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Objectives: The specific intrinsic network coupling abnormalities in mild traumatic brain

injury (mTBI) patients are poorly understood. Our objective is to compare the correlations

among the default mode, salience, and central executive networks in patients with mTBI

and healthy controls.

Methods: This 2-year prospective study included 32 acute mTBI patients and 37

healthy comparisons. We calculated the functional connectivity scores among the

default mode, salience, and central executive networks. Then we conducted multilevel

correlation analysis to investigate component correlations, global graph, and local

functional connectivity changes.

Results: Patients with mTBI showed significant increased functional connectivity

between the anterior part of the default mode network and the salience network

compared with controls (p = 0.013, false discovery rate correction). Hyper-connectivity

between the default mode and salience network was significantly positively correlated

with the dimensional change card sort score in patients with mTBI (r = 0.40, p = 0.037).

The average path length of mTBI patients was significantly higher than that of controls

(p = 0.028).

Conclusions: Aberrant functional coupling between the default mode and salience

networks were identified in acute mTBI patients. Our finding has great potential to

improve our understanding of the network architecture of mTBI.

Keywords: mild traumatic brain injury, intrinsic network, multilevel analysis, default mode network, salience

network, network coupling

KEY POINTS

- Aberrant correlation between the default mode and salience networks in acute mTBI.
- Hyper-connectivity significantly positively correlated with the dimensional change card
sort score.

- Understanding of the network architecture of mTBI.
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INTRODUCTION

Worldwide, traumatic brain injury affects about 10 million
individuals annually (Hyder et al., 2007). Traumatic brain injury
is associated with long-term disabilities including cognitive,
psychological, motor, and sensory deficits. About 80% of
traumatic brain injury patients are classified as mild traumatic
brain injury (mTBI) (Kushner, 1998). Approximately 15% of
mTBI patients have persistent neurological symptoms (Shenton
et al., 2012).

fMRI is a non-invasive imaging technique for examining
brain function. It uses changes in the BOLD signal to identify
neuronal activity changes. Resting-state fMRI examines intrinsic
functional connectivity in task-free conditions by mapping
temporally synchronous, spatially distributed, spontaneous low-
frequency BOLD signal fluctuation (Fox and Raichle, 2007).
Resting-state fMRI provides a good signal to noise ratio and
requires minimal patient compliance (Fox and Greicius, 2010).
It has revealed a set of intrinsic connectivity networks. Voxels
in an intrinsic connectivity network exhibit a coherent BOLD
fluctuation pattern.

Many studies aimed at detecting changes in intrinsic
connectivity networks in patients with traumatic brain injury
(Sharp et al., 2014). Disruption of intrinsic connectivity networks
could be a core mechanism of cognitive impairment in patients
with traumatic brain injury. Resting-state fMRI studies have
demonstrated complex patterns of intrinsic connectivity network
abnormalities (Sharp et al., 2011; Shumskaya et al., 2012; Palacios
et al., 2013; Pandit et al., 2013; Arenivas et al., 2014; Iraji
et al., 2015). For example, Zhou et al. reported abnormal default
mode network connectivity patterns in patients with mTBI which
may provide insight into how neuronal communication and
information integration are disrupted after mild head injury
(Zhou et al., 2012).

The triple network model offers a theory for understanding
cognitive dysfunction in brain disorders (Menon, 2011). The
triple network model involves three intrinsic connectivity
networks: the default mode network, the salience network,
and the central executive network. The default mode network
is anchored in the posterior cingulate cortex (PCC) and
the medial prefrontal cortex (mPFC). It plays an important
role in monitoring the internal mental landscape and is
typically deactivated during most stimulus-driven tasks. The
salience network is anchored in the dorsal anterior cingulated
cortex (dACC) and frontoinsular cortex (FIC). It is involved
in detecting, integrating, and filtering relevant interoceptive,
autonomic, and emotional information. The central executive
network is anchored in the dorsolateral prefrontal cortex (dlPFC)
and posterior parietal cortex. It plays an important role in

Abbreviations: AUC, Area under the curve; BOLD, blood oxygen level-

dependent; BSI-18, Brief Symptom Inventory-18; dACC, dorsal anterior cingulated

cortex; dlPFC, dorsolateral prefrontal cortex; FA, fractional anisotropy; DTI,

diffusion tensor imaging; FIC, frontoinsular cortex; fMRI, functional magnetic

resonance imaging; GCS, Glasgow Coma Scale; mPFC, medial prefrontal cortex;

mTBI, mild traumatic brain injury; PCC, posterior cingulate cortex; ReHo,

regional homogeneity; ROI, region of interest; RPQ, Rivermead Post-Concussion

Questionnaire; TBSS, tract-based spatial statistics.

higher-order cognitive function and attention control. The triple
network model states that the couplings among the default mode,
salience, and central executive networks are responsible for the
cognitive impairment in many brain disorders. This model has
been examined in autism, schizophrenia, and frontotemporal
dementia (Uddin, 2014).

Although many studies examined intrinsic connectivity
network abnormalities in mTBI, no studies focused on the
triple network model and examined correlations among the
default mode, salience, and central executive networks in acute
mTBI patients. Our study investigates correlations among the
default mode, salience, and central executive networks in acute
mTBI patients. We use multilevel correlation analysis, which
examines functional connectivity changes across different scales,
to analyze resting-state fMRI data. Understanding correlations
among intrinsic connectivity networks holds great potential
to improve our knowledge of the neuropathology of mTBI.
Identifying neuroimaging features may lead to more accurate
diagnosis and effective treatments.

MATERIALS AND METHODS

Participants
From August 2012 to July 2014, mTBI patients and healthy
comparisons were recruited in Shanghai Dongfang Hospital.
mTBI patients were enrolled in the emergency department.
For a comparison group, health subjects were recruited from
the nearby community through advertisements. The hospital’s
institutional review board approved this study. All individuals
provided written informed consent.

The diagnosis of mTBI was established based on the criteria of
the American Congress of Rehabilitative Medicine for mild brain
injury (American Congress of Rehabilitation Medicine, 1993). A
subject was considered to have mTBI if any one of the following
symptoms was evident following external application of force
to the brain: (1) any period of loss of consciousness, (2) loss
of memory for events immediately before or after the accident,
(3) alteration in mental state at the time of the accident, or (4)
focal neurologic deficits that may or may not be transient. The
inclusion criteria were: (1) loss of consciousness of 30min or
less, (2) Glasgow Coma Scale (GCS) score of 13–15 at 30min
post-injury, and (3) duration of post-traumatic amnesia no
longer than 24 h. The exclusion criteria were: (1) penetrating
head injury, (2) uremia, liver cirrhosis, heart failure, pulmonary
edema, coagulopathy, or renal dysfunction, (3) pregnancy, (4)
in vivo magnetic implants (such as iron, cochlear implants,
vascular clips, etc.) or pacemaker, (5) patient either died or had
already received cardiopulmonary resuscitation before arrival
at the hospital, (6) positive CT findings, (7) history of other
neurological diseases, (8) history of neuropsychological diseases.

The comparison group included healthy subjects who had no
history of neurological, psychiatric, or central nervous system
disease, and no prior TBI. All participants (mTBI and healthy
subjects) were right-handed. Healthy subjects were matched to
mTBI subjects by age, sex, education, and handedness at the
group level.
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FIGURE 1 | Diagram of multilevel correlation analysis.

Among 71 participants, two subjects with significant MRI
motion problems were excluded. The final dataset included 32
acute stage mTBI patients and 37 healthy comparisons.

MRI Protocol
MR imaging was performed in mTBI patients within 7 days of
the injury. MR data were acquired with a Philips Achieva 3.0T
TX MRI scanner (Royal Philips, Amsterdam, Netherlands). The
MR protocol included anatomical imaging (T1 and T2), resting-
state fMRI, and DTI. High-resolution T1-weighted structural
images were acquired with a MPRAGE sequence. The imaging
parameters were TR/TE = 8.2/3.5ms; flip angle = 8 degree;
slice thickness = 1mm, voxel size = 1 × 1mm, FOV = 256
× 256. The T1 acquisition time was 4.56min. Resting-state
fMRI data were acquired with a FE-EPI sequence. The sequence
parameters were: TR/TE = 1,500/35ms, flip angle = 90 degree,
slice thickness = 5mm, voxel size = 3.75 × 3.75mm, FOV
= 240 × 240mm, acquired matrix = 64 × 64, dyn = 210.
Participants were asked to keep their eyes focused on cross-hairs
projected onto a screen, and not think of anything during image
acquisition. The total resting-state fMRI acquisition time was
5.35min. Diffusion tensor images were acquired with a single-
shot echo-planar sequence (TR/TE= 9,000/90ms, slice thickness
= 2mm, voxel size= 2× 2mm, field of view= 256× 256mm).
Diffusion gradients were set in 32 non-collinear directions by
using two b-values (b = 0 and 1,000 s/mm2). The total DTI
acquisition time was 5.5 min.

Neuropsychological Assessment
Neuropsychological tests were administrated within 24 h of MR
imaging. We used the Dimensional Change Card Sort test
(DCCS) to assess executive functioning (Zelazo, 2006). The
DCCS is a standard procedure for measuring executive function,
specifically tapping cognitive flexibility. In the DCCS, two target
pictures are presented that vary along two dimensions (e.g.,
shape and color). Participants match a series of bivalent test
pictures to the target pictures, first according to one dimension
(e.g., color) and then, after several trials, sort the same cards
a new way (e.g., shape). In “switch” trials, the participant must

change the dimension being matched. Scoring is based on a
combination of accuracy and reaction time. This combination
score is converted to a scale score with mean 100 and standard
deviation (SD) 15. Higher scores indicate higher levels of
executive functioning. DCCS was chosen because subjects with
TBI often suffer impairments in their cognitive flexibility as a
result of brain damage (Whiting et al., 2017).

Multilevel Correlation Analysis
Our data analysis and modeling method, called multilevel
correlation analysis, is summarized in Figure 1. Multilevel
correlation analysis centers on modeling correlations among
the default mode, salience, and central executive networks.
It includes the following modules: preprocessing, independent
component analysis, component correlation analysis, graph
analysis, and local connectivity analysis. Multilevel correlation
analysis examines connectivity changes across different scales.
Component correlation analysis focuses on localized changes
in correlations among components. Graph analysis examines
distributed, global level changes in information communication
among components. Local connectivity analysis probes local
functional connectivity changes.

Image Preprocessing
Our resting-state fMRI data preprocessing pipeline was based
on FMRIB Software Library (FSL) (Jenkinson et al., 2012)
and Analysis of Functional NeuroImages (AFNI) (Cox, 1996).
This pipeline (Chen et al., 2016) included the following
steps: skull stripping, slice-timing, and motion correction,
Gaussian spatial smoothing, temporal filtering, regressing out
nuisance parameters, and spatial normalization to the Montreal
Neurological Institute (MNI) space.

We first dropped the first ten volumes to remove T1
equilibration effects. Thenwe performed slice-timing andmotion
correction followed by skull-stripping. Skull-stripping results
were verified by visual inspection. We smoothed fMRI volumes
using a Gaussian kernel with a full width at half maximum =

6mm, and temporally filtered fMRI volumes with bandwidth =

[0.005Hz 0.1Hz]. We extracted a base volume from the 4D fMRI
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volume and registered this base volume to the subject’s T1 volume
using themutual information-based registration in FSL. Based on
the subject’s T1 image segmentation results, we obtained white
matter and CSF masks. We calculated the mean white matter and
CSF signals. Then we regressed out the six motion parameters,
the mean frame-wise displacement (FD), and the mean white
matter and CSF signals. We registered the preprocessed 4D
volume to theMNI space by applying the composite deformation
field which combined the deformation field from the base volume
to the subject’s T1 volume, and that from the subject’s T1 volume
to the MNI space.

Excessive head motion is known to induce artifacts and
false-positive correlations among brain structures in resting-state
fMRI (Power et al., 2012).We employed relatively strict criteria to
address the head motion problem. First, we excluded all subjects
with mean FD of more than two standard deviations above the
sample mean. Second, we regressed out head-motion parameters
and mean FD from the BOLD signal.

Independent Component Analysis
We used Independent Component Analysis (ICA) to identify
intrinsic networks. We performed probabilistic ICA (Beckmann
and Smith, 2004) by applying MELODIC (Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components) implemented in FSL to the preprocessed resting-
state fMRI data from the comparison group. A multi-session
temporal concatenation tool in MELODIC was used; variance
normalization also was used. We detected component masks
based on comparison group data for two reasons: first, applying
ICA to data from both the mTBI and comparison groups is less
sensitive in detecting differences in network changes (Rytty et al.,
2013). Second, ICA results based on the comparison group are
a more robust match with previous healthy subject group ICA
templates (Rytty et al., 2013). The number of components used
was 30 because previous studies found ICA with 30 components
can reliably identify intrinsic networks (Shumskaya et al., 2012).
MELODIC converted the estimated ICA maps to Z statistic
images using a mixture model approach. The Z statistic images
were thresholded with Z = 4 (Beckmann et al., 2009). Based on
visual inspection of spatial maps and the related time courses
and power spectrums, we identified components as ventricular,
vascular, susceptibility, or motion-related artifacts (Kelly et al.,
2010); these noise components were excluded from the analysis.

For an ICA component spatial map, we determined to which
intrinsic network it belonged by using template matching. We
used the Allen intrinsic network template (Allen et al., 2011)
as the intrinsic network template because it is widely used to
examine brain networks in health and disease. We calculated the
cross-correlation between a component and a reference network
and determined to which reference network the component
belonged. We selected ICA components that were in the default
mode, salience, and central executive networks. Subject-specific
time courses relating to ICA component maps were extracted
using dual regression. For each subject, the group-average set
of spatial maps was regressed into the subject’s 4D volumes.
This resulted in a set of subject-specific time courses for ICA
component spatial maps.

Component Correlation Analysis
Component correlation analysis centers on studying correlations
among components. Each ICA component constituted a node.
For each subject, we calculated the node time course; then
calculated the Pearson correlation coefficient between a time
course pair. We converted it to a Z score using Fisher’s Z
transformation. This Z score was referred to as a functional
connectivity score. For a study with K components, we generated
a K × K functional connectivity matrix for each subject.

For a functional connectivity score, we used the Wilcoxon
rank-sum test to determine whether there was a significant
difference between mTBI patients and healthy subjects. We used
the False Discovery Rate (FDR) to address multiple comparisons.
If the FDR corrected p-value was smaller than 0.05, there was a
significant difference across groups. Such a score was a feature
characterizing mTBI. Let F denote the detected feature set.

To assess the stability of our findings, we conducted a
Jackknife resampling-based analysis. We removed one sample
from the original dataset and then conducted the analysis based
on the remaining samples. This resulted in a resampling based
feature set. If our dataset has n samples, we will generate
n resampling-based feature sets. We compared the original
feature set with resampling based feature sets and calculated
a stability metric λ. The stability metric was defined as
N[original=resampling]/n, whereN[original=resampling] was the number
of times that the original feature set was the same resampling
based feature set, and n was the sample size. λ was between 0 and
1. Greater λ represented a more stable model.

Association With Executive Function
To investigate brain-behavior associations, we performed two
association analyses. First, we conducted a correlation analysis
between the detected feature and the DCCS score for mTBI
subjects. Second, for all subjects (healthy and mTBI subjects),
we conducted a regression analysis with the DCCS score as
the dependent variable and the detected feature and the group-
membership variables as predictors. This analysis detected group
differences in the association between the DCCS score and the
detected imaging feature. Normality was checked by the Shapiro-
Wilk test.

Graph Analysis
Graph analysis uses graph theoretical methods to analyze
functional connectivity matrices. Relative to component
correlation analysis, it can generate global graph descriptors
to characterize the topological or information-theoretical
complexity of a graph. Graph analysis and component
correlation analysis provide complementary information
about couplings among the default mode, salience, and central
executive networks.

An ICA component in the default mode, salience, and central
executive networks was a node in a graph. We calculated
the Pearson correlation coefficient between a component-time
course pair; and converted it to a Z score. We generated a
connectivity matrix for each subject. To generate a graph, we
thresholded the connectivity matrix based on graph density. The
density threshold was chosen as 0.35 < graph density < 0.4
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(step size was 0.02). The lower limit was chosen to prevent a
disconnected graph; and the upper limit was chosen because
brain networks in general are not densely connected and have
a density <0.4 (Sporns, 2011). The thresholding step generated a
weighted graph. Then we calculated two graph descriptors: the
global clustering coefficient and average path length (Rubinov
and Sporns, 2010). The clustering coefficient of a node was
defined as the likelihood of the neighborhoods being connected
with each other. The global clustering coefficient was the average
of the clustering coefficient over all the nodes. The path length
between the nodes was the sum of the edge length along the
path. The average path length was the average of the shortest path
length across node pairs. Both the global clustering coefficient
and average path length were calculated based on the weighted
graph. For each threshold, we calculated a graph descriptor. An
aggregated graph descriptor was generated by calculating the
area under the curve (AUC) across graph density thresholds
(Bullmore and Bassett, 2011).

Stability Relative to ICA Component Mask
Generation
We examined whether our findings were sensitive to the method
generating ICA componentmasks. LetMask(control) denote that
ICAmasks are generated based on controls. Let Mask(all) denote
that ICA masks are generated based on all subjects (controls and
mTBI). We rerun the whole ICA workflow using Mask(all). We
used fslcc (Jenkinson et al., 2012) to match Mask(control) and
Mask(all). If a component in Mask(controls) matched multiple
components in Mask(all), we merged these component masks in
Mask(all). With this transformation, we can compare results in
the Mask(control) and Mask(all) spaces.

Local Functional Connectivity Analysis
Local functional connectivity quantifies local functional
couplings among spatially adjacent voxels. Regional homogeneity
(ReHo) is widely used to examine local functional connectivity
(Zang et al., 2004). In ReHo, Kendell’s coefficient of concordance
was used to measure regional homogeneity or similarity of the
ranked time series of a given voxel with its nearest 26 neighbor
voxels in a voxel-wise way. The intracranial voxels were extracted
to generate a mask. Then 3D ReHo in AFNI was used to generate
the ReHo map. Each subject’s ReHo map was divided by its own
mean ReHo within the brain mask for standardization purposes
(Zang et al., 2004). Then voxel-wise t-test analysis was performed
to detect voxels whose ReHo values were significantly different
across groups. Monte Carlo simulation in AFNI was used for
multiple comparison correction. Voxels with corrected p-value
< 0.05 were significantly different across groups.

Anatomical Connectivity Analysis
To investigate anatomical connectivity underlying functional
connectivity, we used Tract-Based Spatial Statistics (TBSS)
implemented in FSL to detect changes in brain anatomical
connectivity. We analyzed fractional anisotropy (FA) which
quantifies local tract directionality and integrity. TBSS projects
a subject’s FA map to a common space, creates an FA skeleton,
and projects each subject’s FA onto the skeleton to generate

a skeletonized FA image for each subject. This skeletonized
FA image represents brain anatomical connectivity. The white
matter integrity differences were investigated by using the
threshold-free cluster enhancement at p-value < 0.05 (5,000
permutations) fully corrected for multiple comparisons. If a
voxel’s corrected p-value was smaller than 0.05, we considered
this voxel’s FA changed across groups.

We also performed ROI based anatomical connectivity
analysis. ROIs were defined using the Johns Hopkins University
white matter tractography atlas. There was a total of 20 ROIs in
our analysis representingmajor whitematter fiber tracts. For each
ROI, we calculated the average FA value in the skeletonized FA
map. Then we used independent two-group Mann-Whitney U-
test to identify ROIs whose FA values were different between the
mTBI and comparison subjects. The FDR correction was used to
correct for multiple testing.

RESULTS

Participant Characteristics
Participant characteristics are summarized in Table 1. Mean
ages were 30 years (SD 6.0) and 31 years (SD 8.7) for mTBI
patients and comparisons, respectively. There were no significant
difference in age across groups (p-value = 0.37, two-sample
t-test); no significant difference in the female:male ratio (p-
value = 0.81, chi-square test); and no significant difference
in education (p-value = 0.11, two-sample t-test). All subjects
were right-handed.

For mTBI patients, the cause of injury included traffic
accidents (Nine patients), falls (Two patients), sports-related
accidents (Two patients), and objects striking the head (19
patients). The injury severity in mTBI patients was mild: 97%
with GCS = 15. The RPQ measures severity of 16 post-
concussion syndrome symptoms, as compared to the premorbid
level. The mean RPQ was 16 (SD 13.2). The BSI-18 is a tool
to assess the level of psychological distress after mTBI. It covers
somatization, depression, and anxiety. The mean BSI-18 was 15
(SD 14.4).

TABLE 1 | Demographic (age, sex, education), neurocognition (DCCS), and

disease severity (Rivermead post-concussion questionnaire and brief symptom

inventory-18) of participants.

mTBI (n = 32) Controls (n = 37) P

Mean (SD) Mean (SD)

Age (years) 30 (6.0) 31 (8.7) 0.37

Sex (female/male) 12/20 16/21 0.81

Education (years) 15 (2.2) 16 (2.2) 0.11

Dimensional change card sort test 98 (12.8) 103 (10.9) 0.01

Glasgow coma scale 15 (0.2) − −

Rivermead post-concussion questionnaire 16 (13.2) − −

Brief symptom inventory-18 15 (14.4) − −

SD, standard deviation.
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FIGURE 2 | Intrinsic connectivity networks identified by group ICA. The results are in the Mask(control) space.

T1- and T2-weighted images were reviewed by an experienced
neuroradiologist to identify structural abnormalities,
including assessment for evidence of hemorrhage. The
neuroradiologist was blinded to the group membership
and clinical information. The images were found to be
free of structural abnormalities for both mTBI patients
and comparisons.

Component Correlations
We performed a 30-component group ICA using resting-
state fMRI data from 37 comparison subjects. The component
masks were in the Mask(control) space. Five components were
identified as noise or artifact components. The remaining
components were intrinsic connectivity networks. Our study
centered on seven components in the default mode, salience,
and central executive networks. These components are depicted
in Figure 2. Components 2 and 9 are in the central executive
network; components 3, 8, 11, 17 are in the default mode

network; and component 15 is in the salience network. The
central executive network includes two components. Component
2 is in the dlPFC and posterior parietal cortex, and component
9 is in the posterior parietal cortex. The default mode network
includes four components. Components 3, 8, 11 are in the
posterior part of the default mode network including the PCC
and precuneus. Component 17 is in the anterior part of the
default mode network anchored in the mPFC. The salience
network is represented by component 15 which is primary in the
dACC and the anterior insular.

Functional connectivity matrices for comparisons and
mTBI patients are depicted in Figure 3. Correlations between
component time courses revealed connectivity patterns
consistent with known functional relationships. We observed a
positive correlation between components in the same intrinsic
network. We also found negative correlations between the
default mode network components and components in the
salience and central executive networks.
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FIGURE 3 | The component correlation analysis results in the Mask(control)

space. Top and bottom are the mean functional connectivity correlation

matrices for controls and mTBI subjects, respectively. C2ce, C9ce—the

central executive network; C3dm, C8dm, C11dm, C17dm—the default mode

network; C15s—the salience network.

The correlation between a component in the default mode
network (component 17) and a component in the salience
network (component 15) was significantly different between
mTBI and healthy subjects with corrected p-value = 0.013
(Figure 4). Let [C17dm – C15s] denote the connection between
component 17 (part of the default mode network) and 15 (part of
the salience network). The mean functional connectivity scores
of [C17dm – C15s] were 0.037 (SD 0.22) and 0.201 (SD 0.18) for
comparisons and mTBI patients, respectively.

We compared the resampling based feature sets to the
original feature set and found that the original feature
set was remarkably stable. For all 69 resampling based
feature sets, we detected [C17dm – C15s] were significantly
higher in mTBI patients than comparison subjects (corrected
p-value < 0.05).

FIGURE 4 | Boxplot of connectivity between components 17 and 15 [C17dm

– C15s]. C17dm is in the default mode network and C15s is in the

salience network.

FIGURE 5 | The association between the DCCS score and [C17dm – C15s].

Data points with circle shape are controls and data points with triangle shape

are mTBI patients.

Association With Executive Function
The results of the association analysis are depicted in Figure 5.
For mTBI patients, we performed Pearson’s correlation analysis
between the DCCS score and [C17dm – C15s]. The DCCS score
was positively associated with [C17dm – C15s]. The correlation
coefficient was 0.40 (p-value = 0.037). To assess whether the
association between DCCS and [C17dm – C15s] was related to
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FIGURE 6 | ReHo analysis results, overlaid in the MNI brain. (A) Voxels

demonstrating significant ReHo increases in the mTBI group (two-sample

t-test; p-value < 0.05, corrected). (B) Voxels demonstrating significant ReHo

decreases in the mTBI group (two-sample t-test; p-value < 0.05, corrected).

mTBI severity, we built a regression model with DCCS as the
dependent variable and [C17dm –C15s] andmTBI severity (Brief
symptom inventory-18) as the independent variables. The mTBI
severity term was not significant.

For mTBI patients and comparisons, we performed a
regression analysis with the DCCS score as the dependent
variable and [C17dm –C15s] and the groupmembership variable
(comparisons and mTBI) as independent variables. The DCCS
score was significantly associated with [C17dm – C15s] (p-value
= 0.013) and the group membership variable (p-value= 0.0207).
Then we added an interaction term ([C17dm – C15s] × group
membership) to the regression model. This interaction term
([C17dm – C15s] × group membership) was not significant
(p-value= 0.325).

DCCS is one task of the NIH Toolbox cognition measures
which have seven tasks. All of them were administrated. The p-
value of the association between DCCS and [C17dm – C15s] was
not adjusted for multiple tasks (seven tasks in the NIH Toolbox
cognition measures).

Graph Analysis
The nodes in our graph were components in the default
mode, salience, and central executive networks. The average
path length quantifies the ability for information to propagate
in parallel. The AUC of the average path length of mTBI
patients was significantly higher than that of controls. The mean
AUCs were 2.02 (SD 0.50) and 2.29 (SD 0.64) for controls
and mTBI patients, respectively. The two-sample t-test p-value
was 0.028. The global clustering coefficient indicates the extent
of the local interconnectivity or cliquishness in a graph. We
found the AUC of the global clustering coefficient of mTBI
patients was not significantly different from that of controls
(p-value= 0.54).

Because there were two graph descriptors (the average path
length and the global clustering coefficient), we conducted
multiple comparisons correction using the false discovery
rate. The average path length was marginally significant after
correction (adjusted p-value= 0.056).

ReHo Analysis
ReHo results are shown in Figure 6. Compared to controls,
mTBI patients showed significant ReHo decreases in the bilateral
calcarine fissure and surrounding cortex, left cuneus, left lingual
gyrus, and bilateral thalamus. These regions are in the visual
and thalamus networks. Compared to controls, mTBI patients
showed significant ReHo increases in the left rolandic operculum,
left heschl gyrus, and left superior temporal gyrus. These regions
are in the auditory network. No voxels in the default mode,
salience, and central executive networks showed significant ReHo
differences between controls and mTBI patients.

Anatomical Connectivity Analysis
Using DTI and TBSS, we found no significant anatomical
connectivity differences in mTBI patients and comparisons.
No voxels in the skeletonized FA space had a corrected
p-value < 0.05. In ROI-based anatomical connectivity analysis,
no ROIs had a corrected p-value < 0.05. We found no ROIs
that demonstrated significant FA differences in mTBI patients
and comparisons.

Stability Relative to ICA Component Masks
We examined whether our findings were sensitive to the method
to generate ICA component masks. Let C2con denote the
component mask 2 in the Mask(control) space. We found that
C2con matched C2all, C9con matched C4all, C3con matched C17all,
C8con matched C8all, C11con matched C9all and C20all, C17con

matched C19all, C15con matched C4all and C10all.
Our main finding was that [C17dm – C15s] was significantly

higher in mTBI patients than controls in the Mask(control)
space. We calculated the component coupling in the Mask(all)
space which was correspondent to [C17dm – C15s] in
the Mask(control) space. This component coupling was still
significant (p-value = 0.032). The mean functional connectivity
scores were 0.179 (SD 0.039) and 0.317 (SD 0.050) for controls
and mTBI patients, respectively. The difference in the value
of functional connectivity scores in the Mask(control) and
Mask(all) spaces may reflect the component mask differences.
The finding that [C17dm – C15s] in the Mask(control) space was
significantly higher inmTBI patients than controls is not sensitive
to the method to generate ICA component masks.

We assessed whether graph analysis results were sensitive to
the method to generate ICA component masks [Mask(control)
or Mask(all)]. In the Mask(all) space, we found that AUC of the
average path length of mTBI patients was still higher than that
of controls. The mean AUCs were 1.74 (SD 0.077) and 1.79 (SD
0.087) for controls and mTBI patients, respectively. This pattern
was consistent with that in theMask(control) space. However, the
difference was not significant (p-value > 0.05). In the Mask(all)
space, the AUC of the global clustering coefficient of mTBI
patients was not significantly different from that of controls. This
was consistent with the finding in the Mask(control) space.

DISCUSSION

In this study, we examined whether correlations among three
intrinsic networks (the default mode, salience, and central
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executive) were altered in acute mTBI patients. Using component
correlation analysis [in the Mask(control) space], we found a
pattern of hyper-connectivity between the anterior part of the
default mode network and the salience network in acute mTBI
patients. This finding was stable across data resampling. For
all resampling datasets, we consistently detected this hyper-
connectivity pattern; this was a localized pattern. Using graph
analysis [in the Mask(control) space] to investigate a graph
including nodes in the default mode, salience, and central
executive networks, we found a global graph pattern change that
indicated altered information propagation ability among nodes;
this was a distributed pattern. Together, our study indicated
altered couplings among the default mode, salience, and central
executive networks in acute mTBI patients.

Our finding of hyper-connectivity between the anterior part of
the default mode network and the salience network is consistent
with other functional connectivity studies of TBI. In a meta-
study of moderate and severe TBI (Hillary et al., 2015), 12 of
14 TBI studies reported hyper-connectivity in different brain
regions such as structures in the default mode and salience
networks. Shumskaya et al. (2012) analyzed resting-state fMRI
data of 35 acute mTBI and 35 age-, gender-, and handedness-
matched controls and found a cluster of increased functional
connectivity in the right frontoparietal attention network in
the mTBI group. In a study to investigate whether thalamic
intrinsic connectivity networks are disrupted in patients with
mTBI (Tang et al., 2011), Tang et al. analyzed resting-state fMRI
data of 24 mTBI patients with mean 22 days post-injury and
17 controls, and found significantly increased thalamic intrinsic
connectivity networks in mTBI patients. Hyper-connectivity
is also observed in other neurological disorders such as
Alzheimer’s disease, mild cognitive impairment, and multiple
sclerosis (Hillary et al., 2015).

The mechanism underlying hyper-connectivity between the
anterior part of the default mode network and the salience
network could be a compensatory or maladaptive response
(Pievani et al., 2014). In the compensatory theory, hyper-
connectivity in acute mTBI is a mechanism to meet cognitive
demand. A maladaptive response might reflect an unsuccessful
attempt to recruit brain regions to compensate for pathology,
as well as a disrupted excitatory-inhibitory balance of damaged
networks.We found that the hyper-connectivity inmTBI patients
was positively correlated with the DCCS score which measures
executive function (Figure 5). This hyper-connectivity predicted
better performance in an executive functioning task. This finding
suggests that hyper-connectivity between the anterior part of
the default mode network and the salience network could be
compensatory to meet cognitive demand.

The triple network model centers on the default mode,
salience, and central executive networks. The default mode
network shows decreased activation in stimulus-driven cognitive
and affective information processing tasks, while the salience
and central executive networks show increased activation in
such tasks. In the triple network model, the salience network
is an integral hub in mediating dynamic couplings between
the default mode and central executive networks. Inappropriate

assignment of saliency to external stimuli or internal mental
events is observed inmany psychiatric and neurological disorders
(Uddin, 2014). In this study, we found the salience network
was excessively coupled to the default mode network. This
hyper-connectivity may be a response to brain injury to meet
cognitive demand.

In our graph analysis, we found that the average path
length of mTBI patients was significantly higher than that of
healthy subjects. The average path length quantifies the ability
for information to propagate. Short path lengths ensure inter-
node effective integrity and promote the transfer of information
among nodes (Sporns, 2011). Thus, the mTBI-related increase
in the average path length represents a distributed and global
degeneration of functional connectivity among nodes in the
default mode, salience, and central executive networks.

In our ReHo analysis, we found no significant ReHo
differences in mTBI patients in voxels in the default mode,
salience, and central executive networks. Therefore, the observed
hyper-connectivity between the default mode and salience
network may not reflect the local functional connectivity changes
in the three intrinsic networks.

In our study, no significant anatomical connectivity
differences were detected in mTBI patients. Acute mTBI
was not associated with DTI-based anatomical connectivity
abnormalities detectable with TBSS or ROI-based analysis.
This suggests that the observed hyper-connectivity between
the default mode and salience network may not reflect the
anatomical connectivity changes in acute mTBI patients. Our
finding is in accordance with (Ilvesmaki et al., 2014) which
analyzed DTI data from 75 patients with acute mTBI and 40
age- and gender- matched controls. Using TBSS, they found no
significant differences in FA between mTBI patients and controls.
However, TBSS has limitations in that it is a univariate analysis
method and cannot model tract couplings. It is possible that the
effect of injury on a specific white matter tract is weak. Therefore,
TBSS will detect no FA differences between mTBI patients and
controls. Using multivariate analysis, the couplings among white
matter tracts may provide complementary information about
white matter integrity.

Our study used resting-state fMRI and ICA to examine
correlations among the default mode, salience, and central
executive networks. A related study Jilka et al. (2014) analyzed
fMRI data of the Stop Signal Task (SST) of 44 moderate/severe
and 13 mTBI and 25 controls. Jilka and colleagues found
that for controls, functional connectivity between the salience
network and the default mode network transiently increased
during stopping; and this change in functional connectivity
was not observed in traumatic brain injury patients with
impaired cognitive control. Their study revealed abnormal
coupling between the salience and default mode networks in
traumatic brain injury. The major differences between Jilka’s
study and our study are: (1) Jilka’s study examined the functional
connectivity using task-based fMRI while our study used resting-
state fMRI; (2) the patient population of Jilka’s study was
primarily moderate/severe traumatic brain injury while our study
focused on mTBI.
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This study has several limitations. First, our study is cross-
sectional. Investigating brain functional and structural changes
in acute mTBI patients is important for predicting prognosis
and treatment optimization. Brain connectivity damages in the
acute period can result in deterioration of cognitive function
that may persist for years. Predicting outcomes based on
baseline imaging features is an important problem (Chen and
Herskovits, 2015). Future work using a longitudinal design
and predictive modeling can address this problem. Second, our
study is hypothesis-driven and examines correlations among
the default mode, salience, and central executive networks in
acute mTBI patients. We cannot exclude the possibility that
other network correlations are also changed in mTBI. For
example, we didn’t examine correlations among the visual and
thalamus networks and other networks, despite the visual and
thalamus networks showed aberrant ReHo patterns. With the
increasing number of intrinsic connectivity networks, we need
a large sample size in order to achieve a statistical power to
reveal changes in their correlations. We plan to conduct a
large-scale network correlation analysis with a large sample size
mTBI dataset.

In conclusion, we identified aberrant functional coupling
between the default mode and salience networks in
acute mTBI patients. Our finding has great potential to
improve our understanding of the network architecture
of mTBI, leading to accurate diagnosis and more
effective treatments.
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