AUTHOR=Dabaghian Yuri TITLE=From Topological Analyses to Functional Modeling: The Case of Hippocampus JOURNAL=Frontiers in Computational Neuroscience VOLUME=14 YEAR=2021 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2020.593166 DOI=10.3389/fncom.2020.593166 ISSN=1662-5188 ABSTRACT=

Topological data analyses are widely used for describing and conceptualizing large volumes of neurobiological data, e.g., for quantifying spiking outputs of large neuronal ensembles and thus understanding the functions of the corresponding networks. Below we discuss an approach in which convergent topological analyses produce insights into how information may be processed in mammalian hippocampus—a brain part that plays a key role in learning and memory. The resulting functional model provides a unifying framework for integrating spiking data at different timescales and following the course of spatial learning at different levels of spatiotemporal granularity. This approach allows accounting for contributions from various physiological phenomena into spatial cognition—the neuronal spiking statistics, the effects of spiking synchronization by different brain waves, the roles played by synaptic efficacies and so forth. In particular, it is possible to demonstrate that networks with plastic and transient synaptic architectures can encode stable cognitive maps, revealing the characteristic timescales of memory processing.