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Perceptual constancy refers to the fact that the perceived geometrical and physical

characteristics of objects remain constant despite transformations of the objects

such as rigid motion. Perceptual constancy is essential in everything we do, like

recognition of familiar objects and scenes, planning and executing visual navigation,

visuomotor coordination, and many more. Perceptual constancy would not exist without

the geometrical and physical permanence of objects: their shape, size, and weight.

Formally, perceptual constancy and permanence of objects are invariants, also known in

mathematics and physics as symmetries. Symmetries of the Laws of Physics received a

central status due to mathematical theorems of Emmy Noether formulated and proved

over 100 years ago. These theorems connected symmetries of the physical laws to

conservation laws through the least-action principle. We show how Noether’s theorem

is applied to mirror-symmetrical objects and establishes mental shape representation

(perceptual conservation) through the application of a simplicity (least-action) principle.

This way, the formalism of Noether’s theorem provides a computational explanation of

the relation between the physical world and its mental representation.

Keywords: perceptual constancy, invariance and symmetry, Noether’s theorem, least-action principle,

conservation laws, human perception

We begin with a perceptual illustration that will motivate the rest of this paper. Consider the 2D
image of a transparent cube, shown in Figure 1A. When one looks at this Figure, one sees a 3D
object, a transparent cube. A cube is a highly symmetrical object: it is characterized by reflectional,
rotational, and central symmetries. The symmetry of an object is defined as the invariance of the
object under transformations. For example, rotating a cube by a multiple of 90 degrees around
an axis that connects the centers of two parallel faces results in the same cube in the same 3D
position and orientation. Similarly, reflecting the cube about a plane that splits the cube into two
identical halves, results in the same cube. It is now known that the symmetry of 3D objects is of
fundamental importance in seeing 3D objects as 3D (Pizlo et al., 2014). Next, look at Figure 1B,
which is a 2D image of a 3D polygonal line. This 3D polygonal line connects the eight vertices
of a cube shown in Figure 1A in random order. The cube in Figure 1A is symmetrical, but the
3D polygonal line in Figure 1B is not symmetrical. It turns out that, when only one 2D image is
available and a 3D object has no trace of symmetry, this object is not perceived as 3D (see the
polygonal line stimuli in experiments by Edelman and Bülthoff, 1992; Pizlo and Stevenson, 1999;
Chan et al., 2006; Li and Pizlo, 2011. See also the bent wire stimuli in Rock et al., 1981, 1989; Rock
and DiVita, 1987). However, when the 3D object is symmetrical, human observers always perceive
it as 3D and they perceive it veridically (Pizlo and Stevenson, 1999; Chan et al., 2006; Li and Pizlo,
2011; Jayadevan et al., 2018). By “veridically” we mean that observers perceive the 3D shape the
way it is out there. In other words, the perceived shape matches, or nearly matches the physical
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FIGURE 1 | (A) shows a transparent cube that is perceived as a 3D cube

because of the cube’s multiple symmetries. (B) shows a polygonal line

connecting the vertices of a cube. (B) is not likely to be perceived as a 3D

polygonal line because of the absence of 3D symmetries (from Pizlo, 2008,

MIT Press).

shape (Pizlo et al., 2014). One may ask, how can we ever know
that an observer perceives a cube veridically? After all, perceptual
representations are private mental events. Symmetry comes to
the rescue here. If the observer says that the object is formed by
3 pairs of parallel faces, and the object has 6 planes of mirror
symmetry, we know that the observer perceives a cube. If there
are only 3 planes of symmetry, and these planes are parallel to
the faces of the object, the observer is looking at a shoebox. With
5 planes of mirror symmetry, it is a pizza box (or a square rod,
like a leg of an ordinary chair). By describing the shape of a
physical object in terms of its symmetries, the private mental
representation of the observer has been made public, in the
sense that we all know what the observer’s percept is. This is not
surprising in our everyday life: after all, we rarely wonder about
whether what we see is the same as what others see. Symmetry
and its invariance properties are essential in human vision, as
well as in other cognitive functions.Without symmetry, vision, as
we know it, would not exist (Pizlo, 2019). By the time the reader
finishes reading this paper, they should become familiar with the
multiple facets of symmetry and invariance. It is no coincidence
that symmetry permeates nature at all of its levels.

1. INVARIANCE IN NATURAL SCIENCE

Invariance in natural science is a fundamental concept. By
invariance in science, we mean that a given law or property
stays unchanged (is symmetric) under certain transformations.
For example, Newton’s second law of motion1 (F = ma),
represented by a mathematical relation, does not change when
we apply this law in different places or different times, i.e., this
law is invariant (symmetric) under spatial displacement and
temporal translation.

Let us consider an example. Let us apply a constant force F
along the x-axis to an object at rest and with massm and observe
how far the object moves after a time interval δt relative to the
starting point, whose coordinate is marked on the floor as (0, 0).
For simplicity, we assume that this object is restricted to move
on the horizontal surface (x, y) and that the only (horizontal)
force acting on it is F. According to Newton’s Second Law, the

1Here we use the standard convention in physics to represent vectors in bold.

object’s acceleration a is given by a = F/m, and for a constant
force the distance traveled can be computed as d = axt

2/2, where
a = axx̂ = ( Fxm )x̂ and x̂ is the unit vector in the direction x. The

final position of the object after time t is
(

x, y
)

=
(

d, 0
)

. Now
we repeat the experiment, but we shift the object by two meters
along the x-axis, with the new starting point being at (2, 0). This
shift means that we translated the experiment by two meters.
If we apply the same force, after time t, our object moves by
the same interval d, so its final position is

(

x′, y′
)

=
(

d + 2, 0
)

.
Instead of moving the object two meters along the x-axis, we
could move the observer and their reference frame, such that in
the new observer’s vantage point, the object would not be initially
at coordinates (0, 0) but instead at coordinates (2, 0). Regardless
of what we do, the result x′ of a translated experiment is the same
as the translated result of the first experiment, i.e., x′ = x + 2.
Notice that the total distance traveled, defined as the absolute
value of the difference between the final and starting points, is the
same for both situations, namely d. This is an example of what
is called in physics symmetry of the Natural Law, in this case,
a translational symmetry. So, Newton’s Second Law is invariant
under translation.

Following Rosen’s (2008, pp. 264–266) notation, if N is our
natural law (in our case, Newton’s second law), which determines
how the initial state u evolves into the final state, and2 represents
a transformation (in our example, translation), then N2(u) =

2N(u). What this means, applied to our example, is that if we
move the coordinate system by twometers and then use Newton’s
Law, we get the same outcome as if we just apply Newton’s
Law first and then move the coordinate system by two meters.
Accordingly, physicists associate symmetries to invariances of the
laws of nature. It has been commonly agreed that there would be
no natural laws and no science without symmetry (Wigner, 1967;
Rosen, 2008). Before Einstein’s special relativity theory, it was
assumed that the symmetry (invariance) of a physical law should
be derived from experimental results or the law itself. Einstein
reversed this logic when he formulated both relativity theories.
He assumed that symmetry (invariance) comes first, and the new
laws should be formulated so that they satisfy the symmetries.
This new approach to how theories are formulated has been
universally accepted by physicists. This general statement is often
illustrated in a diagram like that in Figure 2.

Consider another example illustrating the symmetry of
natural laws (Feynman, 1965). When the Moon revolves around
the Earth, the gravitational force between theMoon and the Earth
causes the Moon to fall toward Earth—by saying that the Moon
falls toward Earth, we mean that the (almost) circular trajectory
of the Moon falls below the straight line that it would have been
in if there was no force acting on the Moon. It is easy to calculate
that theMoon falls toward the Earth about 1.4×10−3m in 1 s. The
Moon is 60 times as far away from the Earth’s center as we are, so
if the inverse square law is right, the object at the Earth’s surface
should fall in one second by 1.4× 10−3m · 602, which is 4.9 m. It
has been known already from Galileo’s measurements that things
fall in 1 s by 4.9 m on the Earth’s surface. So, the fall’s magnitude
is not invariant under translation from the Moon’s orbit to the
Earth’s surface, but the magnitude of the fall of an object on the
Earth’s surface (in Rosen’s, 2008 terminology, it is the result of a
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FIGURE 2 | The transformation 2 is a symmetry of the dynamical evolution N

if, for any initial state u, the final state when first evolved and then transformed

is the same as the one obtained by first transforming and then evolving, i.e.,

N2u = 2Nu.

transformed experiment), can be computed by transforming the
magnitude of the Moon’s fall through the inverse square law (in
Rosen’s terminology, it is transformed result of an experiment):
N2(u) = 2N(u). For additional discussion of invariance in
physics see Appendix A in Supplementary Material.

1.1. Invariance in the Natural Environment
Physical theories and their laws are somewhat abstract, as they
refer to abstract objects, such as point particles, ideal forces,
constant masses. But the physical world consists of concrete
objects, such as planets, rocks, buildings, cars, chairs, fluids,
windows, trees, animals. The theories need to be related to the
actual objects through the construction of physical models that
describe the system of interest. For instance, Newton’s Principia
showed that the movement of, say, a planet could be described,
in part, by the motion of its center of mass. The planet’s center of
mass is a mathematical point that accelerates at the rate a = F/m,
where m is the mass of the planet, and F is the sum of all forces
acting on it. So, instead of dealing with the complications of a
large number of particles, as it is the case of a planet, we can
model its motion by using the center of mass.

In this sense, physics is not about objects, but abstract
characteristics of objects, such as its center of mass, total mass,
and so on, although the laws of physics can be applied to objects.
For example, Archimedes’s law of the lever, Galileo’s law of falling
bodies, Kepler’s laws of planetary motion, or Bernoulli’s law for
fluids and gases, they all can be, and are, used to describe how
physical objects can be manipulated or observed in experiments
and how they can be used in engineering projects, such as
building houses, bridges, or cars. Objects reside in the physical
world, and so, invariance of physical laws applies to them, as well,
although invariance may not be guaranteed. As long as a system
is isolated, its energy is conserved, but truly isolated systems
do not exist (they are approximations). Similarly, as long as a
chair is not broken or destroyed, it is invariant under certain
transformations, as for rigid bodies only six degrees of freedom
are necessary for their description (the center of mass and Euler
angles to describe the orientation of the rigid body), although
they are composed of an enormously large number of particles
(atoms). Similarly, a rectangular block of ice is invariant under

rigid motion, but once it melts, it loses some of its invariant
properties, like shape and volume.

When we talk about the invariance of objects, we refer to their
permanent characteristics under certain assumptions of a model:
their shapes, sizes, masses, surface reflectances, and viscosities.
In fact, without the permanence of objects, there would be no
science of physics because the laws of physics were inferred
by scientists through the manipulation of permanent objects.
Systematic experiments would be impossible without prisms that
refracted and dispersed light, inclined planes and marbles that
rolled on these planes, cannonballs that could be dropped from
the leaning tower of Pisa, paints that could be mixed to produce
a range of colors, resistors that are used in electrical circuits
to test Kirchhoff’s current and voltage laws, and so on. The
permanence of objects is implied by the laws of physics, which
themselves are governed by the invariance principle. At the same
time, the permanence of objects implies their invariance under
some transformations. From now on, whenever we refer to the
invariance of objects, we will also talk about the corresponding
transformations of these objects. It is impossible, or at least
unscientific, to speak about invariance without specifying the
relevant group of transformations.

We emphasize that invariance makes it possible for physicists
to recognize patterns and laws in nature because they allow
for certain phenomena to be predictable. This predictability, of
course, is not a property of the physical laws, but the observed
systems. For example, one could imagine an astronomer on a
planet such as Star War’s Tatooine, which orbits a binary system.
As Alekseev (1969) showed, some simple binary systems are so
chaotic that their observed symbolic dynamics is isomorphic to
a coin-toss. So, in Tatooine, astronomical predictions, depending
on the planetary dynamics, maybe hopeless. It is not that the laws
of physics do not apply: they do. It is that in such systems, the
dynamics are so complicated as to be, in practice, unpredictable.
An astronomer in a binary system may have no hope of coming
up with Kepler’s Laws. To them, the laws of motion for the
heavenly bodies would appear to be random. In other words,
symmetries and invariance are essential, but predictability is
also crucial. When one looks at a house today and then again
tomorrow, there is an invariance that allows for the predictability
of the house’s shape, and the recognition that it is the same house.

Not all objects are invariant and rigid. For example, animal
bodies are not rigid, but they are both important and common
in our environment. Animal bodies are approximately piecewise
rigid. What this observation means is that with animal bodies
one has to use a group of transformations that is more general
than a group of 3D rigid motion. That is the only generalization
that is needed. Animal bodies are characterized by invariant
properties and they are also characterized by redundancies. For
example, human bodies are topologically mirror-symmetrical
regardless of articulation of limbs. Limbs can form a wide range
of articulations, but the possible articulations are limited by
biomechanical constraints. A natural walking of a person can be
viewed as a glide reflection in a 3D space plus time (the pose when
the right foot is forward is a 3Dmirror reflection of the pose when
the left foot is forward). All this means is that the case of animal
bodies can also be treated by the formalism based on groups and
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invariants. There is an additional generalization. The proportions
and shapes of body parts change during the childhood and
adolescence. These changes could also be incorporated in our
theory: body parts do change but the changes are not completely
arbitrary. A discussion of shapes of plants and animals during
the growth process has been reviewed in a classical book by
Thompson (1942), titled “On Growth and Form.”

1.2. Invariance and Group Theory
Consider a transformation called rigid motion, which is common
in our environment, and intuitively obvious. The technical
meaning of “rigid motion" is the same as its colloquial meaning.
Rigid motion in a 3D space includes 3D rotations and 3D
translations. Rigid motions form a group of transformations,
where by “group" wemean that a setT of transformations satisfies
four properties (axioms):

(i) an identity transformation I that does nothing is in the set T;

(ii) each transformation t ∈ T can be undone by a
transformation t−1 ∈ T called the inverse of t;

(iii) a composition of two transformations t1 and t2 is a
transformation that is in the set T (this is a closure axiom),
i.e., if t1, t2 ∈ T, then t1t2 ∈ T; and

(iv) grouping transformations does not change the result, i.e.,
t1(t2t3) = (t1t2)t3 (this property is called associativity).

As a simple example, we can show that one-dimensional
translations form a group under the operation of addition. For
axiom i, we observe that for any number n, the number 0 gives the
identity transformation, as n+0 = n. Also, for any number n,−n
is the inverse transformation, as the transformation m + n = k
if followed by the transformation k − n gives back m (axiom
ii). Additionally, for any numbers m and n, adding m and then
adding n is the same as adding (m + n), which gives iii. Finally,
for any three numbers it is true thatm+ (n+ k) = (m+ n)+ k,
which corresponds to axiom iv.

When a set of transformations is a group, there is an invariant
characterizing this group (Weyl, 1966). The converse is true, as
well. It is easy to realize that pairwise distances are invariant
under rigid motion. Angles are invariants of rigid motion, too,
but they are also invariant under a larger group, called similarity,
a group of rigid motions and uniform size scaling.

2. INVARIANCE IN PERCEPTION

Symmetry (invariance) also characterizes the Laws of Cognitive
Science, but note that the cognitive community does not use
the formalism of symmetry, nor has it explored its implications.
Now take an example from visual perception. When we are in
front of our house, and we look at it today and tomorrow (note
that we examine here the Laws of Perception in the presence of
translation along the time-axis), our 3D percept of the house is
the same on both days. So, our percept is symmetric (invariant)
in the presence of translation along the time-axis.

Already Cassirer (1944) pointed out that empiricists, such
as von Helmholtz (1924/1886), ignored or downplayed the

operation of symmetry in the Laws of Perception. If our
perceptions, including themechanisms that produce perceptions,
were a direct result of accumulating perceptual experience, our
percepts today and tomorrow could not be guaranteed to be
identical. Similarly, the percept of our guests, when they look at
our houses when standing in front of them would most likely be
different from ours because we and they, like any individuals,
have had different life experiences, including the fact that we
looked at our houses more times than they probably had. Clearly,
the nativistic tradition in perception is more favorable to the
concept of invariance in the perceptual laws.

According to nativists, all perceptual mechanisms are innate.
The mechanisms are hardwired, rather than learned, and
they are not modified during the person’s lifetime. Obviously,
some parameters are likely to be adjusted during personal
development, like interocular distance. But vision algorithms stay
the same. Similarly, the phenomenon of perceptual constancy is
defined precisely as the ability to see the object’s characteristics
such as shape, size, and color as the same from one presentation
to another (Walsh and Kulikowski, 1998). Perceptual constancy
may fail under extreme viewing conditions. These failures cannot
be surprising and they do not invalidate perceptual constancy.
Three-dimensional vision is an inference based on incomplete 2D
retinal data through the application of a priori constraints (Pizlo,
2001). When the stimulus dramatically violates the constraints,
the percept will not be constant. In other words, the theory makes
predictions as to when perception can be “tricked” in the form of
illusions. Look at the Ames’s chair demo: http://shapebook.psych.
purdue.edu/1.3/. This image is perceived by a human observer
as an image of a chair, when in fact this image was produced
by a set of 6 unconnected parts. You can see the 3D stimulus
consisting of unconnected parts by rotating it with your mouse.
Note that even though you now know that this is not a chair,
you cannot help, but perceive a chair from the original image.
It is tempting to explain this illusion by referring to familiarity
with chairs. But in our theory familiarity is not needed. Your
percept of an object, we all call chair, is the only 3D symmetrical
interpretation of the asymmetrical 2D image. Even if you know
that the object in front of you is not symmetrical, you perceive it
as symmetrical (see Pizlo et al., 2014 for more details and more
examples testing and supporting this theory). What is important
for our argument is that perceptual constancies are satisfied most
of the time in our daily lives. As Cassirer (1944) pointed out, it
was natural for nativists such as Plato, Kant, Hering, Poincare,
and Weyl to consider the operation of symmetry and invariance
in the laws of perception in particular, and in the laws of
cognition in general, simply because nativists always emphasized
the importance of a priori abstract mathematical concepts, called
“universals." Invariance is such a universal. Perhaps, it may even
be the most important universal. The main goal of this paper
is the re-evaluation of the role of symmetry and invariance in
Psychology, and their relevance to the status of our field among
the Natural Sciences.

We just pointed out that the laws of perception are likely
to be symmetric (invariant) under the transformation from 1
day to another or from one observer to another. Without this
symmetry, the science of perception, like the science of physics,
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FIGURE 3 | A 3D object is invariant under rigid motions, and the perception of

this object is invariant under the same group of rigid motion. This invariance

implies that the observer perceives the permanent characteristics of this

object. We used a label “mental rotation” instead of “mental rigid motion”

because the former has already been used in the cognitive literature.

would not exist. Perception as a cognitive phenomenon would
probably not exist, either, at least not the way we understand
it. If your perception of a cube kept changing from moment to
moment, such as seeing a cube today but a sphere tomorrow,
and if different observers saw different objects when looking at
the same object, then it would not make sense to talk about
perception. Perception would serve no useful function.

Next, we will examine the invariance of perception more
specifically. Namely, we will consider the perception of objects
when they undergo spatial transformations. So, instead of
comparing our perception of our house today and tomorrow,
which is the kind of temporal invariance we discussed earlier
in this paper, we will compare our perception of our car
when we look at it from two different viewing directions,
which happens when the car undergoes rigid motion. If
perception does not change despite the transformation of
an object, we call this perceptual invariance “perceptual
constancy.” This case is essential because it is defined as
perceiving permanent characteristics of objects when the
objects are subjected to transformations representing a group.
Transformation groups have invariants. These invariants define
the permanent characteristics of objects. If we can veridically
see the permanent characteristics of objects, our perception is
invariant (constant) the same way objects are invariant. This
relation is illustrated in Figure 3. Note the similarity of the
diagrams in Figures 2, 3.

But, if an object’s invariance is established by applying
transformations to the object, perceptual invariance can only be
verified by applying transformations to the perceived object as
well. Shepard and his colleagues’ description of mental rotation
is a perfect example (Shepard and Metzler, 1971; Shepard and
Cooper, 1982). That we can imagine looking at a given object
from a different viewing direction means we mentally rotate
the object. Similarly, we can see a given object as the same,
although the object has been physically rotated, and we see that
the object was rigidly rotated. This is a commonly accepted
definition of perceptual constancy. At the same time, this
definition specifies how perceptual constancy should be handled

in experiments. Without clarifying what group of transformation
is being evaluated, the experimentmay ormay not bemeaningful.
The next section will briefly review some classical attempts to
verify size, speed, shape, lightness, and color constancy. These five
constancies are essential because they are directly related to the
permanent characteristics of objects in the presence of changes in
the viewing conditions.

2.1. Prior Work on Perceptual Constancies
Conventional approaches to perceptual constancies have focused
on the role of contextual cues on the perceived characteristics of
objects such as size, shape, and reflectance (lightness and color).
The context was represented by the viewing distance, the object’s
3D orientation relative to the observer, and the intensity and
spectrum of the illuminating light. The context did represent
the transformations of the object, but the associated groups of
physical transformations have never been explicitly evaluated.
Previous studies of perceptual constancies explored only subsets
of the relevant groups and rarely (if ever) examined the groups’
invariants. This emphasis on the role of context, rather than
invariants, had two undesirable consequences. First, instead of
documenting under what conditions perceptual constancy is
achieved, the previous studies focused on documenting which
manipulations of the context would harm or eliminate the
constancy. Second, the relevant transformations were often
excluded from experiments, making it impossible to treat
and study constancy as an invariant of transformations. This
emphasis has been, and still is, fairly common in the case of shape
constancy. In this section, we describe a few studies that illustrate
our point, and we do not mean for it to be comprehensive.

2.1.1. Size and Speed Constancy
Let us begin with perceptual size constancy. If the object’s
perceived size is the same, despite viewing the object after
the object underwent 3D rigid motion relative to the observer,
the observer achieved size constancy. Prior research on size
constancy focused almost exclusively on the effect of the viewing
distance on size constancy. Viewing distance is only one out of
6 parameters characterizing 3D rigid motion. Ignoring the other
two translations, up-down and left-right, seems justified because
these two translations have a small effect on the retinal size. But
there is no reasonable justification for ignoring 3D rotations in
size constancy experiment. Again, rotation around the line of
sight is less appealing because this rotation does not change the
retinal size. But the other two parameters of 3D rotation should
have been included in size constancy experiments. But they were
not, except for a very recent study by Maruya and Zaidi (2020).
This restriction of size constancy experiments has never been
justified, as if it were intuitively obvious. It was not.

If the retinal size in the observer’s eye is measured
conventionally by the viewing angle α, then tan(α) = S/D, where
S is the linear extent of the object measured in the direction
orthogonal to the line of sight and D is the viewing distance.
Size constancy is fairly reliably achieved, both monocularly
and binocularly, under natural viewing conditions (Holway and
Boring, 1941). Specifically, the systematic error is small, but
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the random error (variability of responses from trial to trial)
is substantial.

Speed constancy experiments used an identical experimental
method as size constancy (McKee and Smallman, 1998). The only
manipulation used in the past was the size of the reference frame
that was assumed to be related to the viewing distance. No other
parameters of 3D motion were manipulated. Manipulating the
other parameters of rigid motion in the case of speed constancy
is at least as interesting as in the case of size constancy. Consider
an object moving with a constant speed along a straight line.
Does an observer perceive the speed as constant, despite the fact
that the retinal speed changes, due to perspective projection, as a
function of position and time? If human observers have intuition
about the Laws of Physics, we would expect that they would
demonstrate speed constancy in such an experiment. To the best
of our knowledge this has never been tested.

2.1.2. Shape Constancy
Now, consider the perceptual shape constancy. Shape constancy
has a long history that started one thousand years ago (Alhazen,
1989). This history has been reviewed by one of us in two
monographs (Pizlo, 2008; Pizlo et al., 2014). Here, we will focus
on the recent work in which the concept of invariance played a
decisive role. This recent research started with Biederman and
Gerhardstein’s (1993) paper where they demonstrated that shape
perception is invariant under 3D rotation.

Biederman and Gerhardstein presented the subject with a
3D shape on the first presentation, they then rotated the shape
around the axis that was orthogonal to the subject’s line-of-
sight, and presented it again. The subject’s task was to recognize
whether the 3D shape was the same on both presentations. In
half of the trials, the two 3D shapes presented were different. The
two different shapes differed by having different parts. Thinking
about qualitatively different parts, encouraged Biederman to
claim that shape perception can only be explained by specifying
topologically different features. Biederman was not prepared to
claim that humans have perceptual access to the group of rigid
motions and its invariants. But the issue as to whether perceptual
constancy is real or not should have been settled about three
decades ago. It was not for some obscure reason.

Why are so many contemporary students of vision still
arguing whether shape constancy is real? The main reason
(although not the only reason) for the existing confusion
surrounding shape constancy is the fact that shape constancy
has not been treated as a perceptual invariant related to a group
of transformations. But the only way to make sure that you are
studying shape as an invariant of rigid translation and rotation is
to have the subject look at the object after it has been subjected
to rigid translation and rotation, the way it is illustrated in
Figure 3. Biederman’s experiments, and experiments performed
by one of us (Pizlo and Stevenson, 1999; Chan et al., 2006; Li and
Pizlo, 2011), followed that invariance principle. No other recent
experiments did.We hope that this argument based on invariance
is commonsensical to the reader.More importantly, however, this
argument follows the method that Physicists have been using for
over a century—compare the diagrams in Figures 2, 3.

Imagine that you show a 3D object from a single 3D viewing
direction and ask a subject to judge the entire shape or its local
3D features like the lengths of line segments, or angles formed
by pairs of line segments or pair of surfaces, or local surface
orientations. If no other viewing direction is used, the subject
is presented with an anisotropy because the depth dimension is
visually much less accurate and less reliable than the other two
dimensions. In fact, with a monocular viewing from a single 3D
direction, the visual system obtains no direct sensory data about
the depth dimension (except for the accommodation depth cue
that can be eliminated when a 2D image is used).

With binocular viewing, direct depth measurements are
available, but they are almost always biased and unreliable. One
of the central theoretical claims of the present paper, a claim
that follows a 35-year-old tradition in vision science, is that
the 3D shape percept is produced by combining 3D a priori
constraints, such as symmetry, compactness, and planarity, with
the 2D retinal image (Poggio et al., 1985; Pizlo, 2001, 2008, 2019;
Pizlo et al., 2014). Sensory depth information is not necessary
in such models, although depth information can be used if this
information is reliable (see Li and Pizlo, 2011; Li et al., 2011;
Jayadevan et al., 2018). So, if perceptual depth measurement is
not used in producing a 3D shape percept, how can the accuracy
of shape perception along the depth dimension be verified? The
answer is that it must be verified by showing another view
of the 3D object and asking the participant whether the 3D
shape is the same in both views. If the same 3D shape was
used in both presentations and the two shapes are perceived as
identical, shape constancy has been established. This is precisely
how shape constancy is defined in perception textbooks (see
Walsh and Kulikowski, 1998). If the second view is not used, the
experimenter runs a risk of measuring not just shape perception
but a confound of (conflict between) shape and depth perception
(this can also be referred to as a conflict between a priori
constraints and depth cues, such as binocular disparity—see
Figure 10 in Li et al., 2011). When shape perception is tested as an
invariant of rigid motion (the way Biederman and Gerhardstein,
1993; Li and Pizlo, 2011 did), shape constancy is very reliable,
and the shape percept is much better than depth percept (Pizlo,
2008). The fact that shape can be perceived more reliably than
depth comes as no surprise to computational modelers because
it is well known there are several effective constraints for shape
but not for depth. The bottom line is as follows: the 3D shape
is invariant under 3D rigid motion and must be tested as such.
The subject must be shown a 3D object from more than one 3D
viewing direction in order to verify whether the perceived shape
itself is invariant under 3D rigid motion.

We conclude our treatment of shape constancy with a brief
comment about constancy experiments that used unstructured,
amorphous objects. Once we acknowledge that 3D shape
perception is based on applying a priori constraints, such as 3D
mirror-symmetry, to the 2D image(s), it follows that 3D shapes
will not be perceived veridically if the constraints are ineffective.
This was true with Rock’s wire objects (Rock et al., 1981, 1989;
Rock and DiVita, 1987) and (Edelman and Bülthoff, 1992) bent
paperclips and random star shapes. It so happens that objects in
our real environment never (or almost never) lead to violations
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of shape constancy: a priori constraints are effective because
symmetries characterize objects in our environment.

At this point, the astute reader is surely asking now the next
important question: what is hiding under the label “mapping
from the physical world to mental" in Figure 3? The answer will
come shortly from examining the nature and implications of the
seminal theorem of Noether (1918) that set the stage for placing
symmetry at the center of modern Physics. But before we describe
what Noether accomplished, we will briefly describe experiments
on two other perceptual constancies.

2.1.3. Lightness Constancy
Lightness constancy refers to the ability to judge the albedo
(% reflectance) of a surface despite changes in the illumination
intensity. A textbook example says that a chalk piece looks white
in sunlight as it does in the moonlight. Similarly, a lump of coal
looks black in both viewing conditions, although the intensity of
light reflected from chalk under the moonlight is lower than the
intensity of light reflected from coal under sunlight.

Using a simple reflectance model, the intensity of the light
reflected from a surface (LR) is a product of the intensity of light
incident on the surface (LI) and the surface albedo S: LR = LIS.
The transformation from S to LR is a simple scaling by a constant.
This scaling transformation is a group, and the simplest invariant
is the ratio of the reflected light from a pair of surfaces. This
simple model is the oldest model of lightness constancy, but
this model cannot explain lightness constancy in natural viewing
conditions with natural 3D environments (e.g., Gilchrist and
Jacobsen, 1983). Explaining lightness constancy in the natural
viewing conditions has to take into account the 3D shapes of
objects and must be able to handle surfaces that have specular
components (Adelson, 2000).

2.1.4. Color Constancy
Color constancy is a generalization of lightness constancy. The
human visual system has three types of cones with different
absorption spectra. Surface reflectance S(λ) is a continuous
function of wavelength λ, not just a scalar like albedo. Specifically,
S(λ) is a % reflectance of a surface for individual wavelengths. The
visible spectrum of light is usually assumed to be between 400
and 700 nm. Color constancy is crucial because it corresponds
to surface reflectance, a permanent characteristic of an object.
Reflectance does not change when the illuminant changes
or when the object undergoes rigid motion. Achieving color
constancy under these transformations (illuminant change plus
rigid motion) is essential in everyday life. Humans can see the
color of a fruit as the same in the morning, middle of the day,
and evening, under a sunny or cloudy sky, and when looking
at it from different viewing directions. The importance of rigid
motion has been ignored for most of the history of the study of
color constancy, although we now know that the spectrum of the
reflected light depends on the surface’s orientation relative to the
observer. Furthermore, changing the positions and orientations
of one object relative to others changes secondary reflections and
introduces shadows, which, in the end, changes the spectrum of
the light coming to the observer’s eye.

The human vision community’s effort focused on the role of
illuminant, L(λ), which, in the general case, could be arbitrary.
We know that completely arbitrary illuminants can lead to
complete color constancy failures because of the ill-posedness
of the inverse problem of reflectance reconstruction (inverse
problems will be discussed later in this paper). However, in
natural viewing conditions, daylights are well approximated
by the black-body radiation, whose theory was formulated by
Planck at the beginning of the twentieth century. Vision scientists
realized in the 1950 and 1960s that a black body’s energy
spectrum is a smooth curve, which changes smoothly across
the limited range of the black body temperature. This makes it
possible to approximate daylights with a small number of basis
functions. This allowed the use of linear models (see D’Zmura
and Iverson, 1993a,b, 1994; Iverson andD’Zmura, 1994;Wandell,
1995). This was an essential step toward using group theory and
their invariants in theories of color constancy, although theories
of color constancy were never actually formulated as an attempt
to derive group invariants. The most influential theory of this
kind was von Kries’s adaptation, which was formulated more
than a century ago based on empirical results of color matching,
well before linear models were used in theories of color vision.
According to this theory, the cone absorptions are independently
scaled when the same reflectance is shown under two natural
illuminants (daylights) (Foster and Nascimento, 1994; Foster,
2011; Foster et al., 2016). Independent scaling could be viewed
as a generalization of the ratio rule for lightness constancy. It
follows that according to this rule, color constancy can be verified
by computing the ratios of cone absorptions for two surface
patches. Interestingly, an approximation to von Kries’s law can be
derived by restricting illuminants to daylights and assuming that
reflectances can be represented by a linear model with three basis
functions (Wandell, 1995). Despite its mathematical elegance,
von Kries’s law, and almost all other existing models of color
constancy, are restricted to 2D surface patches and cannot handle
3D objects that undergo rigid motion (see Barron and Malik,
2015, for an example of a joint reconstruction of colors and
shapes of 3D objects).

To summarize, perceptual constancies represent perceptual
invariants and should always be studied in close relation to
the discussion of the relevant transformation groups and the
relevant permanent characteristics of objects. This has been
done sometimes with shape constancy, but not with other
constancies. In our view, there is no alternative to a principled
approach rooted in invariants, an approach that would connect
perceptual invariants to physical invariants that represent
permanent characteristics of objects and scenes. To provide a full
picture of perceptual constancies, we need to explain how the
percept of the invariant physical characteristic is formed in the
first place.

3. NOETHER’S THEOREM

Before we describe what is happening when a physical event is
translated to its mental representation, as indicated in Figure 3,
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we will explain how physicists think about the natural law N in
Figure 2 and how they derive conservation laws.

Physicists recognized more than a century ago that all, or
almost all, natural phenomena can be explained by assuming
that Nature optimizes a functional S, called the action2. Instead
of applying forces to masses, and predicting the natural
development of an event, which starts with known initial
conditions, as Newton’s laws work, one can start with the
boundary conditions specifying how the event begins and ends,
and explain what happens in between by assuming that nature
minimizes an objective or cost function. This is how Fermat,
in the middle of the seventieth century, explained reflection
and refraction of light. Specifically, Fermat assumed that light
minimizes the total time of travel.

We now know that nature usually minimizes some cost
functional, in physics called the action functional, often denoted
by S. Sometimes, however, Nature maximizes a cost functional
or develops in a way that corresponds to an inflection point
of the functional. Therefore, instead of talking about the least-
action principle, it is more accurate to talk about the principle
of stationary-action, in which an infinitesimal variation in the
system’s behavior leads to no changes in the cost functional.
Here, we will follow the conventional name of “least-action
principle.” Fermat’s principle of least-time led in the eighteenth
and nineteenth centuries to a full-blown theory of the least-action
principle developed by Maupertuis, Euler, Lagrange, Jacobi,
and Hamilton.

To discuss the relationship between the least-action principle
and conservation laws, let us first present, in a simple way, how
physical laws can be derived from a variational principle. Let
us start with a set of coordinates, {qi}, i = 1, . . . ,m, that can
represent without ambiguity the position of a physical object.
Examples of qi’s are the standard

(

x, y, z
)

Cartesian coordinates
for a particle in a three-dimensional space, their combination
with Euler angles,

(

x, y, z,α,β , γ
)

to describe the position of a
solid, or spherical coordinates (r, θ ,ϕ). But any set of variables
that can be used to describe the position of a physical object
uniquely would be a generalized coordinate. The trajectory
of the system, which we want to describe with our physical
theory, is given in terms of the generalized coordinates as a
function of time t, i.e., qi = qi (t). The goal of a physical
theory is to find the functions qi (t) that correctly represent the
system’s actual trajectory as it evolves with time. This is done
with the variational principle that leads to the Euler-Lagrange
equation, which was one of the most fundamental achievements
of mathematical physics of the eighteenth century. Appendix B
in Supplementary Material shows all the important steps of this
derivation to allow the reader to appreciate its generality. In the
text below we will only state the problem and its solution in the
form of Euler-Lagrange equation (for a complete presentation
of a least-action principle, we recommend Arnold, 1989 or
Goldstein, 1980).

2S is a functional, and not a function, because it depends on the trajectory of the

physical system, which is given by a function, say, x(t). So, S is a function of a

function, or a functional, that depends on x(t) and ẋ(t), with x(t) a function of

time and ẋ its time derivative.

Let L be a function that depends on qi (t), q̇i (t), where q̇i (t) =
dqi (t) /dt, and t, i.e. L = L

(

qi (t) , q̇i (t) , t
)

. L is the Lagrangian
function, and for some systems it is written as the difference
between the kinetic and potential energies, i.e.,

L = K − V ,

where K is the kinetic energy andV is the potential energy. Let us
define S as the integral in time of L, i.e.,

S
[

qi (t) , q̇i (t) , t
]

=

∫ t2

t1

L
(

qi (t) , q̇i (t) , t
)

dt. (1)

The principle of least action states that if qi (t) is the actual
solution to the motion of the system, then small changes to
qi (t)→ qi (t)+ δqi (t) result in no changes to S, i.e.,

δS = δ

[∫ t2

t1

L
(

qi (t) , q̇i (t) , t
)

dt

]

= 0, (2)

since S is in a minimum (or maximum or saddle point).
We will not show all the details of how to find the equations

of motion, but instead, we will sketch its derivation from the
variational principle. We start with an action S as defined
in Equation (1), and assume that the functions qi (t) are the
actual trajectories of the particle for any time t. We then
make small perturbations to qi (t) → qi (t) + δqi (t), with
the additional constraint that δqi (t1) = δqi (t2) = 0. The
idea is that we are taking two arbitrary points along the actual
trajectory of a particle, namely qi (t1) and qi (t2), and then
considering all possible trajectories between those two points
that differ from the actual one by a perturbation δqi (t). This
perturbation is assumed to be a twice-differentiable arbitrary
function. After an integration by parts, as shown in Appendix B
in Supplementary Material, we arrive at the following equations:

∂L

∂qi
−

d

dt

(

∂L

∂ q̇i

)

= 0. (3)

Equations (3) are known as Euler-Lagrange (EL) equations, and
their solution minimizes the action S between arbitrary times
t1 and t2. EL equations are significant not only because they
render a solution to the variational problem, but also because
they provide a generalized framework for dealing with dynamical
systems in mechanics. They also allow one to illustrate how, for
some simple cases, Emmy Noether established a mathematical
link between symmetries of natural laws and conservation laws.
One remarkable aspect of Noether’s fundamental contribution to
physics is that it was a mathematical theorem. It is important to
point out that EL equations were derived under quite general
assumptions about the action S which is minimized by a
trajectory in some space. It is this generality of the mathematical
formulation that allowed researchers to apply a least-action
principle and EL equations to inverse problems in computational
vision (Foster, 1978; Ben-Yosef and Ben-Shahar, 2012).

As an example of how EL are solutions to the mechanical
problem of motion, let us examine the one-dimensional case of
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a particle of mass m subject to a potential V(x), where x is the
Cartesian coordinate. The Lagrangian for this particle is given by

L = K − V =
1

2
mẋ2 − V (x) . (4)

Substituting (4) into (3), we obtain

∂L

∂x
−

d

dt

(

∂L

∂ ẋ

)

=
∂V

∂x
+mẍ = 0, (5)

where

ẍ =
dẋ

dt
=

d2x

dt2
= a.

Since a is the acceleration of the particle in the direction x,
Equation (5) is equivalent to Newton’s Second Law of motion,
as

−
∂V

∂x
≡ Fx.

So, the least-action principle, with an appropriate Lagrangian,
can be used to derive Newtonian mechanics. According to it,
the actual trajectories followed by a particle are the ones that
minimize the time integral of the quantity L = K − V , i.e.,
it minimizes

S =

∫

Ldt.

However, the least-action principle is much more general than
Newtonian mechanics, whose limited domain are point particles.
It can be applied not only to systems of particles, but also to
much more complicated systems, such as constrained systems
and classical physical systems with infinite degrees of freedom,
such as fluids, Maxwell’s electromagnetic theory, gauge theories,
and Einstein’s theory of gravitation. It can even be used to
derive Schroedinger’s equation in quantum mechanics, which is
related to the eikonal equation in optics. In the present paper
we are applying a least-action principle to inverse problems in
vision, in general, and to 3D shape perception in particular. But
not all physics can be obtained from a variational principle. In
fact, though the physical theories that cannot be derived from
the least action principle are in the minority, they constitute
important cases. One example of such theories is statistical
mechanics, as the ergodic hypothesis, an essential assumption for
Boltzmann’s H-theorem does not seem to be derivable through a
variational principle.

From the variational principle, Noether proved an important
theorem that relates symmetries to conserved quantities.
Noether’s first theorem states that every differentiable symmetry
of the action of a physical system with conservative forces has
a corresponding conservation law. Proving it in the general
case would go beyond this paper’s scope, but we are now
ready to provide some elementary examples illustrating her
theorem of conservation laws from symmetries. Consider first
the case when L does not depend on qi, which means that
any transformation qi → qi + δqi leaves S invariant. To see

the conserved quantity, let us take the more familiar three-
dimensional Cartesian coordinates describing a single particle.
Then, for each particle coordinates x, y, and z, there is a
corresponding EL equation, similar to Equation (5). When L is
independent of, say, x, it follows that the EL for x reduces to

−
d

dt

(

∂L

∂ ẋ

)

= 0

or

∂L

∂ ẋ
= constant.

This is a conservation law: the partial derivative of L with respect
to ẋ is conserved in time. In the case of a particle, where the term
in L depending on ẋ is the kinetic energy, i.e., for ẋ it is 1

2mẋ2, it
follows that the independence of L with respect to x leads to the
conservation of

∂L

∂ ẋ
=

∂

∂ ẋ

(

1

2
mẋ2

)

= mẋ ≡ mvx,

where vx is the component of the velocity in the direction x. In
other words, the invariance (symmetry) of L with respect to x
leads to the conservation of momentum px, defined asmvx, in the
direction x. We say that spatial position and linear momentum
are conjugate variables. Similar results can be obtained if we use,
instead of Cartesian coordinates, spherical coordinates. However,
in the case of spherical coordinates, the invariance with respect
to angular coordinates leads to the conservation of angular
momentum. So, the angular position and angular momentum are
conjugate variables, too.

The Euler-Lagrange equation allows us to derive,
straightforwardly, an invariant quantity when the Lagrangian
L(qi, q̇i) is independent of qi or its time derivatives, q̇i.
However, other symmetries are not as directly obtainable
as, e.g., the conservation of momentum above. An example
is the conservation of energy, whose derivation, in the
spirit of Noether’s theorem, is presented in Appendix C in
Supplementary Material.

However, Noether’s theorem is much more general. It states
that each symmetry of the Lagrangian under a continuous
transformation (such as time translation) corresponds to a
conservation law. In the above case, a symmetry under
time translation results in the conservation of energy. For
a mechanical system, symmetries under spatial translation
correspond to the conservation of momentum, and rotational
symmetry to angular momentum. See Hanc et al. (2004) for
a complete derivation, Lemons (1997) for a presentation of a
least-action principle, including its history, and Morton Tavel’s
English translation of Noether’s original 1918 paper, in which
she proved her theorem using variational calculus, in Noether
(1971). Note that a conservation law is an invariant—it can be
thought of as a higher-order invariant compared to the symmetry
from which it is derived. The variable to which a natural law is
invariant and the corresponding conservation quantity are called
conjugate variables in physics. And so, time and energy, position
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and momentum, angular position and angular momentum are
such pairs of conjugate variables.

If symmetries and conservations both refer to invariance,
what is the difference between them? In a nutshell, conservation
laws refer to invariance in time, whereas symmetries can
refer to invariance to other coordinates or parameters. For
example, the conservation of momentum means that system’s
total momentum is the same at two different times. This
conservation ofmomentum is associated with another symmetry:
the invariance of the Lagrangian to spatial translations. However,
the conservation of momentum is itself a symmetry since the
momentum is invariant under time translation. It is just a physics
convention to reserve the word conservation to quantities that
are constant in time. Another way to see the difference between
symmetries and conservations is to realize that they play a very
different role in Noether’s theorem. Specifically, conservations
are derived from symmetries. The symmetry of a Natural Law
N means that the Law is invariant under a transformation of
the coordinate system (spatial or temporal), as illustrated by the
entire diagram in Figure 2. Conservation, on the other hand,
refers to a quantity that stays invariant when an initial state u [or
2(u)] evolves with time into the final state N(u) [or N2(u)] as
shown in Figure 2.

In section 4, we will remind the reader how a simplicity
principle has been used in perception. It has been commonly
agreed that simplicity principle in perception is entirely
analogous to the least-action principle in physics. This was
first conjectured by Mach (1914), formally implemented for
the first time by Foster (1978), and adopted by the computer
vision community a decade later by Poggio and Koch (1985).
With two cornerstones of physics, symmetry and least-action,
already used in theories of perception, the time is to find the
place for conservation laws in theories of perception and for
conjugate variables in perception. Section 5 will show that mental
representations of abstract characteristics of physical objects are
such conservations.

4. PERCEPTION VIEWED AS AN INVERSE
PROBLEM

This section will describe a computational formalism that is
commonly used to explain how a 3D percept is produced from
a 2D retinal or camera image. The physical environment is
3D, and our percept of the environment is 3D. But the visual
data that come from the retinal image are 2D. It follows that
the problem of inferring 3D interpretation from a 2D image is
an ill-posed inverse problem (Poggio et al., 1985; Pizlo, 2001,
2019). By ill-posed, we mean here that a 2D image does not
specify a unique 3D interpretation. This is an intuitively obvious
observation, but it leads to important mathematical implications.
A perspective projection from a 3D space to a 2D image is
described by the rules of optics, but this transformation is not
a group, and it does not have invariants. In particular, there is
no unique inverse perspective projection from 2D to 3D. The
other three axioms of a group are also violated in this case. It
follows that without additional assumptions, a 2D perspective

image does not allow the computation of any 3D invariants,
including the 3D shape of an object. We must first convert
an ill-posed problem into a well-posed one (Pizlo, 2019). The
only known method of converting an ill-posed inverse problem
into a well-posed one is to impose constraints on the family
of possible interpretations. If these constraints are effective, the
interpretation will be unique and veridical. Once this happens,
our transformation between a 3D space and a 2D image will
become a group and will allow the computations of 3D invariants
from a 2D image. Poggio et al. (1985) provided a list of several
“early vision” functions that should be treated as ill-posed inverse
problems: edge detection, optical flow, 3D surface reconstruction,
spatiotemporal approximation, color reconstruction, shape from
shading, binocular vision. One can add several other functions,
such as lightness perception, shape recovery, figure-ground
organization. In fact, any interpretation of sensory data is an
inverse problem and must be treated as such. Combining visual
data with a priori constraints takes the form of a cost functional,
where the 3D interpretation corresponds to the minimum of
the functional.

We will focus on 3D shape recovery from a 2D perspective
image. Most natural objects are approximately symmetrical:
animal bodies, plants, and even human-made objects are
symmetrical. Mirror-symmetry is the most common type of
symmetry characterizing objects: bodies of almost all animals are
mirror-symmetrical because of locomotion, and many human-
made objects are mirror-symmetrical, too. Real objects are never
perfectly symmetrical, but they are nearly so. When we say
that an object is symmetrical, we refer to the redundancy
inherent in the object. In a mirror-symmetrical object, the two
halves are identical. This is a particular case of the reflection
group, where a reflection with respect to the symmetry plane
is the identity transformation. The reflection group is the
simplest: it consists of identity and reflection, which is its own
inverse. The reflection group does not care whether objects
are characterized by reflection symmetry. The case of mirror-
symmetrical objects is therefore special. Such objects can be
described as (i) invariant under mirror-reflection, and as (ii)
being geometrically redundant because the two symmetrical
halves are identical. These two different, but closely related,
aspects of symmetry are essential in producing 3D veridical
percepts from 2D images. The invariance of an object under
reflection means that parity (chirality, handedness) of the object
does not appear in its representations. This also means that parity
is absent from the cost functional used to recover 3D shapes
from 2D images. The absence of parity will become important
in the next section when discussing the conservations implied
by minimizing the cost functional. The redundancy aspect of
symmetrical objects is used as an a priori constraint in the cost
functional. It is our belief that redundancy is the most effective
constraint in solving ill-posed inverse problems.

The following equation is a generic formulation of a cost
function used to recover a 3D mirror-symmetrical shape from a
single 2D perspective image,

E(X) =
∥

∥A(X)− Y
∥

∥ + λ
∥

∥P(X)
∥

∥ , (6)
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FIGURE 4 | Illustration of the path (dotted line) formed in a plane by

connecting midpoints of pairs of mirror-symmetrical points.

where the norms represent integrals along a path, A(X) is a
perspective projection of a 3D shape X onto the 2D image, Y is
a given 2D image, P(X) compares the two halves of X and λ is
a weight representing the reliability of the visual data relative to
the reliability of the constraint. Unlike the least-action principle
in mechanics, where the integration is along a path that develops
in time, in 3D shape perception, the process develops along a
spatial path. In 3D shape recovery, the path is a planar curve
connecting midpoints of pairs of mirror-symmetrical points. We
know that this path is a planar curve because this path lies on
the symmetry plane of the object (see Figure 4 for an example of
such path). So, in mechanics, a trajectory of an object moving in
a gravitational field minimizes mechanical action. In 3D shape
recovery, the planar curve connecting midpoints of pairs of
symmetrical points of an object minimizes cost functional E.
What this last sentence means is that the recovery of a 3Dmirror-
symmetrical shape is mathematically equivalent (isomorphic) to
the computation of the planar curve in 3D space connecting
midpoints of pairs of symmetrical points. 3D shape recovery
has never been formulated that way, although this fact was
implicitly present in the derivation provided by Sawada et al.
(2011). It follows that one can treat the parameter representing
the movement along the 3D curve connecting midpoints as
time, making 3D shape recovery mathematically identical with
Hamiltonian mechanics.

Below are the key steps from Sawada et al. (2011) illustrating
how this is done. Figure 5 shows the notation used. The choice of
the coordinate system in Figure 5, with the origin at the principal
point, is not commonly used. Sawada et al. adopted it to illustrate
how a 3D recovery from a 2D orthographic image (the case
widely used in the literature) is a limiting case of recovery from a
perspective image when zF goes to infinity. The curves ϕ and ψ
are described in a polar coordinate system (r,α), with the center

FIGURE 5 | The two curves, ϕ and ψ , are 2D perspective images of a pair of

3D mirror-symmetrical curves 8 and 9 that are reconstructed from this single

2D image. F is the center of perspective projection, and its coordinates are

(0, 0, zF ). The principal point is at coordinates (0, 0, 0) (Sawada et al., 2011).

at the vanishing point v = (xv, 0, 0) representing the symmetry
plane of 8 and 9 . Symmetry correspondence of a point pi on ϕ
and qi on ψ is established by lines emanating from the vanishing
point v. The 2D points pi and qi are perspective images of 3D
points Pi and Qi.

The symmetry plane of8 and9 is as follows:

−
xv

zF
x+ z +

d

c
= 0.

The ratio −d
c is the intersection of the symmetry plane and the z-

axis. The vanishing line h of the symmetry plane has the following
equation on the image plane:

xh = −
z2F
xv

.

A perspective projection mi of the midpoint Mi of Pi and Qi can
be computed as follows:

mi =





xmi

ymi

0





T

=







xv +
2rϕ (αi)rψ (αi)

rϕ (αi)+rψ (αi)
cosαi

2rϕ (αi)rψ (αi)

rϕ (αi)+rψ (αi)
sinαi

0







T

. (7)

Note that mi is not a midpoint of pi and qi, but it is clear
from Equation (7) that mi can be computed directly from the
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image points pi and qi. The final step is the computation of the
z-coordinates of points on8 and9 , namely

z8i = zF +
2rψ (αi)

(

zF +
d
c

)

xh
(

rϕ(αi)+ rψ (αi)
) (

xmi − xh
) (8)

and

z9i = zF +
2rϕ(αi)

(

zF +
d
c

)

xh
(

rϕ(αi)+ rψ (αi)
) (

xmi − xh
) . (9)

The X and Y coordinates of points on 8 and 9 are computed
from parametric equations of the projecting lines emanating
from F and intersecting the image plane at pi and qi (see Sawada
et al. for details).

Equations (8), (9) can be substantially simplified using
a different parametrization (see Pizlo, 2019). But the
parametrization used by Sawada et al. is particularly useful
in our context because it shows how 3D recovery based on
symmetry constraint is produced from a curve connecting
images of midpoints.

If the object X is mirror-symmetrical, 3D mirror reflection
with respect to the symmetry plane leaves the object
invariant. It should be clear that the cost functional E is
also invariant to mirror reflection of X. This invariance to
mirror reflection is analogous to the invariance of action S to
such transformations as translations in space and time. The
main difference is that physical translations in space and time
are continuous transformations, whereas mirror reflection is a
discrete transformation.

All visual inverse problems are formulated by using a cost
function like that in Equation (6). The only difference across
visual functions is how the visual data is defined and what the
constraints are. The cost functional E is sometimes referred to
as energy, but in all computational models that solve inverse
problems, the use of constraints is referred to as the operation
of a simplicity principle. This is how Foster (1975, 1978) solved
apparentmotion problem, and how Poggio et al. (1985) described
the solution of early vision problems. Both Foster and Poggio
pointed out the remarkable similarity between the simplicity
principle and a least-action principle. It should be obvious,
however, that perception is different frommechanics. The laws of
physics (i) do not perform inferences based on incomplete data,
and (ii) there are no sensory data in physics. But once the cost
functional is set up in the visual system of the brain, the neurons
are likely to minimize the cost functional through chemical or
electrical interactions (Poggio and Koch, 1985). This way, the
least-action principle of physics (and chemistry) acts like a piece
of computing machinery that solves an ill-posed inverse problem
of perception—(see Horn and Schunck, 1981; Weiss et al., 2002;
Stocker, 2006; Dold et al., 2019; Greydanus et al., 2019; Lutter
et al., 2019). It is important to point out that once a least-action
has been adopted inmodels of vision and cognition, a few authors
have already made the next step and used Noether’s theorem
to explain vision (Weiss, 1997) and motor control (Huh and
Sejnowski, 2016).

There is a probabilistic version of the cost function used to
solve ill-posed inverse problems in perception. If constraints are
probabilistic priors, they can be combined with the probabilistic
sensory data using Bayesian inference. This can certainly be done.
The first term on the righthand side of the cost function in
Equation (6) evaluates how far is the particular 3D interpretation
from the 2D sensory data. If the norm is quadratic, one can
think of a Gaussian pdf evaluating this difference. Smaller
differences correspond to the higher likelihoods. The second
term on the righthand side of the cost function evaluates the
departure from the perfect symmetry interpretation. This can be
represented by a Gaussian pdf, as well. After the two probabilities
are multiplied, we obtain a Bayesian posterior. And indeed,
under some fairly general assumptions, the minimum of the
cost function corresponds to the maximum a posteriori (MAP)
estimate. In our cost function, the parameter lambda is implicitly
represented in the Bayesian formula by the ratio of variances of
the likelihood function and the prior. If these variances can be
independently estimated, the choice of the parameter lambda in
the cost function is no longer ad hoc. The Bayesian formulation
was used throughout the book titled “Perception as Bayesian
Inference” and edited by Knill and Richards (1996). Chater’s
(1996) paper discussed the equivalence of the two formulations:
probabilistic and deterministic (see also Poggio et al., 1985; Pizlo,
2001). One of us has used both formulations (compare Li et al.,
2009, 2011; Jayadevan et al., 2018). One clear advantage that
Bayesian formalism offers is that it naturally allows for updating
the priors, if updating priors is empirically justified.

5. MENTAL REPRESENTATIONS AS
CONSERVATIONS

The cost functional E in 3D shape recovery corresponds to action
S in physics. As pointed out in section 4, our cost functional is
invariant (symmetric) to mirror-reflection of the object because
themirror-reflection of amirror-symmetrical object is an identity
transformation. In other words, E does not depend on the parity
of the object. This suggests, following the logic of Noether’s
theorem, that there must be a conserved characteristic (variable)
implied by this invariance and derivable from the minimum of
E (Pizlo, 2019). In other words, presumably there is a conjugate
variable corresponding to the object’s parity, the same way
position and linear momentum, angular orientation and angular
momentum, and time and energy are conjugate variables3. What
is this conserved characteristic in the case of perception of 3D
symmetrical objects?

We want to point out that we use symmetry twice in our
3D shape perception theory, but what we are describing is
not a circular argument because we use two different aspects
of symmetry: redundancy and invariance. First, the simplicity
constraint P(X) in the cost functional verifies the degree of
redundancy of amirror-symmetrical object, and, second, our cost
functional, itself, is symmetric (invariant) to mirror-reflection of

3Technically, Noether’s theorem applies to continuous symmetry groups, of which

parity is not. But there are arguments that Noether’s theorem can also be used for

discrete groups. See, e.g., Ashton (2008).
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the object. We know, based on theorems of projective geometry,
as well as on numerous computational tests, that the minimum
of the cost functional E corresponds to veridical (correct) 3D
shape recovery, where by shape we mean an invariant of rigid
motion plus uniform size scaling (Li et al., 2011; Sawada et al.,
2011; Michaux et al., 2016, 2017; Jayadevan et al., 2018). In the
absence of noise and uncertainty, minimizing the cost function
E leads to closed-form formulas (Equations 8, 9) for 3D shape
recovery that can be thought of as being analogous to the EL
equation in mechanics. Specifically, the minimum of the integral
along the entire path connecting midpoints of pairs of symmetric
points is mathematically equivalent to a spatially local operation
performed one pair of points a time.

Is this theory empirically testable? The answer is yes: such a
test was performed by the first author (Li and Pizlo, 2011). Li
and Pizlo (2011) used a shape constancy task in which the subject
was asked to discriminate whether two successively presented 3D
stimuli had identical shapes (i.e., whether they were identical up
to a 3D rigid motion and size scaling). When the 3D shapes were
identical, they were shown from viewing directions that were
90 deg apart. So, this experiment tested shape perception as a
perceptual invariant (see Figure 3).

Six types of 3D objects with different constraints were used
(see Figure 6). Stimulus (Figure 6A) was a mirror-symmetrical
polyhedron. Stimulus (Figure 6B) (vertices) was generated by
removing all edges in stimulus (Figure 6A) and showing only
vertices. Stimulus (Figure 6C) (polygonal line) was generated by
randomly connecting the vertices in stimulus (Figure 6B). These
three types of stimuli were generated using the same method;
the differences were related to how (if at all) the vertices were
connected. Stimulus (Figure 6D) was a symmetric and partially
non-planar polyhedron. It had a plane of symmetry, but its
six lateral surfaces were not planar. Stimulus (Figure 6E) was a
planar and asymmetric polyhedron. It was generated by taking a
half of a stimulus (Figure 6A). Stimulus (Figure 6F) was a non-
planar and asymmetric polyhedron. For each type of stimuli,
there were two viewing conditions: the 3D shapes were viewed
binocularly (disparity condition) or monocularly (no disparity).
The stereoscopic images of these six types of stimuli are shown in
Figure 6.

If, contrary to our theory, perceptual 3D shape recovery is
not based on the constraint of symmetry of objects, one expects
binocular performance to be equally reliable across all 6 types
of stimuli. At the same time, monocular performance should be
at chance level for all 6 types of stimuli. Binocular performance
is expected to be better than monocular performance because
binocular disparity is known to be an effective depth cue. If,
on the other hand, perceptual 3D shape recovery is based on
the constraint of symmetry of objects, as predicted by our
theory, both monocular and binocular performance should be
better with symmetrical stimuli than with asymmetrical ones.
Figure 7 shows the three subjects’ performance (d’), as well as
their averaged performance. The discriminability measure d’
represents the detection ability in Signal Detection Theory. It is
estimated from hits and false alarms for the two types of trials,
same vs. different shapes. Chance performance is represented by
d’ = 0. Higher d’ represent better performance. We focus here

FIGURE 6 | Stereoscopic images (crossed fusion) of the six types of stimuli

used in Li and Pizlo (2011) study. (A) Polyhedron with one symmetry plane and

planar surfaces. (B) 16 vertices which were obtained by removing the edges

from the stimulus of type (A). (C) Polygonal line. The 16 vertices were

connected randomly. (D) Partially non-planar and symmetric polyhedron. (E)

Planar and asymmetric polyhedron. (F) Non-planar and asymmetric

polyhedron.

on comparing performance in the “polyhedron” and “polygonal
line” conditions: polyhedron stimulus was symmetrical and
polygonal line stimulus had no trace of symmetry. The vertices
of these two types of stimuli were generated the same way
and the only difference was how the vertices were connected.
Performance with the symmetrical polyhedron was reliable
(d’ significantly greater than zero) with both monocular and
binocular viewing, while performance with polygonal lines was
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close to chance level with both monocular and binocular viewing.
These results provide support to the claim that the visual system
uses the geometrical theorem describing how a 3D symmetrical
shape can be recovered from a 2D image. These results do
not prove that the visual system uses the actual computations
described in this theorem, but they clearly show that 3D
symmetry is essential in shape constancy.

There are two implications of our theory. First, we started
with a mirror-symmetrical property of an object, which refers
to a reflection group in which there is only one transformation,
identity. After we applied the simplicity (least-action) principle,
we recovered a 3D shape, which is invariant under a larger
group of transformations, called similarity. As pointed out in
the previous paragraph, the similarity group includes rigid
translations, rigid rotations, reflections, and uniform size scaling.
The fact that a symmetry group never gets smaller as things
develop in Nature is called symmetry principle and has been
established by Pierre Curie in 1894. Specifically, what this
principle says is that the symmetries of the cause are always
present in the effect. In our case, the 3D physical symmetrical
object is the cause, and the 3Dmental representation of the shape
of the object is the effect. As a result, 3D mirror symmetry allows
the observer to identify individual 3D objects in the environment
just by looking at them, a step that has conventionally been called
a figure-ground organization (Michaux et al., 2016). Second, the
fact that our cost functional (action) is symmetric (invariant) to
some transformation (here, reflection), implies a conservation
law, by an argument analogous to Noether’s theorem. Indeed,
a veridical mental representation of a 3D shape of a physical
object is a conservation of the mapping from the physical world
to mental—see Figure 3. When we look at a wooden chair, our
mental representation is characterized by the same 3D shape
as the shape of the chair. But our mental representation of a
wooden chair is not made of wood. So, many, if not most, of the
chair’s physical characteristics are lost during the transformation
between the physical world and mental. But not everything is
lost. The 3D shape is invariant (conserved). This is similar to the
situation when two cars collide. After the collision, the vehicles
are damaged or destroyed. So, cars are not invariant. But the total
linear momentum is invariant.

From this second implication, we conclude that the parity
of a 3D symmetrical object and its 3D perceived shape are
conjugate variables the same way spatial position and linear
momentum are conjugate variables. So, the claim that symmetry
is the sine qua non of shape, a conjecture stated by one of us
Li et al. (2013), now has a deeper mathematical meaning that
is a consequence of Noether’s theorem. This means that if an
object has no trace of symmetry, its shape cannot be perceived.
When depth cues, such as binocular disparity, motion parallax,
texture or shading are available, a 3D object will be perceived as
3D, but its 3D shape will not be recovered by the visual system
and shape constancy will fail. This fact has been demonstrated
repeatedly, starting with Rock’s experiments. Multiple papers
reported the same result, namely, that with amorphous wire
objects and random star shapes that have no trace of symmetry,
shape constancy completely fails (Rock et al., 1981, 1989; Rock
and DiVita, 1987; Edelman and Bülthoff, 1992; Farah et al., 1994;

Pizlo and Stevenson, 1999; Chan et al., 2006; Li and Pizlo, 2011).
Rock and his colleagues thought that their result applied to all
objects. It does not. When an object is mirror-symmetrical, shape
constancy is perfect, or nearly so (Pizlo and Stevenson, 1999;
Chan et al., 2006; Li and Pizlo, 2011; Li et al., 2011; Jayadevan
et al., 2018).

6. SUMMARY AND DIRECTIONS FOR
FUTURE RESEARCH

Our paper’s title is a slight modification of Ernst Cassirer’s
seminal 1944 paper’s title (Cassirer, 1944). Cassirer emphasized
the role of group invariants in explaining perceptual constancy,
but he missed the point that a 3D–2D perspective projection is
not, in the general case, a group and does not have invariants.
Cassirer was not a psychologist, and he did not perform any
experiments on perception that could verify his conjectures.
He was also apparently unaware of the fundamental relevance
of invariance in physics, including Noether’s paper. J.J. Gibson
picked up the invariance concept in his 1950 book (Gibson cited
Cassirer’s article). Gibson, a psychologist, built his career around
the concept of invariance, introducing his theory of “direct
perception.” However, Gibson’s theory of direct perception, in
which he assumed that the 3D interpretations are available in
the 2D retinal image and that no computations are needed, never
went beyond verbal statements. Nevertheless, Gibson’s emphasis
on dealing with 3D stimuli did have a lasting impact, and his
theory of direct perception was modified by Marr’s group to
became a theory of 3D reconstruction. This included the use
of motion, texture gradient, as well as projective invariants. We
are in an excellent position to extend and reformulate Cassirer’s
and Gibson’s ideas because we are writing 75 years after Cassirer
published his paper and 40 years after Gibson published his last
book. We extended Cassirer’s observations by showing how the
invariance and redundancy aspects of symmetry lead to a theory
that explains veridical 3D shape perception. In our approach,
a 3D visual representation of the physical environment results
from solving an ill-posed inverse problem. Contrary to Gibson’s
claim, the 3D veridical representation is not “picked up” from the
retinal image or the environment.

Most importantly, we established, for the first time, a close
connection between the mathematical formalism of 3D shape
perception and the formalism used in Physics. This allowed us
to explain perceptual constancy as a conservation law resulting
from applying a simplicity principle to the symmetries of
physical objects. Finally, formulating perception in the context
of group invariants proved to have important implications for
how experiments on perceptual constancies should be designed.
Since perceptual constancies refer to permanent characteristics
of objects, which themselves are group invariants, a perceptual
constancy experiment must employ the entire relevant group.
This has rarely been done, which probably explains the
multiple confusions and contradictory results that permeate the
subject’s history.

We conclude by discussing several implications of our theory
for future research, both empirical and theoretical.
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FIGURE 7 | Three subjects’ performance and the averaged performance (d’) across the six types of objects in Li and Pizlo (2011) study.

First, consider the area called intuitive physics, which refers to
the fact that humans, including infants, understandmany physics
concepts and phenomena without ever taking physics classes
(Spelke, 1990; Spelke et al., 1994; Spelke and Kinzler, 2007). The
fact that the visual system has at least qualitative knowledge
about the three pillars of Physics, symmetry, least-action, and
conservation, suggests that the phenomenon called “intuitive
physics” resides in the core of the visual system, rather than at
later stages of cognitive processing. But note that contrary to
much of the existing literature on intuitive physics, we emphasize
the concepts included in Noether’s theorem rather than Newton’s
concepts. The main difference between the two is that Newton’s
formulation is vectorial, whereas Noether’s work is grounded on
analytical mechanics. Furthermore, Noether’s theorem links the
least-action principle to symmetries and conservation laws. This
connection between those three fundamental concepts did not
exist before Noether proved her theorem.

It is easy to see that humans have a good understanding of the
concept of invariance and symmetry. This is particularly obvious
when we consider the rigidity of human-made objects, which
is an invariant of Euclidean transformations, or the piecewise
rigidity of animal bodies, which can be viewed as a topological

invariant. Furthermore, humans have good intuition about the
invariance of the laws of Physics. If we try to convince a student
that dropping an object onto the floor in one corner of a room
will lead to the same outcome as dropping an object onto the
floor in the opposite corner of the room, the student probably
will wonder whether there is anything unusual in this invariance,
simply because this invariance is intuitively so evident that it
seems trivial. The student would feel the same about dropping
an object onto a floor today and tomorrow.

The invariance of physical laws in the presence of spatial and
temporal translations is fundamental, and it has equally crucial
implications in the form of conservation laws. Not surprisingly,
some examples of the conservation laws are also intuitively
obvious, at least qualitatively. Take the intuition that an object
dropped from a higher elevation relative to the ground will cause
a bigger impact because greater potential energy will translate to
greater kinetic energy, consistent with energy conservation laws.
Or, when a running person bumps into a standing one, the latter
is likely to fall in the direction of the former’s movement, which
is consistent with conservation of momentum. If, instead of two
people colliding, an elastic collision between two billiard balls on
a pool table is considered, the higher speed of the first ball will
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translate to a higher speed of the second ball after the collision,
which is consistent with the conservation of kinetic energy.

Humans not only understand invariants and conservations,
but they also understand the least-action principles. Everyone
knows what it means to complete an action in the shortest
amount of time or travel from point A to point B by using the
shortest path. We routinely observe and understand the least-
effort or least-energy principle, such as the case of a bobsled run,
where the bobsled’s trajectory follows the shape of the bobsled
slide. The least-action principle has been called a "simplicity" or
"likelihood" principle in perception and cognition. Mach (1914)
was the first to describe the simplicity and likelihood principles
in perception [some consider von Helmholtz (1924/1886),
remark in his handbook that familiarity with objects and events
disambiguates the visual input as a precursor of Mach’s likelihood
principle]. The simplicity principle has been a key concept in
perception ever since the Gestalt Psychologists adopted and
elaborated it (Wertheimer, 1923; Koffka, 1935). The popularity of
Gestalt’s simplicity principle can be attributed to being intuitively
so obvious. When two smooth curves intersect, forming an
X, it is nearly impossible to see this intersection as two V’s,
one upright and the other upside down. An X interpretation is
more straightforward!

After listing all these examples of intuitions about invariance,
conservations, and least-action, it is surprising how skeptical
cognitive psychologists are about intuitive physics (see
McCloskey, 1983). Our explanation of this situation is that
cognitive psychologists focused on Newtonian physics rather
than on Noetherian concepts. Cognitive psychologists have
never compared these two probably because our Elementary
and High School Physics education has been entirely restricted
to Newton’s approach. We have the temerity to suggest that the
time has come to change both Physics Education and Cognitive
Research on Intuitive Physics.

Second, we think that it is essential to reflect that the three
concepts from Noether’s theorem do generalize outside the
context in which the theorem has been formulated. Noether,
herself, could not have anticipated this kind of generalization.
But this generalization offers, probably for the first time, a
possibility of a unified approach to Natural Sciences that
include Physics, Cognitive Psychology, and possibly Biology.
It should be evident to the reader that Newton’s three laws
of motion do not offer such a generalization. Specifically, no
one ever proposed using Newton’s second law, F = ma,
to explain human visual perception. To be sure, Newton’s
laws of motion do not contradict Noether’s theorem. But
the concepts used by Noether in her theorem offer much
greater generalizations because they are more abstract. Physical
objects are characterized by symmetries. Perceptual and cognitive
representations can be treated as conservations. The intermediate
stage between the physical and mental worlds, namely the
brain’s neurophysiological processes, is the stage where the least-
action principle is implemented. Poggio et al. (1985) made this
suggestion first, and we included references to several papers
that explicitly talked about using neural structure to explain
perceptual, motor, and cognitive inferences through solving
optimization problems. Perceptual inferences are so fast, and
they use so little energy, that the physical least-actions are the

most likely mechanisms. How exactly is this accomplished? Does
the brain have one cost function for all 3D shapes? Do the
cost functions change depending on the sensory input? How are
the 3D shapes represented in the visual cortex that is mostly
a 2D surface? Visual neuroscience has focused for a long time
on describing neurons as feature detectors. With our theory, it
makes sense to talk about neural structures as circuits solving
optimization problems.

Third, are all inferences likely to be veridical, as long as they
satisfy our theory? Specifically, let’s assume that we identified a
symmetry in the physical environment and formulated a cost
function that leads to a unique interpretation. Is it always the
case that the resulting interpretation will be a conservation rule,
in the sense that it will represent something permanent in the
environment? It is tempting to think that this might be the
case, not only in perception but also in cognition. Can language
comprehension be explained that way? Colloquial language is
characterized by ambiguities, but humans are extremely good
at resolving them. The scientific language is less ambiguous.
Can this fact provide clues for how to make the next steps in
understanding linguistic communication?

Fourth, it is worth noting that symmetry has a long history
in visual arts and esthetics, much longer than the history
of symmetry in math and physics. The main difference is that
symmetry in art is usually treated as redundancy, whereas
symmetry in physics and math is treated as a group invariant.
Can visual arts shed additional light on symmetry and contribute
to the mathematical formalisms, the way perspective paintings in
the fifteenth century stimulated projective geometry in the 17th
and 19th centuries?

Fifth, can symmetry be used explicitly in explaining mental
representations of objects and concepts? When you look at a
chair with a broken leg, you are likely to call it just that, rather
than stating that you have never seen such a strange object.
Humans tend to form categories around the concept of symmetry
and by relation to symmetrical objects. When departures are
noticed, they could be explicitly included in the representation
as exceptions or treated as noise. This would resemble how the
Minimum Description Length principle is used. The mind can
use more complex models with less noise to account for a given
representation or simpler models with more bits of information
devoted to explaining remaining characteristics. This is not a
new idea in perception and cognition (see Grünwald et al., 2005;
Feldman and Singh, 2006; Grünwald, 2007).

Sixth, the standard topic in vision called “shape from X”
can now be treated as part of our theory of “shape from
symmetry.” The key step that allows veridical 3D shape recovery
from a single 2D retinal image is the redundancy inherent
in a mirror-symmetrical object (Pizlo, 2019). But redundancy
can be inherent in the sensory data, as well. This is obvious
when rigidity constraint has been used by Ullman (1979) in
his structure from motion theorem. Rigidity is the invariant
of rigid motion, and having two or more views of a rotating
object allows for unique shape recovery. Binocular vision is no
different. Having two views of the same object is like having
two views of a rotating object, except that it is simpler. With
a binocular observer, we only have to assume that both eyes
look at the same object—rigidity is not invoked. Shape from
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texture and shading are similar. Gibson’s examples of texture
gradient are nothing more than translational symmetry of
identical texture elements. Without symmetry (redundancy) in
the stimulus, there would be no texture gradient and no 3D
percept. Multisensory perception integrating vision, audition,
and haptics can and should be treated the same way. Different
sensors provide redundant (symmetrical) information about the
same object or event. By bringing the concept of symmetry to
the existing models of “shape from X,” we are not suggesting
that computations should be done differently. We think that
what we are proposing is similar to Newtonian physics’s change
to the physics captured by Noether’s theorem. The phenomena
are the same, but the formalism is more abstract and potentially
more powerful.

If our perception approach is accepted, the conventional
material in sensation and perception textbooks can be presented
differently. The textbooks will not be split into individual visual
cues that have to be integrated when a hypothetical binding
problem is solved for each symmetrical object and when multiple
objects are organized into a scene. Such a perception textbookwill
be a coherent presentation that can be titled “perception from
symmetry,” the same way a modern physics textbook is titled
“physics from symmetry” (Schwichtenberg, 2018). Our proposal
should not be surprising if we remember that perception is
a cognitive capacity to acquire information about the physical
world, rather than an analysis of sensory cues isolated from the
physical environment.

We conclude by pointing out what might be the most general
implication of our approach to perception. Specifically, our
emphasis on the relationship between Perception and Physics
should encourage vision scientists to think about vision as a 3D
phenomenon because the physical environment around us is 3D.
The Laws of Physics operate in a 3D real space, not in a 2D
camera or retinal image. The Laws of Physics are not invariant
in the retinal image; there are no least-action principles nor
conservation laws in the retinal image.
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