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Finger gesture recognition (FGR) plays a crucial role in achieving, for example, artificial
limb control and human-computer interaction. Currently, the most common methods
of FGR are visual-based, voice-based, and surface electromyography (EMG)-based
ones. Among them, surface EMG-based FGR is very popular and successful because
surface EMG is a cumulative bioelectric signal from the surface of the skin that can
accurately and intuitively represent the force of the fingers. However, existing surface
EMG-based methods still cannot fully satisfy the required recognition accuracy for
artificial limb control as the lack of high-precision sensor and high-accurate recognition
model. To address this issue, this study proposes a novel FGR model that consists
of sensing and classification of surface EMG signals (SC-FGR). In the proposed SC-
FGR model, wireless sensors with high-precision surface EMG are first developed for
acquiring multichannel surface EMG signals from the forearm. Its resolution is 16 Bits,
the sampling rate is 2 kHz, the common-mode rejection ratio (CMRR) is less than 70 dB,
and the short-circuit noise (SCN) is less than 1.5 µV. In addition, a convolution neural
network (CNN)-based classification algorithm is proposed to achieve FGR based on
acquired surface EMG signals. The CNN is trained on a spectrum map transformed
from the time-domain surface EMG by continuous wavelet transform (CWT). To evaluate
the proposed SC-FGR model, we compared it with seven state-of-the-art models. The
experimental results demonstrate that SC-FGR achieves 97.5% recognition accuracy
on eight kinds of finger gestures with five subjects, which is much higher than that of
comparable models.

Keywords: surface EMG, EMG sensor, finger gesture recognition, convolution neural network, artificial limb

INTRODUCTION

Comparing to traditional peripheral devices such as a mouse or a keyboard, finger gesture
recognition (FGR) is much more convenient and natural for users to control an artificial limb and to
interact with a computer (Rechy-Ramirez and Hu, 2015). As a result, FGR becomes more and more
important during the past few years (Rechy-Ramirez and Hu, 2015). Currently, the most common
methods of FGR are visual-based, voice-based, and surface electromyography (EMG)-based ones.
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Among them, surface EMG is the comprehensive photoelectrical
signal of potential muscle action on the surface of the skin (Botros
et al., 2020). It is a kind of non-stationary signal, and its strength
is sensitively proportional to the degree of muscle activity, which
makes it can accurately represent the gesture of fingers (Botros
et al., 2020). Therefore, surface EMG-based is widely adopted to
achieve FGR.

Surface EMG-based FGR has been researched for many years.
Among existing approaches, machine learning-based approach is
very popular and successful (Qi et al., 2020; Wong et al., 2021).
For example, Phinyomark et al. (2011) applied the critical index
analysis and fractal dimension to extract the characteristics of
surface EMG signals, and seven kinds of gestures were recognized
from eight-channel EMG signals. Ishii et al. (2012) divided hand
motions into six movements and classified finger motions using
two types of characteristics. Khushaba et al. (2016) proposed the
mutual component analysis (MCA) by improving the principal
component analysis (PCA) to deduct the noise and redundant
features. The recognition accuracy reached 95% for 15 kinds
of gestures by combining the feature selection and MCA from
eight channels of the surface EMG signals. Ngeo et al. (2014)
used the multi-output convolution Gaussian process to analyze
the dependence of multi-joint gesture and to estimate the finger
joint motion. Through the correlation between knuckles, the
regression model was modified to improve the recognition rate
of finger posture. AlOmari and Liu (2015) constructed a model
by combining genetic algorithm, particle swarm optimization,
and support vector machine (SVM). Arozi et al. (2020) identified
the hand gesture through the single channel of the surface EMG
signal with the time-domain feature extraction, PCA, feature
dimensionality reduction, and neural network. The recognition
accuracy is 86.7% for nine kinds of gestures.

Recently, since convolution neural network (CNN) was
proposed by Krizhevsky et al. in 2012 (Atzori et al., 2016), it
has achieved great success in many fields of image recognition,
natural language processing, and language translation (Wu et al.,
2019b; Yao et al., 2019). As it has much better performance of
feature extraction and non-linear fitting than traditional machine
learning models, many researchers employed CNN to classify
hand gestures from surface EMG signals. For example, Atzori
et al. (2016) and Geng et al. (2016) selected CNN to classify
hand gestures using the original surface EMG signals as the
input signal. A spectral map that was obtained by the short-time
Fourier transform (STFT) from the original surface EMG signal
was put into the convolution network (Du et al., 2017; Côté-
Allard et al., 2019a). Zia Ur Rehman et al. (2018) constructed a
simple network model consisting of one convolutional layer, one
pooling layer, and two fully connected layers. Then, the original
surface EMG was directly used as the input of the CNN. Wu
et al. (2018) proposed a model based on long short-term memory
(LSTM) and CNN, where LSTM reserves time information
and CNN extract features. Its performance was better than the
model proposed in the study by Santello et al. (2016). Chen L.
et al. (2020) designed a compact CNN with a small number of
parameters to improve the classification accuracy of EMG signals.
However, all these approaches mainly focus on developing a
CNN-based recognition model while ignoring to acquire the

high-precision surface EMG. Hence, they still cannot fully satisfy
the required recognition accuracy for real applications of artificial
limb control and human-computer interaction.

To address this issue, this study proposes a novel FGR model
that consists of two parts, namely, sensing and classification of
surface EMG signal (SC-FGR). First, wireless sensors with high-
precision surface EMG are developed for acquiring multichannel
surface EMG signals from the forearm. Second, a CNN-based
classification algorithm is proposed to classify the acquired
surface EMG signals for FGR, where we named it CNN-FGR.
A general chart of FGR with the proposed SC-FGR model is
shown in Figure 1. The surface EMG signals of each channel are
segmented by a moving window. A spectrum map is generated
by continuous wavelet transform (CWT) from the segmented
signals of each channel. Then, the spectrum maps of multiple
channels are put into the CNN-FGR for classifying.

The main research contents and contributions of this study are
as follows:

(1) The wireless sensors are specially developed to acquire
surface EMG from the forearm with high precision. Its
resolution is 16 Bits, the sampling rate is 2 kHz, the
common-mode rejection ratio (CMRR) is less than 70 dB,
and the short-circuit noise (SCN) is less than 1.5 µV.

(2) A new CNN-FGR algorithm is proposed to accurately
classify the surface EMG signals acquired by the developed
wireless sensors. It consists of a 5-layer CNN that is trained
on a spectrum map transformed from the time-domain
signals of surface EMG by CWT.

(3) A novel SC-FGR model is proposed for highly accurate
FGR. It comprises two parts of the developed wireless
sensors and the proposed CNN-FGR algorithm.

(4) A surface EMG dataset is collected and shared online. It
contains eight kinds of finger gestures with five subjects
collected by the developed wireless sensors.

In the experiments, we evaluated the proposed SC-FGR model
on the collected surface EMG dataset. The results demonstrate
that the proposed SC-FGR model achieves 97.5% recognition
accuracy, which is much higher than that of comparable models.

The rest of this article is organized as follows: A wireless
surface EMG acquisition system is designed in section “A
Wireless Surface EMG Acquisition System”; The data processing
and CNN-FGR algorithm are described in detail in section
“Data Processing and Network Architecture”; The proposed SC-
FGR model is compared with several related models in Section
“Experiment and Results”; and finally, section “Conclusion”
concludes this study.

A WIRELESS SURFACE EMG
ACQUISITION SYSTEM

The EMG is a weak electrophysiological signal of a muscle fiber
group. It can be detected by sensors placed on the surface of
skin or needle sensors implanted in muscle tissue (De Luca et al.,
2006). The EMG signal is closely related to neuron muscular
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FIGURE 1 | General chart of finger gesture recognition (FGR) using sensing and classification of surface electromyography (EMG) signals (SC-FGR).

FIGURE 2 | Multichannel surface EMG acquisition.

activity information so that the surface EMG signals of the
forearm can be used to analyze and recognize the finger gestures.

De Luca (1997) showed that the amplitude of the EMG signal
was random and could be expressed by the arithmetic mean value
of zero Gaussian distribution function. The surface EMG signal is
a weak signal whose amplitude ranges from 0 to 10 mV (Peak-to-
Peak) or 0 to 1.5 mV [root mean square (RMS)]. The frequency
range of the available energy signal is limited from 0 to 1,000 Hz,
and the dominant energy is distributed in the range from 50
to 150 Hz. In the same state of muscle motion, the amplitude-
frequency characteristic curve of the EMG signal is similar, and
the EMG signal has a certain regularity in the muscle motion state
of different detection points. According to the characteristics of
surface EMG, the frame of the acquisition module is designed as
shown in Figure 2.

Inspired by the surface EMG sensor on the market, the surface
EMG sensor consists of the surface EMG electrode and the
signal conditioning circuit. This surface EMG sensor uses three

parallel silver electrodes with a spacing of 10 mm, including
two measuring electrodes and one reference electrode, which
prevent saturation caused by the common-mode signals. The
silver electrode is put close to the skin for complete polarization,
forming a capacitor by surface skin and electrode. To improve
the accuracy, the front analog amplifier circuit is designed as
close as possible to the silver electrode. This measure is beneficial
to weaken the disturbance of white noise for the acquisition of
surface EMG signals. Then, the potential difference between the
two measuring electrodes is detected by the differential amplifier
circuit and converted into a digital signal for signal preprocessing.
Finally, the digital signal is transformed into a computer by the
Bluetooth data acquisition module.

The signal conditioning circuit plays a key role in amplifying
the weak signal to improve the performance of the whole
acquisition system. The expected conditioning circuit is with high
input impedance, high gain, wide frequency band, low noise,
and high CMRR. It should amplify surface EMG signals while
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FIGURE 3 | Conditioning circuit for the analog signal.

suppressing other noise signals (Khokhar et al., 2010). The signal
conditioning circuit uses instrument amplifier AD8220 with the
JFET as the input of the preamplifier. The rail-to-rail amplifier

FIGURE 4 | Multichannel wireless surface EMG acquisition device.

TABLE 1 | Characterization of different surface electromyography (EMG)
acquisition systems.

Delsys Trigno
Wireless EMG
(ADInstituments,

2020)

Biometrics
DataLITE

sEMG
(Côté-Allard

et al., 2019b)

Thalmic Labs
MYO

Armhand
(Côté-Allard

et al., 2019b)

This
design

Number of
channels

16 16 8 4–8

sEMG ADC 16 bits 13 bits 8 bits 16 bits

Sampling rate 2,000 Hz 2,000 Hz 1,000 Hz 2,000 Hz

Bandwidth 10–850 Hz 10–490 Hz 5–100 Hz 5–1,000 Hz

Contact
material

Sliver Stainless
Steel

Stainless
Steel

Sliver

Common-
mode rejection
ratio

>80 dB N.A N.A >70 dB

Short-circuit
noise

<0.75 µV <5 µV N.A < 1.5 µV

Transfer
protocol

BLE 4.2 WiFi BLE 4.0 BLE 4.2

OPA364 constitutes the band-pass amplifier. The instrument
amplifier AD8220 plays the role of first-order high-pass filtering,
while the amplifier OPA364 plays the role of second-order band-
pass filtering. All in all, the function of the analog conditioning
circuit is to amplify the original EMG signal 1,000 times and then
signal processing by the second-order band-pass filtering with
the range of 5–1,000 Hz. The schematic diagram of the signal
conditioning circuit (Fu et al., 2013) is shown in Figure 3. The
theoretical gain of the signal conditioning circuit is shown as
follows:

G =
Vo

Vi2 − Vi1

= (
49.4e3

RG + Rc1

+ 1)(
R3Rc3

Rc2 Rc3 + R2Rc2 + R2Rc3 + R2R3
) (1)

where G represents amplifier gain; Rc1 ,Rc2 , and Rc3 represent the
impedance of the capacitance C1,C2, and C3, respectively;Vi1,Vi2,
and Vi3represent the input of the detection points; and Vo is
the output of the signal conditioning circuit. The core design
principles of the surface EMG acquisition system are anti-
noise treatment, such as co-ground and anti-electromagnetic
interference. This EMG acquisition system uses a Bluetooth
module for physical isolation and anti-interference, avoiding 50-
Hz interference from a wired connection with the computer.
This data acquisition system contains a 16-bit AD conversion,
an ARM processor, and a Bluetooth communication module, as
shown in Figure 2. The output of the surface EMG sensor is
connected to the input port of the AD converter by shielding line.
It adopts the common ground technology between the analog
signal and the digital signal. There is photoelectric isolation
between the AD converter and the ARM microprocessor to
reduce the crosstalk from digital signals to analog signals. On
the one hand, the ARM controller stores the eigenvalues of the
collected signal and stresses it in the local SD card. On the other
hand, it transfers the collected signal to the HC-05 Bluetooth
module through the USRT serial communication protocol.
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FIGURE 5 | Spectrum maps transformed from surface EMG with different kinds of parent wavelet functions.

FIGURE 6 | The block diagram of the CNN-FGR algorithm.

Bluetooth communication realizes the information interaction
function between sensors and the computer. The Bluetooth
communication module uses low-energy radio communication
technology to realize data transmission, with the maximum rate
of 1 Mb/s (Song et al., 2020) and the effective communication
of 15 m. The multichannel wireless surface EMG module
is designed with a highly extending function and could be
extended to 4–8 channels. The surface EMG device is shown in
Figure 4.

The parameter comparison between the high-precision
wireless surface EMG acquisition system and the other surface
EMG acquisition systems on the market is shown in Table 1.

DATA PROCESSING AND NETWORK
ARCHITECTURE

Signal Feature Extraction of Surface
EMG
Since the surface EMG signal is non-stationary, it is limited to
analysis the signal with Fourier transform. The STFT, which
divides the signal into smaller segments by sliding windows and
calculates the Fourier transform of each segment separately, is an
effective method to solve that problem. A frequency spectrogram
can be obtained from the transformation of STFT. When the
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signal x(t) and window function w(t) are designed, the spectra
can be calculated as follows:

spectrogram (x(t), w(t)) =
∣∣STFTx(t, f )

∣∣2 (2)

STFTx
(
t, f
)
=

∫
+∞

−∞

[x(u)w(u− t)] e−j2πfudu (3)

where f represents the frequency. The wavelet transform (WT)
is similar to STFT, while it overcomes the disadvantage that the
window does not change with frequency in STFT. By adjusting
the width of the window, the WT adapts to the frequency
changes in the signal. When the frequency of the processed signal
increases, the WT improves the resolution by narrowing the time
window. Furthermore, WT is an ideal analysis tool, which can
obtain the amplitude and frequency of mutations in the signal.

X(a, b) =
1
√

b

∫
∞

−∞

x (t) φ

(
t − a

b

)
dt (4)

∫
+∞

−∞

|φ(ω)|2

ω
dω <∞ (5)

where the Fourier transform ϕ(w) must satisfy Equation 5. ϕ(t)is
named as the parent wavelet function, which is a signal with
limited duration, frequency change, and zero mean value. The
scaling factor b and the translation factor a control the scaling
and transform of the wavelet function, respectively. There are
many kinds of parent wavelet functions for the transform, such
as Mexican hat wavelet (MEXH), Gaussian wavelet (GAUS),
complex Morlet wavelet (CMOR), Shannon wavelet (SHAN),
frequency B-spline wavelet (FBSP), and complex Gaussian
wavelet (CGAU). MEXH function is defined by Equation 6 as
follows:

ψ(t) = c(1− t2)e−t2/2 (6)

where c = 2
√

3
π1/4. GAUS is the differential form derived from

the Gaussian function. It is defined by Equation 7 as follows:

ψ(t) = Cp1te−t2
(7)

where Cp1 =
4√2/π. CMOR is defined by Equation 8 in the time-

domain and by Equation 9 in the frequency domain as follows:

ψ(t) =
1√
πfb
• ej2πfct−(t2/fb) (8)

9(f ) = eπ2fb(f−fc)2
(9)

where fc is the center frequency and fb is the bandwidth. SHAN is
defined by Equation 10 as follows:

ψ(t) =
√

fb sin c(fbx)e2iπfcx (10)

where fc is the center frequency and fb is the bandwidth. FBSP is
defined by Equation 11 as follows:

ψ(t) =
√

fb

[
sin(

fbt
m

)

]m
e2jπfct (11)

where m is an integer parameter, fc is the center frequency, and fb
is the bandwidth. CGAU is defined by Equation 12 as follows:

ψ(t) = Cpe−ite−x2
(12)

where Cp is constant.
After the CWT of the surface EMG signals, the corresponding

spectrum map is similar to the image on the scale and also
contains the frequency domain information of the timing
sequence data. The six-channel surface EMG signals of the
forearm were collected by the high-precision wireless surface
EMG sensors, and the data of each channel were separated
by applying a sliding window of 264 samples (132 ms). The
parent wavelet of the CWT adopts the optimal wavelet function,
calculating the CWTs with 64 scales to obtain the 64 × 264
matrix of spectral information. The matrix is set as input to
the CNN-FGR algorithm. Thus, the input of the CNN-FGR
algorithm has six channels, each consisting of a matrix with the
size of 64 × 264. Figure 5 is the spectrum maps of the spectral
information transformed from 264 EMG data with different
kinds of parent wavelet functions, such as MEXH, GAUS, CMOR,
SHAN, FBSP, and CGAU.

CNN-FGR Algorithm
Chen L. et al. (2020) used a compact CNN to improve the hand
gesture recognition by surface EMG. Inspired from that model,
the CNN-FGR algorithm consists of four convolutional layers
and one mean pool layer as shown in Figure 6, and its design
details are listed in Table 2.

The loss function is calculated as follows:

Loss = −
n∑

i=1

yi log
(
y′i
)

(13)

where yi is the true value of the first class, n is the number of
categories, yi

′ is the first-class prediction value of the output.
Since one-hot coding was adopted, the true value of one class is 1,
while the true value of the other classes is 0.

The three quantities where accuracy rate (AR) is used to
evaluate the performance of the SC-FGR model, such as AR, the
mean AR (MAR), and the SD of AR (SD-AR), are, respectively,

TABLE 2 | Configuration of CNN of CNN-FGR algorithm.

Layers of Network Parameters of each layer

Convolutional layer 1
(Activation Function: ReLU)

kernel_size = 3, stride = 1
Number of feature graphs:16

Convolutional layer 2
(Activation Function: ReLU)

kernel_size = 3, stride = 2
Number of feature graphs:32

Dropout P = 0.5

Convolutional layer 3
(Activation Function: ReLU)

kernel_size = 3, stride = 1
Number of feature graphs:32

Convolutional layer 4
(Activation Function: ReLU)

kernel_size = 3, stride = 2
Number of feature graphs: 64

Convolutional layer 5
(Activation Function: ReLU)

adaptive_avg_pool2d
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computed as Equations 14–16. A test set composed of t number
of instances xi with ω known is used for the test stage.

AR =
1
t

t∑
i=1

9(w, f (xi)), 9(w, f (xi))

=

{
1, if w = f (xi)

0, else
(14)

MAR =
1
n

n∑
k=1

ARk (15)

SD− AR =

√√√√ 1
n

n∑
k=1

(ARk −MAR)2 (16)

where f (xi) represents the calculated label of xi, and n is
the repeated times of computing AR. MAR represents the
classification ability of the algorithm, and SD-AR represents the
robustness of the algorithm.

Advanced optimization methods were used for the
backpropagation of the CNN-FGR algorithm with the ultimate
goal to minimize the function loss. In the field of image
recognition, the common size of the convolutional kernel is
selected as 3 × 3, 5 × 5, or 7 × 7 (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014). Therefore, the different sizes
of the convolutional kernel in the CNN-FGR algorithm model
are evaluated to get a better experimental result. Meanwhile,
the various layer feature maps of the model are also set smaller
to minimize the parameters of the model. The step length of
the convolution is set to 2, for reducing the feature parameters

FIGURE 7 | Eight kinds of finger gestures: (A) Thumb Flection (TF), (B) Thumb Extension (TE), (C) Thumb Swing (TS), (D) Index-finger Flection (IF), (E) Index-finger
Extension (IE), (F) Index-finger Swing (IS), (G) Middle-finger Flection (MF), and (H) Middle-finger Extension (ME).

FIGURE 8 | Six channels of the raw EMG signals from the high-precision sensors.
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by half. To further reduce the number of network parameters,
the output of the model used the convolutional layer with
adaptive mean sampling for classification, instead of the full
connection layer.

EXPERIMENT AND RESULTS

Finger Gestures
Before the experiment, the collection points of the surface EMG
from the forearm must be disinfected and cleaned to reduce skin
contact interference. In the experiment, the subject sat on a chair
with his left arm lying flat on the table and relaxed. In each group
of experiments, as shown in Figure 7, each subject completed
eight types of gestures, namely, Thumb Flection (TF), Thumb
Extension (TE), Thumb Swing (TS), Index-finger Flection (IF),
Index-finger Extension (IE), Index-finger Swing (IS), Middle-
finger Flection (MF), and Middle-finger Extension (ME).

Number of Sensors and Layout of
Detection Points
The surface EMG signal is closely related not only to the objective
factors such as human physical state and movement state but also
to the form and location of the detection electrode. The number
of electrodes also has a great impact on the accuracy of surface

TABLE 3 | The effects of continuous wavelet transform (CWT) on the accuracy of
gesture classification of five subjects (S1, S2, S3, S4, and S5).

S1 S2 S3 S4 S5 MAR SD-AR

Time-domain (%) 92.3 94.37 97.5 95.4 98.54 95.62 2.22

Spectrum map (%) 92.50 97.50 97.50 100.00 100.00 97.50 2.74

TABLE 4 | The accuracy of the CNN-FGR algorithm with the convolutional kernel
size of 3 × 3 on five subjects.

Loss Test_acc Train_acc

S1

S2

S3

S4

S5

EMG signal recognition. Extensive research and experiments
showed that the acquisition of surface EMG signals with six
channels can not only effectively identify single and multi-finger
movement information but also avoid the waste of resources
with over-channel detection. It was found that the electrodes
were placed on the nerve-dominated region, and the EMG
signals collected in the 10-tendon head or muscle edge area
were usually weak. When sensors were placed vertically on the
muscle fibers, the surface EMG signals were strongest. Since
the front group muscles of the forearm cover the flexor, it
mainly controls the bending movement of the elbow, wrist, and
knuckles. The muscles of the back group cover the stretched
muscles, which mainly control the stretching movement of each
joint. In this experiment, six surface electrodes were placed on
the corresponding muscle abs, and the electrodes were radially
perpendicular to the muscle fibers. The sensors were fixed on
the forearm with a bandage in moderate tension. Three sensors
were placed on the corresponding muscle abs at the front of
the forearm, mainly for detecting the bending movement of the
finger, while the other sensors were placed at the back of the
forearm for detecting the stretching movement of the fingers.
The raw EMG signals detected by six sensors on the forearm are
shown in Figure 8.

Classification Results
This experiment used the high-precision wireless surface EMG
sensors and DELSYS data acquisition system to collect six
channels of the surface EMG signal, with a frequency of 2 kHz.
Before classification, the collected surface EMG signal must be
pretreated and feature extracted. The original EMG signal is
preprocessed with a 264-sample-point (132 ms) sliding window
and a 100-sample-point incremental step. After the data segment
processing, each experiment of each gesture obtains 12 samples,
and 300 samples are collated after 25 repeating times. The total
datasets of eight gestures of five subjects (i.e., S1, S2, S3, S4, and
S5) are 12,000 samples. Each subject has 2,400 samples, where
1,920 samples are adopted as training set and 480 samples are
adopted as testing set.

To evaluate the effects of CWT in transforming the surface
EMG from time-domain to spectrum map, we, respectively,
trained the CNN-FGR algorithm on the time-domain and the
spectrum map of surface EMG. The comparison results on the
testing set are shown in Table 3, where we observed that the
CNN-FGR algorithm trained on the spectrum map of surface
EMG achieves much higher accuracy than that trained on the
time-domain of surface EMG. This observation demonstrates
that transforming the surface EMG from time-domain to

TABLE 5 | The comparison of accuracy with different convolution kernel sizes.

S1 S2 S3 S4 S5 MAR SD-AR

3 × 3 (%) 92.5 97.5 97.5 96.67 100 96.83 2.44

5 × 5 (%) 92.5 97.5 96.875 98.58 100 97.09 2.53

7 × 7 (%) 92.5 100 97.5 97.29 100 97.46 2.74

9 × 9 (%) 92.5 100 97.71 98.125 100 97.67 2.75
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spectrum map by CWT is beneficial for the CNN-FGR algorithm
to achieve a better performance of FGR.

There are two factors affecting the identification accuracy in
the SC-FGR algorithm model. One is the size of the convolutional
kernel, and the other is the parent wavelet function. Using the
same parent wavelet function “CGAU” for CWT transform, the
different sizes of the convolutional kernel are compared to get
a better recognition accuracy. The training accuracy curve, loss
curve during training, and testing accuracy curve are used to
analyze the results of FGR. The accuracy of the CNN-FGR
algorithm with the convolutional kernel size of 3 × 3 is shown
in Table 4.

From Table 4, we found that the training accuracy keeps
increasing and loss keeps decreasing with more epochs until
reaching convergence. Similarly, testing accuracy also keeps
increasing with more epochs until reaching convergence. These
findings verify that the CNN-FGR algorithm can be well applied

TABLE 6 | The comparison results of accuracy of various parent wavelet functions
on the dataset S3.

Loss Test_acc Train_acc

CGAU

GAUS

MEXH

SHAN

FBSP

CMOR

TABLE 7 | The comparison results of accuracy of various parent wavelet functions
on the collected datasets.

S1 S2 S3 S4 S5 MAR SD-AR

MEXH (%) 92.50 98.75 97.50 97.71 98.75 97.04 2.33

SHAN (%) 92.50 98.54 92.50 98.38 96.67 95.72 2.71

FBSP (%) 92.50 98.13 97.91 96.67 100.00 97.04 2.51

CMOR (%) 92.50 98.33 97.50 97.5 100.00 97.17 2.51

CGAU (%) 92.50 97.50 96.88 98.54 100.00 97.08 2.52

GAUS (%) 92.50 97.50 97.50 100.00 100.00 97.50 2.74

to classify these samples for FGR. In the experiment, we
compared the accuracy of the CNN-FGR algorithm with the
kernel size of 3× 3, 5× 5, 7× 7, and 9× 9 on collected datasets.

From Table 5, it can be observed that the classification ability
of the algorithm is improved, but the robustness of the algorithm
becomes worse, while the size of the convolution kernel increases.
The size of 5 × 5 is a better selection as the convolution
kernel, because not only the accuracy is high, but also the
robustness performed well.

To choose the suitable parent wavelet function for CNN-
FGR, the experiments are carried out on different parent wavelet
functions, such as MEXH, SHAN, GAUS, FBSP, CGAU, and
CMOR. For dataset S3, the comparison results of accuracy of
various parent wavelet functions with the same convolutional
kernel size of 5× 5 are shown in Table 6.

On all collected datasets, the comparison results of accuracy
of various parent wavelet functions with the same convolutional
kernel size of 5× 5 are shown in Table 7.

From Table 7, it is easy to get the results that the accuracy
of GAUS is higher than that of other wavelet functions, but the
robustness is worse. Considering the classification ability and
the robustness, the algorithm with the parent wavelet MEXH
performs better.

Finally, to evaluate the proposed SC-FGR model, we compared
it with several related models. Especially, enhanced time-domain
(EnhancedTD) (Khushaba et al., 2016; Fournelle and Bost, 2019),
time-domain cycle (TDC) (Tang et al., 2010), autoregression
(AR) (Soares et al., 2003), sample entropy (SampEn) (Delgado-
Bonal and Marshak, 2019), and wavelet package coefficient
(WPC) (Zhao et al., 2006) are selected as feature extractors.
The classical classifiers [e.g., probabilistic neural network
(PNN) (Zeinali and Story, 2017), linear discriminant analysis
(LDA) (Zhang et al., 2012), and SVM (Varatharajan et al.,
2018)], CNN (Chen H.F. et al., 2020), and CWT-EMGNet

TABLE 8 | The comparison results of accuracy of various models on the
collected datasets.

S1 S2 S3 S4 S5 MAR SD-AR

TDC-
AR+PCA+PNN (%)
(Fu et al., 2017)

90.84 89.39 93.88 95.8 95.7 93.12 2.59

TDC-
WPC+PCA+PNN
(%)

90.67 91.45 95.78 98.17 97.54 94.72 3.10

EnhancedTD+LDA
(%) (Zhang et al.,
2012)

89.58 92.41 94.13 95.81 97.48 93.88 2.73

EnhancedTD+SVM
(%)

88.29 90.57 94.06 93.59 95.03 92.31 2.50

SampEn+LDA (%) 89.67 92.75 96.22 95.77 94.07 93.70 2.36

SampEn+SVM (%) 87.44 90.77 93.18 94.44 93.82 91.93 2.57

CNN (%) (Chen H.F.
et al., 2020)

92.3 94.37 97.5 95.4 98.54 95.62 2.22

CWT+EMGNet (%)
(Chen L. et al.,
2020)

92.5 94.58 96.875 99.17 99.58 96.54 2.70

SC-FGR (%) 92.50 97.50 97.50 100.00 100.00 97.50 2.74
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(Chen L. et al., 2020) are adopted as classifiers. The comparison
results are recorded in Table 8, where we clearly observed that the
SC-FGR model achieves 97.5% accuracy, which is the best among
all the models. Hence, we concluded that the proposed SC-FGR
model is powerful for FGR.

CONCLUSION

This study proposes a novel SC-FGR model that consists of
two parts, namely, sensing and classification of the surface
EMG signal. First, wireless sensors are developed for acquiring
multichannel surface EMG signals from the forearm according
to the characteristics of the surface EMG signal. These sensors
can provide a high-precision signal source of surface EMG
for FGR. In addition, a CNN-based classification algorithm,
i.e., CNN-FGR, is proposed for FGR based on the acquired
surface EMG by the developed wireless sensors. The CNN-FGR
is trained on a spectrum map transformed from the time-
domain of surface EMG by CWT. The experimental results
demonstrate that the proposed SC-FGR model achieves 97.5%
recognition accuracy on eight kinds of finger gestures with
five subjects, which is much higher than that of comparable
models. In the future, we plan to adopt the techniques
of latent factor analysis (Wu et al., 2019a, 2020, 2021a,b),
cognitive computing (Wu et al., 2021c), and attention mechanism

(Zheng and Chen, 2021) to simultaneously recognize the
gesture and strength of the fingers based on the surface
EMG of the forearm.
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