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Understanding and producing embedded sequences according to supra-regular

grammars in language has always been considered a high-level cognitive function of

human beings, named “syntax barrier” between humans and animals. However, some

neurologists recently showed that macaques could be trained to produce embedded

sequences involving supra-regular grammars through a well-designed experiment

paradigm. Via comparing macaques and preschool children’s experimental results, they

claimed that human uniqueness might only lie in the speed and learning strategy

resulting from the chunking mechanism. Inspired by their research, we proposed

a Brain-inspired Sequence Production Spiking Neural Network (SP-SNN) to model

the same production process, followed by memory and learning mechanisms of the

multi-brain region cooperation. After experimental verification, we demonstrated that

SP-SNN could also handle embedded sequence production tasks, striding over the

“syntax barrier.” SP-SNN used Population-Coding and STDP mechanism to realize

working memory, Reward-Modulated STDP mechanism for acquiring supra-regular

grammars. Therefore, SP-SNN needs to simultaneously coordinate short-term plasticity

(STP) and long-term plasticity (LTP) mechanisms. Besides, we found that the chunking

mechanism indeed makes a difference in improving our model’s robustness. As far

as we know, our work is the first one toward the “syntax barrier” in the SNN field,

providing the computational foundation for further study of related underlying animals’

neural mechanisms in the future.

Keywords: brain-inspired intelligence, spiking neural network, reward-medulated STDP, population coding,

reinforcement learning

1. INTRODUCTION

The human capacity for language is unique on the earth: althoughmost animals communicate, only
humans show this unbounded expressive power (Fitch, 2018; Jiang et al., 2018). A significant topic
for cognitive neuroscience is determining how human computational capacities differ from those of
other animals (Deacon, 1998;Matsuzawa, 2013; Dehaene et al., 2015a; Yang, 2016; Jiang et al., 2018).
Previously, the generative algorithms acquired by animals seemmainly restricted to the lowest level
of the Chomsky hierarchy (Chomsky, 1957, 1965)—that is, regular languages (Fitch and Friederici,
2012; Fitch, 2014; Jiang et al., 2018). Thus, it has often been proposed that a pivotal gap lies between
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the levels of regular or “finite-state” grammars, which are
accessible to nonhuman animals, and supra-regular grammars
or “phrase-structure” grammars, which may only be available to
humans (Hauser et al., 2002; Fitch, 2014; Jiang et al., 2018).

Some researchers attempt to teach animals understanding
symbol sequences with nested or recursive structures, which are
characteristic of human languages, have mostly been met with
negative results (Miles, 1990; Pinker, 2003; Dehaene et al., 2015b).

So far, the generative algorithms acquired by animals
seem mostly restricted to the lowest level of the Chomsky
hierarchy (Chomsky, 1957, 1965)—that is, regular languages
(Fitch, 2004; Fitch and Friederici, 2012). Thus, it has often
been proposed that a “syntax barrier” lies between the levels
of regular or “finite-state” grammars, which are accessible to
nonhuman animals, and supra-regular grammars or “phrase-
structure” grammars, which may only be available to humans
(Hauser et al., 2002).

However, Jiang et al. (2018) designed the macaque
monkeys supra-regular rule experimental paradigm, and
they demonstrated that after extensive reinforcement training,
macaque monkeys can master the supra-regular grammar, which
breaks the barrier of syntax previously divided. Specifically,
as Figure 1B in Fitch (2018) shown, Jiang and Wang designed
a novel behavioral paradigm, delayed-sequence production
task that required the animal to explicitly generate sequences
according to the instructed grammars (Jiang et al., 2018). They
compared two grammars:

(1) a “mirror” grammar of the form ABC|CBA, which in
formal language theory involves recursive center embedding.

(2) a “repeat” grammar of the form ABC|ABC, i,e, repetition
in serial order, as shown in Figure 1A in Jiang et al. (2018).

Like the grammars of all human languages, mirror grammars
require a learner to possess supra-regular computational abilities,
which requires specific computational machinery not needed at
the lower sub-regular level Figure 1A in Fitch (2018). Besides,
monkeys spontaneously generalized the learned grammar to
novel sequences, including longer ones, and could generate
hierarchical sequences formed by an embedding of two levels
of abstract rules. Compared to monkeys, however, preschool
children learned the grammars much faster using a chunking
strategy (Jiang et al., 2018).

In fact, it is quite common for animals to complete the
sequence by the “repeat” rule. The best example is that birds
can imitate their parents’ singing (Mooney, 2009). However,
for the “mirror” sequence production, negative results are often
obtained (Dehaene et al., 2015b). The essential reason is thatmost
of the synapses (except electrical synapses) are unidirectional,
and the reverse order production requires the agent to have the
ordinal knowledge (Dehaene et al., 2015b). Even though when
people are faced with the challenge of recalling a sequence of
a phone number in reverse order, they often need to repeat
the number sequence repeatedly to determine the position of a
specific number in the sequence to complete the task. Therefore,
the “mirror” sequence production task is a complex cognitive
task that requires more advanced cognitive brain regions to
participate in Fitch (2018). It is of great significance to reveal
the cognitive process of reconstructing symbol sequence for

understanding human language ability (Dehaene et al., 2015b;
Jiang et al., 2018).

Their work inspired us to explore whether SNN can also break
the “syntax barrier.”

After experimental verification, we demonstrated SNN
could indeed handle the same sequence production task. The
innovative aspects of this work are as follows:

• As far as we know, we are the first one to demonstrated that
SNN can break the “syntax barrier” with Population-Coding
and Reward-Modulated STDP mechanism, coordinating STP
and LTP mechanisms simultaneously.
• We demonstrated that the chunking mechanism, helping

to improve the robustness and learning efficiency of
the network.
• Our work provides the computational foundation for further

study of underlying animal neural mechanisms in the future.

2. MODEL AND METHODS

2.1. Neuron Model and Synapse Learning
Rule
There are various neuron models such as the famous H-
H model (Hodgkin and Huxley, 1952), Leaky Integrate-and-
Fire neuron (LIF) model (Miller, 2018), Izhikevich neuron
model (Izhikevich, 2003), and so on.

In order to simplify the computational complexity of the
model, we choose the Leaky Integrate-and-Fire neuron model as
the building block of the Spiking Neural Network to complete the
whole experiment. Standard LIF models are shown in Equations
(1), (2), and (3).

Cm
dV

dt
= −g(V − Vs)+ I (1)

τm
dV

dt
= −(V − Vs)+

I

g
(2)

V → Vreset if (V ≥ Vthreshold). (3)

Cm is the membrane capacitance of the neuron, V is the
membrane potential of the neuron, g is the conductance of the
membrane, Vs is the steady-state leaky potential, here we let
Vs = Vreset to simplify the model. I is the input current of the
neuron. τm =

Cm
g represents the voltage delay time, and different

types of neurons have different values of τm.

I =
∑

j

wj,iσj(t − 1)+ Is (4)

σi(t) =

{

0 V < Vthreshold

1 V ≥ Vthreshold
(5)

Equation (4) shows that the current of neurons consists of
two parts: the current from other neurons and the external
stimulating current Is. Wj,i is the weight of i-th neuron to j-th
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TABLE 1 | Model parameters.

Model/Rule Parameter Value

LIF model Cm 30nF

τm 30 ms

Vreset −65 mv

Vthreshold −35 mv

τref 10 ms

STDP rule τs 15 ms

τw 10 ms

A+ 4

A− 0.95

neuron. σi(t) is the indicator to judge if the i-th neuron firing
at the time of t in Equation (5). And external stimuli mainly
corresponding to the appearance of a specific symbol.

As for the synapse learning rule, Spike Timing Dependent
Plasticity (STDP) (Bi and Poo, 1998; Dan and Poo, 2004) is one
of the most important learning principles for the biological brain.
STDP postulates that the strength of the synapse is dependent on
the spike timing difference of the pre- and post-neuron (Dan and
Poo, 2006).

Here we use STDP to update synaptic weights according to
the relative time between spikes of presynaptic and postsynaptic
neurons. The modulation principle is that if the postsynaptic

neuron fires a few milliseconds after the presynaptic neuron, the
connection between the neurons will be strengthened, otherwise,
the connection will be weakened (Wittenberg and Wang, 2006).
The update function is shown in Equation (6), where A+ and A−
are learning rates. τs and τw are STDP time constant, and1t is the
delay time from the presynaptic spike to the post-synaptic spike.

1wj,i =

{

A+e
(1t/τ+) −τw < 1t < 0

−A−e
(−1t/τ−) 0 < 1t < τw

(6)

All the parameters can be found in Table 1.

2.2. Working Memory Based on Population
Coding
In the macaque monkeys’ sequence producing experiment,
researchers designed the paradigm where the macaque monkeys
need to produce the sequence of the spatial symbols according to
different rules, i.e., Repeat/Mirror.

Obviously, working memory is a necessary condition for
sequence producing (Jiang et al., 2018). Just as the macaque
monkeys must memorize the spatial symbols before producing
process, our SNN should also include the corresponding
circuit to accomplish working memory function. Therefore, we
implemented the Working Memory Circuit (WMC) to realize
related function, which will be covered in detail in this section.

Neurons can encode complicated temporal sequences such as
themating songs that songbirds learn, store, and replay (Quiroga,
2012; Yi et al., 2019). Inspired by the previous research work, an
invariant, sparse, and explicit code, which might be important
in the transformation of complex visual percepts into long-term

FIGURE 1 | The architecture of Working Memory Circuit (WMC), each row of

neuron populations corresponding to the six symbol on the screen shown to

macaques in biology experiment. And the synapses between populations

update with STDP learning rule.

and more abstract memories (Quiroga, 2012). It is reliable to
assume when the macaques try to memorize the raw sequence,
different populations of neurons are activated, i.e., they are bound
to different light spots. Based on this assumption, we designed the
Working Memory Circuit (WMC) to mimic the neuron activity
of macaque monkeys.

Figure 1 shows the single unit of Working Memory Circuit,
which includes six populations of neurons corresponding to six
appear on the screen, the corresponding neuronal population will
be stimulated in a short time window by an extra input current.
Regarding the number of neurons of neuron population, we try
different sizes in the experiment, which will be discussed in detail
in the following chapters.

Inspired by biological discoveries we translate the appearance
of single symbol in screen into the external input stimulation
to corresponding spike neuron population. We choose Poisson
Encoding as the method of input stimulation.

Due to the randomness of the Poisson Encoding, part of
neurons in the population will fire at different times when the
external stimulation window is given. The main function of
inhibitory neurons is lateral inhibition. In order to make only
one population of neurons fire among the six symbols, the
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inhibitory neurons in each population will inhibit remaining five
populations of neurons.

Because symbols appear in sequential order, different
populations of neurons will fire in turn. It is precisely because of
different populations of neurons fire in a particular order, STDP
rules can make a difference in the process of memory. Figure 1
shows how the STDP rules influence the memorizing process
with different temporal activation of neuron populations.

The whole memorizing process starts with the cross in the
center of the screen in Figure 1B in Fitch (2018) lit, which
corresponds to the “begin” neuron population in WMC. This
population obtains extra current and part of the memorize will
fire. Then, according to the examples of Figure 1A in Jiang et al.
(2018), symbols 1, 2, and 5 appear in turn, and the corresponding
neuron population obtains the extra current in turn and fire
in turn. Due to the mechanism of STDP, new synapses are
formed between the corresponding populations of neurons of
symbols 1, 2, and 5, as shown in Figure 1, then completing the
memory process. It is worth mentioning that the “125” sequence
is just an example for convenience of understanding, WMC can
memorize the sequence composed of any three symbols in the set
of position symbols.

2.3. Motor Circuit
In the macaques’ sequence producing experimental paradigm,
macaques need to press the light spots in the screen by correct
sequence to get the reward (Jiang et al., 2018). Neuroscientists
have found that in the biological brain, action instructions are
encoded by specific motor neurons (Wichterle et al., 2002).
Correspondingly, in our model, we must define the triggers of
pressing action.

The center part of Figure 2 shows the concrete structure of
the motor circuit. Motor circuit receives the projection from
Working Memory Circuit and Reinforcement Learning Circuit.

In a nutshell themacaquemonkeys perform a specific position
keystroke operation once a corresponding motor neuron fire.
In our SNN model, the network output a symbol once. (Six
light spots, in this case, correspond to six motor neurons in
each population).

2.4. Reinforcement Learning With
Reward-Modulated STDP
Unlike the short-term plasticity (STP) (Markram and Tsodyks,
1996; Abbott et al., 1997; Zucker and Regehr, 2002)mechanism in
the memory process, macaque monkeys use long-term plasticity
(LTP) (Bi and Poo, 2001) mechanism as the mean of learning
Repeat/Mirror rules (Jiang et al., 2018). That means macaque
monkeys’ memory about a particular sequence maintains short
time, while the learning of producing rules are in the long
term. According to the experimental paradigm in the references,
macaquemonkeys will be rewarded with food or water if they can
complete the production of the sequence in the course of training,
and punitive measures (i.e., blowing the monkey’s eyes with air)
will be launched if there are any symbolic errors in the production
process (Jiang et al., 2018). Therefore, it is reasonable to assume
that the learning of the Repeat/Mirror rules in macaque monkeys
is based on reinforcement learning.

The Reinforcement Learning Circuit (RLC) on the right side
of Figure 2 is the core function circuit that enables the network
to master different rules. The RLC consists of presynaptic and
postsynaptic parts, each of which contains several populations of
neurons. In Figure 2, on the right side of RLC are the presynaptic
neuron populations, which receive external stimulation and affect
postsynaptic neuron populations in RLC; on the left side are the
postsynaptic neuron populations, which receive the projection
from the presynaptic neuron populations and transmit the signal
to the motor neurons, guiding the motor neurons to fire in a
specific order.

In addition to the presynaptic “cue” neuron population
and postsynaptic “end” neuron population, the remaining six
populations of neurons correspond to each other, divided
into three population by row, corresponding to the first,
second, and third positions in the sequence, respectively.
Dehaene have proposed that a taxonomy of five distinct
cerebral mechanisms for sequence coding: transitions and timing
knowledge, chunking, ordinal knowledge, algebraic patterns, and
nested tree structures (Dehaene et al., 2015b), which inspired
us that the ordinal knowledge should be encoded by different
populations of neurons.

Therefore, the core of the so-called different “rules” lies in the
connection mode of the reinforcement learning circuit. Just as
macaque monkeys acquire rules in experiments, the acquisition
of rule learning of our networks is also a reinforcement
learning process.

Before the experiment was completed in the macaque
monkeys (Jiang et al., 2018), these two rules were considered
supra-regular rules that only human beings could master.
Figure 2 shows all the components of the network, including
memory circuit, motor neurons population, and reinforcement
learning circuit. In this case, for the convenience of introduction,
we will describe the process to complete the sequences of length
three production task.

How SNN can realize reinforcement learning is an open
question hitherto, there is some leading research work in this
field (Urbanczik and Senn, 2009; Frémaux and Gerstner, 2016;
Wang et al., 2018). The main contradiction lies in the current
learning rules of SNN synapses, such as STDP, Hebbian, etc.,
that the time of synaptic update was slightly later than the
time of local neuron fire, however, in reinforcement learning,
reward/punishment come after a trial. How to build a bridge
between reward/punishment and synaptic learning rules such as
STDP is where the crux lies (Izhikevich, 2007).

After full investigation, we adopt reward-modulated STDP (R-
STDP) to implement the whole experiment due to the excellent
biology plausibility (Frémaux and Gerstner, 2016).

The main idea of R-STDP is to modulate the outcome of
“standard” STDP by a reward term (Friedrich et al., 2011).

Synaptic eligibility trace (right box in Figure 3) stores a
temporary memory of the STDP outcome so that it is still
available by the time a delayed reward signal is received (Frémaux
and Gerstner, 2016). We regard the timing condition (or
“learning window”) of traditional STDP as STDP(ni, nj), ni and nj
denote the presynaptic and postsynaptic neuron in the network.
The synaptic eligibility trace keeps a transient memory in the
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FIGURE 2 | The whole architecture of SP-SNN is divided into three neuron circuits. The orange lines in Working Memory Circuit mean the synapses inner WMC that is

formulated by STDP rule. The thin black lines between WMC and Motor Neurons represent every population neurons in WMC project to the same motor neuron,

which fire to trigger the output action. The gray arrows between Reinforcement Learning Circuit and Motor Neurons display each population neurons in RLC project to

the same motor neuron as well. Moreover, the thick black lines in RLC show the synapses inner RLC. With reinforcement learning, the network will gradually learn

different sequence reconstruction rules, which will be reflected in the weight distribution of synaptic connections in RLC.

form of a running average of recent spike-timing coincidences.
Synaptic eligibility traces arise from theoretical considerations
and effectively bridge the temporal gap between the neural
activity and the reward signal.

1ej,i = −
ej,i

τe
+ STDP(ni, nj) (7)

ej,i is the eligibility traces between presynaptic neuron i and
postsynaptic neuron j, τe is the time constant of the eligibility
trace. The running average is equivalent to a low-pass filter. In
R-STDP mechanism, the synaptic weight W changes when the
neuromodulatorM signals exist.

1W = M ∗ E (8)

Considering the complexity of the network, we simply choose R-
max policy i.e., M = R. R is the reward or punish signal toward
network which is given by the experiment environment. Actually,

R is the function of time t, Equation (9) shows how R changes
through time.

R(t) =















Cr t − tr ≤ TR

Cp t − tp ≤ TR

0 t − tr > TR

0 t − tp > TR

(9)

Cr and Cp are the constants of reward and punish signal. tr and tp
denote the latest time of reward and punish. And TR is the size of
time window of reward or punish signal. In the experiment, we
set Cr = 10, Cp = −10, and TR = 5.

Specifically, in the process of a sequence production, macaque
monkeys need to memorize symbols sequence firstly, through
STDP learning rules to complete the STP of WMC when the
production process starts, under the guidance of the start signal,
the neurons in WMC corresponding to the symbols in the
original sequence fire in an ideal situation. Because there is a
corresponding population to target connection between WMC
and the motor neuron population, the membrane potential of
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FIGURE 3 | The schematic diagram of Reward-modulated STDP. Different from the general STDP rules, when neurons implements the R-STDP rules the synaptic

weights will not be updated once the pre- and post-synaptic neurons generate spike pair, but temporarily stores the variations of weights in the eligibility trace. Only

when the reward or punishment signal comes, the corresponding synaptic weights will be updated according to the current value of the eligibility trace and the

reward/punishment signal.

Algorithm 1: The learning process of SP-SNN

1. Initialize Npopulation = 50,Vthreshold = −35mv, and other parameters of the network
2. Load Training Set(S)
3. Start training procedure
for every sequence in S do

Memory stage:
Increase Is of corresponding populations
Update weightsWWMC with STDP rule by Equation (6) ⊲ STDP rule

Reinforcement learning stage:
Increase Is of begin populations of RLC
if output correct sequence then

R(t)← Cr ⊲ Give reward
else

R(t)← Cp ⊲ Give punishment
end if
Update weightsWRLC by Equation (8) ⊲ R-STDP rule

end for
4. Start test procedure

motor neurons corresponding to the symbol increases. Although
the membrane potential of these particular motor neurons
has not reached the threshold of the action potential, it will
be significantly increased compared with other neurons. Once
the post-synapse neuron population in the RLC starts to fire
frequently, the membrane potential of corresponding motor
neurons population will rise quickly until fire. For a different
rule, Repeat/Mirror, the network should produce the sequence
by a different order, which means different firing order of post-
synapse populations in RLC. It is where reinforcement learning
makes a difference.

The more detailed learning process of SP-SNN is shown in
Algorithm 1.

2.5. The Chunking Mechanism of SP-SNN
Through the design and verification of the macaque monkeys
supra-regular rule experimental paradigm, it is found that after
intensive training, macaque monkeys can master the supra-
regular grammar, breaking the barrier of syntax previously
divided (Jiang et al., 2018). Jiang et al. (2018) point out that
whether there is a clear boundary between human and animal

language competence needs to be discussed in detail again
(Fitch, 2018).

Neuroscientists and psychologists have been exploring the
Chunking Mechanism for a long time (Ellis, 1996; Gobet et al.,
2001; Fujii and Graybiel, 2003). It is generally believed that
this mechanism plays an essential role in human short-term
working memory (Burtis, 1982), knowledge acquisition (Laird
et al., 1984; Gobet, 2005), and even skill learning (Rosenbloom
et al., 1989; Pammi et al., 2004). Bibbig et al. (1995) showed
that after learning the hippocampus neurons form chunks that
are special representations for co-occurrence of neural events in
several association areas via computer simulations of a spiking
neural network.

Decomposing a long sequence into several shorter sequences
to improve the efficiency and accuracy of memory is the core
component of chunking mechanism (Ellis, 1996). For example,
it is difficult for one person to remember a whole sequence
of mobile phone numbers. Instead, the mobile phone number
sequence is decomposed into several shorter sequences to realize
the memory. Therefore, inspired by Chunking Mechanism in
the cognitive process of biological brain, we try to explore
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FIGURE 4 | (A) Before the introduction of chunking strategy, the neural network architecture diagram. (B) After the introduction of chunking strategy, the neural

network architecture diagram. For the convenience of composition, WMC and motor circuit are merged into gray hexagons, each refers to six different position

symbols.

the introduction of a biologically similar Chunking Mechanism
into the network, and then observe the changes in network
performance of sequence representation. Specifically, compared
with the network without Chunking Mechanism, the main
difference of the new network is the connection mode, i.e., after
the introduction of Chunking Mechanism, the long sequence is
segmented into several shorter chunks.

For instance, as shown in Figure 4A, several populations of
neurons corresponding to six position symbols in the WMC fire
sequentially according to the order in which symbols appear.
The synaptic connections among six gray hexagons will be
shaped by STDP rule, representing the memory for a 6-length
sequence. Figure 4B shows how the network splitting a 6-length
sequence into two 3-length chunks. Based on this instance, we
completed the construction of spike neural network in the form
of Figures 4A,B in the follow-up experiment, to explore the
influence of chunking mechanism.

3. EXPERIMENT

3.1. Sequence Memory With Population
Coding and STDP
First of all, we completed the construction of WMC, whose
structure is shown in the Figure 1.

The experimental process is divided into two stages: memory
stage and test stage. In the memory stage, the original sequence
was repeatedly displayed to SP-SNN several times. Each time
a position symbol appears, the corresponding population of
neurons is stimulated by external current stimuli and fire. Here
we use the Poisson encode to activate the neuron population. The
sequential firing of different populations of neurons combined
with the STDP rule formed specific synaptic connections, thus

forming the memory of specific sequence. This process is shown
in Figure 5A for 0–400 ms.

In the test stage, as shown in Figure 5A for 600–800
ms, we only give the network a start signal, i.e., activate
the “begin” neuron population, and then let the network
independent work without any external stimulation, and
observe the firing state of the network. When more
than half of the neurons in a neuron population fired,
it is considered that the network outputs corresponding
symbol. Only when all the symbols in the sequence are
output in the correct order can we think that the sequence
is correctly memorized. Figure 5B shows the synaptic
connection between neurons after one trial of sequence
memory experiment.

In Working Memory Circuit (WMC), all connections are

initialized to a small random number very close to 0. Neural

plasticity occurs between different populations of neurons to
realize sequence memory, and weak synaptic connections are
maintained within the neuron population.

In order to better understand whether the population coding
strategy contributes to the robustness of the model, we tested
the recall accuracy of the WMC toward 3-length sequence
with and without population coding strategy for different
intensities of background noise, which is widely present in
the human brain (Hidaka et al., 2000; Mišic et al., 2010).
We introduce Gaussian white noise as the background noise
of the network.Each neuron receives a stimulus current of
Gaussian white noise, that is, a random variable with a
mean value of 0 and a variance of σ 2. According to the
definition, the noise intensity of white Gaussian noise equals
to σ 2. We test the accuracy of the network under different
noise intensity.
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FIGURE 5 | (A) The spike trains of neural network of working memory task with population coding strategy. Each blue dot indicates that the neurons corresponding to

the vertical axis discharge at the time node corresponding to the horizontal axis. The number of neuron in population is 60 in this implementation. (B) The weights

distribution of neural network after implement STDP learning.

Intuitively, as Figure 6 shown, we found with the
increase of C (the number of single neurons population),
the noise resistance of the model becomes more robust.
When we increase C from 1 to 30 and then to 60, the
accuracy of the model is greatly improved under the same
noise conditions. Population coding strategy can indeed
significantly improve the robustness of the model. However,
when C continues to increase to 80 or even 100, the
accuracy of the model increases slightly. It is interesting
to explore the cause, we will discuss this phenomenon
in the next chapter. Considering the computational
complexity and experiment, we set C = 60 to carry out
the follow-up experiments.

3.2. Sequence Production
Then, we completed the whole network test, including WMC,
MC, and RLC, and demonstrated that SNN could reproduce the
sequence according to different rules. For example, for the reverse
production of a sequence of length 3, the spike trains and the
strength of synaptic connections between different populations
of neurons are shown in the Figure 7.

Compared with the result in Jiang et al. (2018), they
found that the accuracy of macaque monkeys in the process
of production sequences according to Mirror rules after
the acquisition of rules is U-shaped as Figure 5A in Jiang
et al. (2018) shown. Neuroscientists claim that the main
reason causes this phenomenon are: the superposition of
primacy and recency effect, which are considered essential
in the process of evolution (Luchins, 1957; Jiang et al.,
2018).

It is a well-established finding that the items at the beginning
or at the end of the list are more likely to be recalled than the
items in the middle of that list, which are termed the primacy
and recency effects (Stewart et al., 2004). And both primacy and

FIGURE 6 | Three different color curves show that the memory accuracy of the

network for the sequence decreases with the background noise enhancement

when C (the number of single neurons population) takes different values.

recency effects can be obtained in nonhuman primates (Castro
and Larsen, 1992).

In our practical simulation experiment, we found that the
accuracy of the production of different position symbols is
close to 100% after the network acquires specific rules, which
is difficult to reflect the difference of different positions in
the sequence. Therefore, in order to compare with biological
experiments, we pull-in the background noise based on the
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FIGURE 7 | (A) The spike trains of the whole neural network during R-STDP training process. Each blue dot indicates that the neurons corresponding to the vertical

axis discharge at the time node corresponding to the horizontal axis. As for the number of neurons, WMC is composed of No. 1-979 neurons, No. 980–997 are motor

neurons and RLC consists of No. 998 1639 neurons, respectively. (B) The weights distribution of Reinforcement Learning Circuit after implement R-STDP learning,

which contains the supra-regular grammars (Mirror rule in this figure).

FIGURE 8 | (A) Three different color curves represent the reconstruction accuracy of the network for three different positions in the sequence, respectively. With the

increase of noise intensity, the accuracy of the three positions show a downward trend, but they always maintain the relationship of U-shape. (B) The average value of

production accuracy of neural network for three different positions under different noise intensity.

original network. What we are very excited about is: as
shown in Figure 8A, with the increase of noise, the accuracy
of different position symbols in the network production
sequence is gradually decreasing, but the production accuracy
of different position symbols in the sequence has always
maintained this U-shaped structure, which shows that the

network structure and connection structure we constructed

is highly biologically interpretable. Furthermore, Figure 8B

shows the average accuracy of three positions. It is of some

enlightenment to further understand how macaque monkeys
can complete the task of sequence production and break the
grammatical barrier.

3.3. Sequence Production With Chunking
Mechanism
For the network structure after the introduction of Chunking
Mechanism, since the production rules are consistent within each
chunk, different chunks can share a population of reinforcement
learning postsynaptic neurons, as shown in Figure 4B.

Individually, in this case, in the sequence memory stage, six
symbols appear sequentially and are cut into two chunks of
3+3. Two chunks form specific connections to complete local
memory. In the sequence production stage, the RLC begins to
work, and in conjunction with the WMC, correct motor neurons
fire, completing the so-called sequence production. During
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FIGURE 9 | The blue curve and the green curve represent the production

accuracy of neural network with or without chunking strategy, respectively.

With the increase of noise intensity, both accuracy decreases. However, the

accuracy of networks with chunking strategy is always higher than that without

chunking strategy.

the experiment, we trained the original network, as shown
in Figure 4A, and the network after introducing Chunking
Mechanism, as shown in Figure 4B, respectively. Then, we
compared the difference in production accuracy between the two
networks under different noise conditions, the result is shown
in Figure 9. As the noise intensity increases, the accuracy of
both networks decreases. However, the accuracy of Chunking
Mechanism network is always higher than that of the original
network, which fully reflects the vital role Chunking Mechanism
plays in this task. We will discuss the reasons for Chunking
Mechanism’s role in detail in section 4.

4. DISCUSSION

We demonstrated that through the fusion of neuron population
coding, STDP synaptic learning mechanism, and reinforcement
learning mechanism (R-STDP), the SNN network could perform
the same ability as macaque monkeys to construct the
sequences according to super-regular rules, which was previously
considered unique to humans. As far as we know, our work
is the first to complete the research of sequence production
based on SNN in accordance with supra-regular rules at the
computational level.

Inspired by the research about “grandmother cells” in
neuroscience (Bowers, 2009; Quiroga, 2012), we proposed to
use the activation of a population of neurons to represent the
emergence of a specific symbol in the brain, which may be caused
by extra stimuli (correspond with the memory stage), or by the
current from other populations of neurons within the network
(correspond with the sequence production stage). In the process
of experiment, we found that the population coding has stronger

robustness and stability than the single neuron coding. However,
when the number of neurons in the group reaches a certain
degree, the robustness of the network tends to be stable and
will not grow infinitely. How the brain sets the size of neuron
populations to balance the robustness and consumption will be a
very interesting topic in our future research.

Inspired by the training process toward macaque monkeys
in the experimental paradigm of sequence production (Jiang
et al., 2018), we introduced the reinforcement learning
mechanism in super-regular rule learning, mainly using the
R-STDP mechanism with eligibility traces method (Frémaux
and Gerstner, 2016). Before defining the structure, we thought
the difficulty of this work is that every time a network (or
monkey) gets a reward or punishment, it is easy for the
network (or monkey) to link the symbols with the reward and
punishment signals, actually the production rules behind the
symbols are related to the reward and punishment signals. In our
experiments, we substantially helped the network to complete
the transition from symbols to rules behind symbols, that was,
reward and punishment signals are associated with rules, not
just with symbols themselves. In the future work, how to let the
network automatically complete this process, rather than directly
tell the network in a priori way, is a very worthy of study.

In the experimental results of Jiang et al. (2018), the accuracy
of symbol production for different positions in the sequence is
different, and generally presents a U-shaped rule, i.e., the effect
of sequence production in the middle of the sequence is weaker
than that at the beginning and the end. This feature is considered
to be an essential feature in the evolution process. Psychologists
and cognitive scientists believe that this phenomenon is the result
of the superposition of the primacy and recency effect (Luchins,
1957; Stewart et al., 2004).

During the experiment, our proposed network structure was
consistent with macro-cognitive behavior of macaque monkeys,
showing the accuracy of U-type production. The reason why
the network can show U-type accuracy is that our proposed
network structure combined the “primary effect” and “recency
effect” simultaneously.

Respectively, as for the “primary effect,” in WMC, the neuron
populations corresponding to the first symbol in the sequence
is stimulated by the “begin” neuron population, and most of
the neurons in the “begin” neuron population are firing in the
specific time window belong to “begin” population, which leads
to the firing of the first symbol neuron population will be more
intense, directly leading to the greater increase of membrane
potential of the corresponding motor neuron of the first symbol.
Therefore, the first symbol has better noise resistance, causing the
so-called “primary effect.”

About the “recency effect,” because the building block of spike
neural network is a LIF neuron model, and the LIF neuron model
has a leakage mechanism (Miller, 2018), the membrane potential
of the pre-activated motor neuron gradually decreases with the
passage of time, and the last sign appears because of its shortest
production time, and its membrane potential decreases the least,
resulting in the “proximal effect.”

Inspired by Chunking Mechanism in the biological brain, we
implemented the Chunking Mechanism based on SNN in the
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experiment and verified that it plays a vital role in improving the
accuracy of production. After analysis, we found that Chunking
Mechanism can shorten the sequence length of the production
process. In the example of Figure 4, the original network without
Chunking Mechanism needs to recall the whole sequence of
length six first, and then produce it with RLC. Because of
the leakage characteristics of motor neurons, the membrane
potential of motor neurons at corresponding locations decreases
dramatically, which makes it easier to make mistakes. While
Chunking Mechanism is introduced, hardly when every chunk
is recalled, it will be produced immediately. Compared to the
original network, the duration of the decline of the membrane
potential of the new network motor neurons will be shorter, and
the correspondingmembrane potential will be higher, causing the
higher accuracy.

However, we must admit that the chunking mechanism used
in this work still has some limitations. The main limitation
is that we implicitly help SP-SNN to divide a long sequence
into several chunks, that is, to decompose a sequence of length
six into two subsequences of length 3. However, in the actual
human cognitive process, cutting long sequences into chunks has
substantial autonomy and flexibility. How can SNN complete
this process spontaneously? How do different segmentation
methods, such as equal-length segmentation and unequal-length
segmentation, affect the cognitive process’s results? These are
the problems worthy of exploration in the future. However, our
work still completes the preliminary exploration of the chunking
mechanism and demonstrates that the chunking mechanism is of
great help to improve the model’s robustness.

The following will discuss the difference between our work
and the current popular artificial neural network or deep
learning. The difference mainly consists of three parts.

First, almost all the current artificial neural networks set the
weight between neurons to be fixed at the inference stage (only
changes when the network is training), which is different from the
real nervous system. In the real nervous system, the connection
between neurons will be affected by the strength of input signal,
time process and other factors, temporary change with neuron
activity, which is called short-term plasticity of the synapse (STP),
also known as dynamic connection (Markram and Tsodyks, 1996;
Fung et al., 2015).

From the computational point of view, STP provides
the biological neural network one more time dimension in
information processing than the artificial neural network with
a fixed weight, so it has more computational potential and can
perform complex cognitive tasks. From this point of view, it is
obvious that in our network WMC adopts short-term plasticity
(STP). While the synapse in RLC changes in the long term, which
can be looked like a particular kind of long-term plasticity (LTP).
Compared with artificial neural network, our network integrates
STP and LTP mechanism, makes full use of time dimension, and
to a certain extent, expands the boundary of SNN’s information
processing capacity.

Second, although the neural network trained by the current
deep learning technology can solve some specific problems,
its plausibility is very poor (Castelvecchi, 2016), which leads
to serious security problems (such as Adversarial Examples

Problem) and becomes a black cloud over the head of deep
learning (Goodfellow et al., 2014; Liu et al., 2016).

However, our model is totally different. In the experiment,
we can check the firing state and weight distribution of
network at any time, which can be used to judge the
working memory of the current network, the learning process
of rules, and so on. That is to say, the network we
build is completely interpretable. Although the complexity of
our model is not comparable to the current deep learning
technology, our work may bring some inspiration for the
construction of more interpretable artificial intelligence system
in the future.

Finally, for researchers in the field of neuroscience and
cognitive science, our work provides a new perspective to some
extent, that is, how to use the neural network of connectionism
to represent the symbol reasoning of symbolism. In this work,
we demonstrate the feasibility of using spike neural network to
complete the task of production sequence according to supra-
regular rules, breaking the “syntax barrier” of animals. For
further explore the representation of symbols in the animal brain,
as well as how non-human primates such as macaque monkeys
complete the task of sequence representation, our work lay the
foundation of computing.

5. CONCLUSION

This paper proposed a Brain-inspired Sequence Production
Spiking Neural Network (SP-SNN) to model the Sequence
Production process, inspired by a biological experiment
paradigm which showed that macaques could be trained to
produce embedded sequences involved supra-regular grammars.

After experimental verification, we demonstrated that SP-
SNN could also handle embedded sequence production tasks,
striding over the “syntax barrier.” SP-SNN coordinates STP and
LTPmechanisms simultaneously. As for STP, Population-Coding
and STDP mechanisms realize working memory. As for LTP,
the R-STDP mechanism shapes Reinforcement Learning Circuit
for different supra-regular grammars, whose synaptic weights
do not change until a reward/punishment occurs. The U-shape
accuracy of the results of SP-SNN and macaque, which is caused
by the superposition of primacy and recency effect, further
strengthened the biological plausibility of SP-SNN. Besides, we
found the chunking mechanism, i.e., divides a long sequence into
several subsequences, indeed makes a difference to improve our
model’s robustness.

As far as we know, our work is the first one toward the “syntax
barrier” in the SNN field. In future research, we hope to compare
the electrical activity of SP-SNN with the electrophysiological
data of macaque in the sequence production task to expose more
underlying animals’ neural mechanisms in this cognitive process.
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