaning of ambiguous CS (Fanselow,
1990). Furthermore, experience saturation is related to boredom,
which is the counterpart to curiosity. In non-human primates,
extensive experience with a task can lead to boredom (Harlow,
1950), as often observed by researchers who train monkeys to
execute behavioral tasks.While it may be undesirable for artificial
intelligence to exhibit “boredom,” this phenomenon is very
common in humans. The drive toward state–space expansion
based on these two criteria is an expression of curiosity; it reflects
a tendency to deepen one’s understanding of the environment.

Implications of the Model’s Behavior
Figure 4B shows a step-like increase in the number of states at
approximately 60,000 trials. This corresponds to an increase in
the diagonal gaze rate and a decrease in other gaze rates in the
second trial of the exploration period (Figures 4D,E). However,
these changes were slight, as were changes in the correct response
rate (Figure 4A). The contrast between this small change and
the rapid increase in the number of states is intriguing. This
contrast may indicate that learning is not solely determined by
environmental factors through correct and incorrect answers;
it also reflects a process of refinement and maturation within
the model. This observation may mean that, for example, each
professional athlete appears to have a much higher level of
knowledge and experience of the game, compared with amateurs;
however, behind the slight differences in skill that determine who
wins and loses lie large differences between players in terms of
knowledge and experience.

The behavior of the model in response to outlier values of
the meta-parameters is also important to note (Figures 5–8).
When the criterion for experience saturation ζ is too low, the
model tries to obtain more information from the existing state
and thus does not expand the state space (dark purple line in
Figure 5B). Conversely, when ζ was too high, the model easily
gained what it considered sufficient information, the number of
states generated was somewhat higher than the minimal required
number (i.e., 72), though there was no uncontrollable increase in
it (light purple line in Figure 5B). These findings indicate that
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neither insatiable learners nor learners who become too easily
bored are ideal.

Somewhat similarly, if η was too low, even a Q-table with
a sufficient preference for a single action was not regarded as
deterministic and the state space was over-expanded to refer to
the last three trials (yellow line in Figure 6B), though the correct
rate itself was almost ideal. By contrast, if η was too high, the
unique action selection was compromised, resulting in only eight
states being retained, and thus referring to only the previous trial
(brown line in Figure 6B). These observations may indicate that
if learners try to decide things in an excessively strict manner,
they may become mired in the tiny details of the situation; if
learners are excessively irresponsible, they will not achieve a
correct understanding of the environment.

The behavior of the model with outliers in the inverse
temperature β of the softmax function can be understood in a
manner similar to the case of η (Figure 8). If β was insufficient,
the model chose actions randomly (i.e., in an irresponsible
manner), which did not improve its understanding of the
environment. Conversely, if β was excessive, the model persisted
in certain actions, which limited the speed of its environmental
understanding. Notably, the situation differed for the learning
rate α (Figure 7). In particular, when the learning rate was
high, the model learned the new valid pair quickly after pair
switching, which did not lead to a good understanding of the task
structure. This suggests that quick learners do not understand
things deeply.

The bias in the parent–child comparison with a value of
−1 suppresses the explosion in the number of states. Indeed,
in the absence of a bias, the number of states is limited but
more than the minimum required number (72) in the two-
target search task, although there is no difference in the correct
rates. In this sense, a bias is beneficial to the two-target search
task. Given the change in number of states in the alternative
version of the four-armed bandit task (Figure 9F), we consider
whether it is preferable to have a bias. In the presence of a
bias, increasing the number of states referring to the last two
trials does not improve decision uniqueness; therefore, those
states are pruned. However, this cannot handle the case where
an action can be uniquely determined only after the last three
or more trials have been considered. In contrast, in the absence
of a bias, state expansion does not stop while the state is
comparable to its parent state in terms of decision uniqueness.
Therefore, when the task is essentially stochastic, as in this bandit
task, it is not possible to stop state expansion. An intermediate
method between the two is needed, which should be addressed in
the future.

Relationship of the Proposed Model to
Related Works
The hierarchical Dirichlet model, which is compared with
the proposed model in Figures 12H–K, is useful for language
recognition problems, such as word estimation in sentences
and word segmentation in Chinese and Japanese (Mochihashi
and Sumita, 2007; Mochihashi et al., 2009). This model shows
unstable performance in the two-target search task compared

with the proposed model, although it often exhibits good
performance. However, the rapid expansion of the state in the
hierarchical Dirichlet model seems to be useful in problems such
as language recognition, where the number of samples must be
small, unlike the two-target search task where tens of thousands
of trials can be sampled. The two criteria for the appropriateness
of state expansion used in the proposed model are somewhat
strict; if similar but more relaxed criteria are incorporated
into the iHMM for language recognition processing, the model
performance may improve.

As a learning architecture using KLDs, the free-energy
principle has recently attracted considerable attention (Friston,
2009, 2010; Friston et al., 2009). This principle infers hidden
variables in the environment such that free energy is minimized;
specifically, predictions are maximized while allowing learners
to actively work on the environment. KLD is used to maximize
predictions; therefore, the computation aims to make no better
predictions. This corresponds to the calculation of experience
saturation in our model. It also may include active perceptual
behavior (e.g., moving the eyes) to maximize prediction,
which is consistent with our own behavior. However, this
method is similar to the POMDP method in that it includes
estimation of uncertain states, and the possible states are
provided as prior knowledge. Thus, we cannot conclude that
this principle is inherently equipped with the ability to adapt to
indefinite environments.

Our proposed model attempted to extract complex temporal
structures in the environment by using dynamic state space,
similar to the reconstruction of dynamical systems in the field
of non-linear dynamics. In particular, embedding is regarded as
a method for identifying the underlying dynamics from time
series data (e.g., Takens, 1981; Sauer et al., 1991; Ikeguchi and
Aihara, 1995). For example, a chaotic dynamical system requires
at least three dimensions. To reconstruct the trajectory of the
chaotic system from the time series, two time intercepts (two-
dimensional reconstruction map) are insufficient; three time
intercepts (three-dimensional reconstructionmap) are necessary.
By applying the proposed model, we may be able to build
a model that can learn to automatically reconstruct the non-
linear dynamical system behind the time series data, just as our
model could learn the task structure behind the three-target
search task.

Future Directions
The model proposed in this study showed a higher correct
response rate in the three-target search task than the fixed
8by8-state model, which is an ideal model for the two-target
search task (Figure 10). However, the difference between the
two models did not become clear until approximately 1 million
trials had elapsed. It took about 3 months (∼100,000 trials) for
the monkeys to master the two-target search task, including
understanding of the events in a single trial, and the three-target
search task is clearly more difficult than this task. However,
in our experience, the three-target search task is easier than
the path-planning and shape manipulation tasks that we had
used in our previous experiments, which required more than
10 months of training (Mushiake et al., 2001; Sakamoto et al.,
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2008, 2015, 2020a,b). The reason why the model took so long
to learn the three-target search task was because the optimal
model for the three-target search task had to make a decision
based on a combination of three trials, i.e., as many as 83

= 512 states. In other words, the model faced the curse-of-
dimensionality problem, where convergence slows as the number
of states increases. To overcome this, the model will need the
ability to generalize or abstract its experiences, such as “target
three of the four points in order.” In fact, monkeys have much
greater generalization ability, compared with our model, so they
are expected to be able to learn the difficult tasks mentioned
above. This generalization ability may correspond to the abstract
representation of sequential actions by neuronal activities in the
prefrontal cortex of monkeys (Shima et al., 2007; Sakamoto et al.,
2020a).

In this paper, we dealt with a model in which one trial
corresponds to one time step, but in the two-target search
task that the animals actually performed, one trial included a
sequence of events (Kawaguchi et al., 2013, 2015). It is not easy
to build a model that can learn that more realistic latter situation,
because we are faced with the problem of how to deal with one
previous state. That is, it is unclear what constitutes one previous
computation time increment; it could be one previous task event
or one complete previous trial.

Einstein described his skepticism about quantum mechanics
as follows: “Der Alte würfelt nicht (the old man does not
roll the dice).” This expression seems to imply his desire
for a deterministic understanding of the principles of the
universe. Currently, artificial intelligence (AI), including
reinforcement learning, is developing rapidly, and humans
are delegating various decisions to AI. However, we do not
want AI to roll the dice when we entrust it with important
decisions. Instead, we want AI to constantly deepen its
knowledge and experience, and to make deterministic decisions.
The model proposed in this study did not exhibit a trade-
off between exploration and exploitation (Figure 13). We
hope that this model can serve as one of the foundations
of AI that constantly deepens knowledge and experience,
thus permitting deterministic decisions in complex and
difficult environments.
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Supplementary Figure 1 | The event sequence of one trial of the two target

search task. Note that the actions in one trial and the results to them are defined

as one time step, and the learning including the task sequence was not in

this paper.

Supplementary Figure 2 | The infinite hidden Markov models (iHMMs) compared

to our proposed model. (A) Overview of the iHMM scheme. While the iHMM is

similar to the proposed model (Figure 1C), it lacks a process to evaluate the

appropriateness of state expansion. (B) Schematic tree showing how iHMMs

expand the states. They start with a base state referring to no previous trials; each

tree node stage corresponds to the reference trial number. Each state is the

combination of the actions taken and their reward outcomes, as in the proposed

model. (C) Schematic of the Dirichlet process version of the iHMM. The model

was implemented using the Chinese restaurant process. Each filled circle (table)

represents a possible action. If the action is rewarded, a new guest (a person with

a filled head) sits at the table for that action. If an empty table is chosen, a new

state is generated. In this case, a new state starts with the initial condition, in

which each filled table has an “intrinsic guest” (a person with an empty head). (D)

Schematic for the hierarchical similar Dirichlet process version. The newly

generated child state inherits the distribution of the parent state. The Ps in (C,D)

represent the probabilities that each action is taken.
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