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Generalization is the ability to apply past experience to similar but non-identical

situations. It not only affects stimulus-outcome relationships, as observed in conditioning

experiments, but may also be essential for adaptive behaviors, which involve the

interaction between individuals and their environment. Computational modeling could

potentially clarify the effect of generalization on adaptive behaviors and how this effect

emerges from the underlying computation. Recent neurobiological observation indicated

that the striatal dopamine system achieves generalization and subsequent discrimination

by updating the corticostriatal synaptic connections in differential response to reward

and punishment. In this study, we analyzed how computational characteristics in this

neurobiological system affects adaptive behaviors. We proposed a novel reinforcement

learning model with multilayer neural networks in which the synaptic weights of only

the last layer are updated according to the prediction error. We set fixed connections

between the input and hidden layers to maintain the similarity of inputs in the hidden-layer

representation. This network enabled fast generalization of reward and punishment

learning, and thereby facilitated safe and efficient exploration of spatial navigation tasks.

Notably, it demonstrated a quick reward approach and efficient punishment aversion

in the early learning phase, compared to algorithms that do not show generalization.

However, disturbance of the network that causes noisy generalization and impaired

discrimination induced maladaptive valuation. These results suggested the advantage

and potential drawback of computation by the striatal dopamine system with regard to

adaptive behaviors.

Keywords: generalization, adaptive behaviors, reward learning, striatum, dopamine-dependent plasticity,

reinforcement learning, artificial neural networks

INTRODUCTION

Animals’ survival incorporates reward-seeking behavior accompanied by risks. Outcome
observation resulting from the pairing of a current state and a taken action provide clues to ensure
optimal behaviors, but it may be associated with substantial energy consumption and aversive
experiences. Such a learning process is inefficient and even harmful, especially when animals are
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required to adapt to new environments. Animals instead
generalize their previous experiences to predict outcome, even
in novel situations. If the prediction due to generalization
is different from the actual observation, the prediction is
then reshaped by discrimination learning. Generalization and
discrimination may be essential for efficient adaptive behaviors,
whereas abnormalities in these functions can be maladaptive.
Generalization to an abnormal extent has been implicated in
psychiatric disorders (Dunsmoor and Paz, 2015; Kahnt and
Tobler, 2016; Asok et al., 2018). A recent neurobiological
study presented the possibility that disrupted discrimination is
involved in psychotic symptoms (Iino et al., 2020).

Psychological studies have investigated generalization by
using the conditioning paradigm in behavioral experiments
(Ghirlanda and Enquist, 2003). If a response has been established
by a stimulus paired with an outcome (i.e., reward or
punishment), then resembling stimuli evoke similar responses.
This “law of effect” depends on the extent that the second
stimulus resembles the first stimulus, and is termed “stimulus
generalization” (Thorndike, 1898; Ghirlanda and Enquist, 2003).
Discrimination can then occur if the first stimulus is paired with
a reward but the resembling stimulus is paired with no reward;
as a consequence, only the first stimulus elicits a response. How
the brain establishes stimulus generalization has been explained,
based on artificial neural networks (Shepard and Kannappan,
1991; Ghirlanda and Enquist, 1998; Franks and Ruxton, 2008;
Wisniewski et al., 2012). These previous studies have focused
on the stimulus–response relationship, although generalization
can be incorporated in the interaction between individuals
and the environment. Reinforcement learning involves this
interaction and is used as a model of reward-driven learning
(Frank et al., 2004; Doya, 2007; Glimcher, 2011). In the field
of artificial intelligence, reinforcement learning in combination
with artificial neural networks achieves a high performance,
which suggests the contribution of generalization to adaptive
behaviors (Mnih et al., 2015). However, neurobiological evidence
indicates that the neural system has a unique computation
for reward-driven learning and generalization, compared to
algorithms used for artificial intelligence (Whittington and
Bogacz, 2019). This raises the question regarding how its
computational characteristics differ from those of ordinary
algorithms. Advantages and shortcomings should exist with
regard to adaptive behaviors.

Theoretical attempts have focused on separate systems that
process positive and negative values in the brain (DeLong,
1990; Nambu, 2007; Amemori et al., 2011; Collins and Frank,
2014), which are not adopted when using ordinary reinforcement
learning. Dopamine and its main target area, the striatum,
play central roles in reward- and punishment-related learning
(Meredith et al., 2008). Dopaminergic neurons show a positive
response to a greater-than-expected reward and a negative
response to a less-than-expected reward, which indicates that
dopamine codes reward prediction error (Schultz, 2015). The
striatum receives dopamine signals and glutamatergic input
from the cortex and thalamus (Tepper et al., 2007). Dopamine
modulates synaptic plasticity between the cortex and the striatum
during reward-related learning (Reynolds et al., 2001). The

striatum is primarily composed of spiny projection neurons
(SPNs), which can be divided into SPNs that primarily express
the dopamine D1 receptor (D1-SPNs) and SPNs that express
the dopamine D2 receptor (D2-SPNs) (Surmeier et al., 2010).
D1-SPNs respond to phasic increases in dopamine (Yagishita
et al., 2014), whereas D2-SPNs respond to the phasic decreases
in dopamine (Hikida et al., 2013; Iino et al., 2020). Perturbing
the activity of D1- and D2-SPNs inhibits reward learning and
punishment learning, respectively (Hikida et al., 2013). The
advantages of having such separate systems have been discussed
in computational studies (Mikhael and Bogacz, 2016; Elfwing
and Seymour, 2017). One study (Mikhael and Bogacz, 2016)
demonstrated an advantage in learning reward uncertainty.
Another study (Elfwing and Seymour, 2017) showed the
possibility of achieving safe behaviors.

However, recent neural recordings and optogenetic
manipulations provide some data that suggest different
roles of SPNs from those in the existing models (Cox andWitten,
2019). Our recent experiments with a classical conditioning
task found that D1- and D2-SPNs are differentially responsible
for stimulus generalization and discrimination (Iino et al.,
2020). The same series of experiments revealed that stimulus
generalization/discrimination occurred solely by dopamine-
dependent plasticity of SPN spines that receive cortical
inputs, which implies that updating in other connections (e.g.,
intracortical synaptic connections) would be minor. These
observations suggest learning rules that update the synaptic
weights of the last layer in a multilayer neural network—in our
case, corticostriatal connections—are essential. Such learning
rules actually enable remarkably fast learning in reservoir
computing (RC) and extreme learning machine (ELM) (Maass
et al., 2002; Huang et al., 2006; Lukoševičius and Jaeger,
2009). RC and ELM are neural networks that train only their
readouts (i.e., the last layer connections); RC has recurrent
connections, whereas ELM does not. Iino et al. also showed that
administration of methamphetamine, which causes psychosis
(e.g., delusions) in humans, impaired discrimination function in
mice by altering dopamine dynamics associated with unexpected
reward omission (Iino et al., 2020). Taken together with the
physiological functions of D2-SPN described above, these
findings suggest that impairment of dopamine-dependent
corticostriatal plasticity of D2-SPNs can induce abnormal value
prediction via disrupted discrimination.

In this study, we propose a novel reinforcement
learning model that reproduces stimulus generalization
and discrimination, while accounting for the physiological
characteristics of striatal SPNs. We used a neural network for
value estimation and introduced fixed connections between
the input and hidden layers, as in RC and ELM. RC has the
potential for context-dependent value estimation because of
its recurrent connections. However, for simplicity, we adopted
a feed-forward neural network with the same architecture as
ELM. The extent of stimulus generalization depends on the
similarity of stimuli; therefore, we did not use random and
fixed connections as implemented in ordinary ELM. We instead
set the fixed connections so as to maintain the similarity of
inputs in the hidden-layer representation. In addition, we
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introduced connections that had weights separately updated
by positive and negative reward prediction errors, while taking
into account the differential roles of D1- and D2-SPNs in
the striatum. This neural network enabled generalization in a
quick manner. We named this model “Outspread Valuation for
Reward Learning and Punishment Learning” (“OVaRLAP”).
Using this model for painful grid-world navigation tasks,
we first evaluated the contribution of generalization and
discrimination to adaptive behaviors. The OVaRLAP model
performed safe and efficient exploration, suggesting that
quick generalization of punishment learning contributed
to safe and efficient reward-seeking and pain-avoiding. We
then tested disturbed OVaRLAP in a painless grid-world to
examine whether abnormal generalization and discrimination
underlies maladaptive behaviors, as implied in psychological and
psychiatric studies (Buss and Daniell, 1967; Ralph, 1968; Kahnt
and Tobler, 2016). We introduced impairment of learning from
negative prediction error, which disables discrimination, based
on the physiological findings (Iino et al., 2020). We found that
impaired discrimination combined with noisy generalization
induced aberrant valuation, after repeating reward-seeking
behaviors. These results showed that the unique computation
suggested by the striatal dopamine system facilitated safe and
efficient exploration, but on the other hand had potential defects
which can cause maladaptive behaviors.

METHODS

We developed OVaRLAP to analyze how the computational
characteristics in the striatal dopamine system affect behaviors.
We first evaluated OVaRLAP in a spatial navigation task in
painful grid-worlds by comparing its performance with those
of two other representative algorithms (Figures 1A,B). We then
examined the behavior of disturbed OVaRLAP in a spatial
navigation task in a painless grid-world (Figures 1C,D).

Model Description of OVaRLAP
A neural network was used for value estimation in OVaRLAP.
It consists of an input layer, a hidden layer, two pre-output
neurons, and an output neuron (Figure 1A, left). The input
represents the state at discretized time, t. We applied our
learning method to two types of navigation tasks, both in
two-dimensional grid-worlds, in which position

(

x, y
)

, x ∈

{1, . . . , 20} , and y ∈ {1, . . . 20} were simply represented by a
two-dimensional index function:

Iij(x, y, t) =

{

1, if i = x and j = y
0, otherwise,

for i = 1, . . . , 20 and j = 1, . . . , 20.
The input signals were transformed by fixed connections into

hidden-layer activity patterns. We set the number of hidden-
layer neurons and the weight of fixed connections so as to
reproduce the shape of the generalization gradient, which has
been commonly observed across various species, behavioral
contexts, and sensory modalities (Ghirlanda and Enquist, 2003).

The number of hidden-layer neurons was set to 900. The hidden-
layer activity hk(x, y, t) for k = 1, . . . , 900 was given by

hk(x, y, t)=
∑

i

∑

j

Mij,kIij(x, y, t)

in which Mij,k is the weight of the fixed connection from the

input-layer neuron
(

i, j
)

to the hidden-layer neuron k. Based on
the definition of Iij(x, y, t), hk(x, y, t) was also represented as

hk
(

x, y, t
)

=Mxy,k

in which
(

x, y
)

is the agent’s position at time t.
For the generalization capability, we assumed the hidden-layer

representation becomes similar when the input signal is similar.
In our case, the values of hk(x1, y1,t) and hk(x2, y2,t) are similar
if position (x1, y1) is close to position (x2, y2), based on Euclidian
distance. To reflect this request, we set the fixed connectionsMij,k

to follow the two-dimensional Gaussian function:

Mij,k =

exp

{

−

(

(i−ak)
2

2σ 2
k

+
(j−bk)

2

2σ 2
k

)}

+ εij,k

D

in which D is the number of the input-layer neurons used for
normalization (D = 400, because of the 20 × 20 grid-worlds);
ak and bk denote the center and are set as ak ∈ {1, . . . , 20},
bk ∈ {1, . . . , 20}, and 20 (ak − 1) + bk = ceil(400k/900) so that
the central location (ak, bk) in the 20 × 20 2D space was linearly

correlated with the location (ãk, b̃k) in 30 × 30 2D space where

ãk = 1 + floor((k − 1)/30) and b̃k = mod(k − 1, 30) + 1; σ 2
k

is the variance sampled from a log-normal distribution with the
metaparameter θ as follows:

σ 2
k ∼ LogN (−0.7/θ , 0.7θ);

and εij,k is the noise, as defined below. The distribution

of σ 2
k

resulted that the hidden-layer neurons ranged from
neurons that responded to specific input to neurons that
responded to a wide range of input. This setting is consistent
with physiological observations (Bordi and LeDoux, 1992) and
underlies generalization in OVaRLAP.We set the metaparameter
θ to regulate the amount of generalization. The noise εij,k
is unnecessary in normal cases; however, we introduced
it for the purpose of analyzing the effect of abnormal
perturbation in OVaRLAP (Figure 1C). When simulating
abnormal perturbation, we applied noise εij,k by using the
following formulas:

P
(

εij,k = A
)

= ρ

and

P
(

εij,k = 0
)

= 1− ρ.

A denotes the noise strength. Apparently, no noise exists if A or
ρ is zero. This noise was initially introduced but not changed
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FIGURE 1 | The architecture of TD learning algorithms and the task. (A) Schematic diagrams of OVaRLAP (left), simple TD learning (middle), and MaxPain (right). In

OVaRLAP, the value prediction used a neural network with fixed connections (gray arrows) and distinct connections updated by positive and negative TD errors (red

and blue arrows, respectively). In our implementations of simple TD learning and MaxPain, the predicted value is represented by look-up tables in which the state, sk ,

indicates a position (x, y) in the two-dimensional grid-world. (B) The navigation task in the two-dimensional grid-world. The non-gray squares and gray squares

indicate passable and not passable, respectively. The black square is the starting position, and the green and yellow squares are the goals at which the agent receives

the positive rewards of 1 and 2, respectively. When the agent receives a positive reward, an episode ends so that the agent restarts the task from the starting position.

If an agent hits a wall (i.e., a not passable square), it receives a negative reward of −1, but continues the task by staying at the same square. (C) Schematic diagram of

OVaRLAP in which updating connections, based on the negative TD error (blue connections), are impaired. In addition, noise is introduced to induce an anomaly in the

initialization of the fixed connections between the input and the hidden layers (for the details of noise here, see Section Model Description of OVaRLAP). (D) The

navigation task in the two-dimensional grid-world. The black square is the starting position. The green squares are the goals at which the agent receives a positive

reward of one. If the agent receives a positive reward, a single episode ends, and a new episode restarts from the starting position. In this task, when the agent hits a

wall (i.e., a gray square), no negative reward is given, and the agent remains at the same square.

through the learning process. In our simulation experiment, we
applied different realizations of noise εij,k under specific values of
A and ρ, and examined the collective behaviors of the learning.

The two pre-output neurons then received signals from the
hidden-layer neurons. For m = 1, 2, the activities of the pre-
output neurons dm(x, y, t) are given by

dm
(

x, y, t
)

=
∑

k

wm,k(t)hk(x, y, t),

in which wm,k(t) is the weight of the connection from hidden-
layer neuron k to the pre-output neuron m for m = 1, 2 and k =

1, . . . , 900. In this instance, d1
(

x, y, t
)

and d2
(

x, y, t
)

represent
the positive and negative values, respectively. The final output of
the network v(x, y, t) integrated these values, as follows:

v
(

x, y, t
)

= d1
(

x, y, t
)

− d2
(

x, y, t
)

.

During the interaction between the agent and the environment,
the connection weights wm,k(t) were updated, depending on
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the prediction error, δ. To calculate δ, we used an action-value
function Q (s, a, t) for state s and action a at time t (Sutton and
Barto, 2018). We defined Q (s, a, t) by using the output of the
network, as follows:

Q (s, a, t) = v
(

x′, y′, t
)

,

in which s = (x, y), a = (1x,1y), x
′
= x+1x, and y

′
= y+1y.

In our navigation tasks, (1x,1y) = (1, 0), (−1, 0), (0,−1) , or

(0, 1), if the action was effective. The prediction error δ was
represented by

δ (t) = r (s, a) + γQ
(

s
′

, a
′

, t
)

− Q (s, a, t) ,

in which r (s, a) is the actual reward, s
′
denotes the state at

time t + 1, a
′
denotes the action at time t + 1, and γ is the

discount factor. We used temporal difference (TD) learning for
the action-value function (i.e., state–action–reward–state–action
[SARSA]) (Rummery and Niranjan, 1994) because the agent
needed to remain at the same square after an ineffective action
(i.e., hitting a wall). If we used classical TD learning for the state-
value function, such ineffective actions would have disturbed the
value learning. The connection weight w1,k(t) for k = 1, . . . , 900
was updated only when δ(t) was positive, and w2,k(t) for k =

1, . . . , 900 was updated only when δ(t) was negative. In the actual
implementation, the updating rules were as follows:

w1,k (t + 1) =

{

w1,k (t) +
α1δ(t)hk(x′,y′ ,t)d1(x′,y′ ,t)

N1(x′,y′ ,t)
, if δ(t) > 0

w1,k (t) , otherwise,

and

w2,k (t + 1) =

{

w2,k (t) +
α2[−δ(t)]hk(x

′ ,y′ ,t)d2(x′ ,y′ ,t)
N2(x′,y′ ,t)

, if δ(t) < 0

w2,k (t) , otherwise,

in which α1 and α2 are the learning rates and N1

(

x, y, t
)

and
N2

(

x, y, t
)

are the normalization terms, which are represented as

Nm

(

x, y, t
)

= dm
(

x, y, t
)

∑

k

h(x, y, t)2

for m = 1, 2. These normalization terms are introduced to make
sure that.

Q (s, a, t + 1) =

{

Q (s, a, t) + α1δ(t), if δ (t) > 0
Q (s, a, t) + α2δ (t) , otherwise.

Algorithms for Comparison
We also implemented two representative algorithms to compare
with the OVaRLAP model. One algorithm was simple TD
learning (Sutton and Barto, 2018) (Figure 1A, right top);
in our particular case, the algorithm was SARSA. In our

implementation, a value function of states, vs
(

x, y, t
)

, was
represented as a look-up table and updated as

vs
(

x, y, t + 1
)

= vs
(

x, y, t
)

+ αsδs(t)

in which αs is the learning rate and δs is the prediction error,
called the “TD error.” This error is given by

δs (t) = r (s, a) + γsQs

(

s′, a′, t
)

− Qs (s, a, t)

in which γs is the discount factor. The action-value function,
Qs (s, a, t) , is given by

Qs (s, a, t) = vs
(

x′, y′, t
)

.

The other algorithm is the MaxPain algorithm (Elfwing and
Seymour, 2017) (Figure 1A, right bottom). This method is
characterized by its distinct systems for the learning values for
reward and pain (or punishment). The policy is dependent
on the linear combination of the two value functions. In our
implementation, we slightly modified the originally proposed
MaxPain algorithm to make it comparable with the other
methods, while maintaining the essential idea of MaxPain.

First, we used state-value functions of states vr
(

x, y, t
)

and
vp

(

x, y, t
)

, and their linear combination vL
(

x, y, t
)

, to define the

action-value functionsQr

(

s′, a′, t
)

,Qp

(

s′, a′, t
)

, andQL

(

s
′
, a

′
, t

)

,

as follows:

Qr (s, a, t) = vr
(

x′, y′, t
)

,

Qp (s, a, t) = vp
(

x′, y′, t
)

,

and

QL (s, a, t) = vL
(

x′, y′, t
)

.

Second, we set the linear combination vL
(

x, y, t
)

without
normalization, as follows:

vL
(

x, y, t
)

= vr
(

x, y, t
)

− vp
(

x, y, t
)

.

The couple of state-value functions were implemented as look-up
tables and updated as

vr
(

x, y, t + 1
)

= vr
(

x, y, t
)

+ αrδr (t)

and
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vp
(

x, y, t + 1
)

= vp
(

x, y, t
)

+ αpδp(t)

in which αr and αp are the learning rates for reward and pain,
respectively, and δr and δp are the prediction errors for reward
and pain, respectively. The prediction errors were calculated,
depending on whether the reward observation was positive or
negative, as follows:

δr(t) = ϕ (r (s, a)) + γrQr

(

s
′

, a
′

, t
)

− Qr (s, a, t)

and

δp(t) = ϕ (−r (s, a)) + γpQp(s
′

, argmin
(

QL

(

s
′

, a
′

, t
))

, t)

−Qp (s, a, t)

in which ϕ (z) = max(z, 0) and γr and γp are the discount
factors. A variant of off-policy Q-learning algorithm was used to
calculate the pain prediction error δp, which enabled Qp to learn
for maximizing future pain (i.e., for predicting the worst case).
These update rules were the same as those in the original study.

Action Selection
We used the softmax behavioral policy consistently for the
three methods. It depends on the value function ṽ

(

x, y, t
)

, i.e.,
v
(

x, y, t
)

for OVaRLAP, vs
(

x, y, t
)

for the simple TD learning, and
vL

(

x, y, t
)

for MaxPain. The probability that the agent selects an
action a at position

(

x, y
)

at time t is given by

π
(

a
∣

∣x, y, t
)

=
exp(ṽ(x

′
, y

′
, t)/τ )

∑

c exp(ṽ(xc, yc, t)/τ )

in which x
′
and y

′
denote the new state after selecting action

a, xc, and yc denote the new state after selecting one of the
possible actions, and τ is the temperature that controls the trade-
off between exploration and exploitation. In our implementation,
we used the common τ = 0.5, for the three learning methods.

Painful Grid-World Navigation Task
The purpose of this task was to navigate from the starting position
to either of the two goals, while avoiding hitting the wall. Possible
actions at each time step were moving one step north, south,
east, and west. For example, if the agent moved one step north,
(1x,1y) = (0, 1). Two goals exist with reward of 1 or 2. If
the agent hits a wall, then it received a negative reward of −1
and remained at the same position. This was an exceptional
case. In other cases, the agent could by necessity move to the
next square. An episode began when the agent started from the
starting position and ended when the agent reached either of the
goals. The agent repeated such learning episodes.

A single run consisted of 500 learning episodes, after
initializing the value function so that the value for each
state was zero. We ran 50 separate runs each for OVaRLAP,
simple TD learning, and MaxPain with a single grid-world
configuration. We conducted five simulation experiments for

each of which we used a grid-world with a consistent character
but different configuration. The structure of each grid-world is
shown in Figure 1B and in Supplementary Figure S1. We tested
OVaRLAP with various amount of generalization by setting θ as
θ ∈ {0.44, 0.66, 1.0, 1.5, 2.2}. The value of θ was fixed in each
simulation experiment. We setA = ρ = 0, that is, no noise in the
fixed connections in OVaRLAP.We set the othermetaparameters
for each algorithm as follows: α1 = α2 = 0.1, and γ = 0.95 for
OVaRLAP; αs = 0.1 and γs = 0.95 for simple TD learning; and
αr = αp = 0.1, γr = 0.95, and γp = 0.5 for MaxPain. OVaRLAP
andMaxPain are extended algorithms from simple TD; therefore,
they used common metaparameters with simple TD, when they
could share them.

The five configurations in Supplementary Figure S1 were
generated, based on the following rules, while avoiding
symmetric or similar structures. Each configuration had a wide
passage from which a narrow passage branched off. These
passages had fixed widths and lengths. The starting position and
the goal with a reward of one were at either end of a wide passage.
A goal with reward of two was at the end of a narrow passage. The
legend for Supplementary Figure S1 provides further details of
the rules.

Grid-World Navigation Task for Disturbed
OVaRLAP
The purpose of this task was to navigate from the starting position
to either of four goals. The structure of the grid-world is shown
in Figure 1D. Possible actions at each time step were moving
one step north, south, east, and west. Multiple goals existed, each
of which gave a reward of one. Our interest in this experiment
was not in pain aversion; therefore, we did not apply a negative
reward to the actions that resulted in hitting a wall (i.e., no pain).
The agent simply remained at the same position after hitting a
wall. Even in this no pain setting, the agents after reinforcement
learning likely avoid wall hits, due to the discount factor in the
value functions. An episode began when the agent moved from
the starting position and ended when the agent reached one of
the four goals. A single run consisted of 40,000 time steps in
total (i.e., 378.8 learning episodes on average) after the value
function initialization at the onset of the first learning episode.
For each metaparameter setting described below, we performed
50 separate runs for OVaRLAP. We considered the following
cases: normal or no update for a negative TD error (i.e., “intact”
or “impaired”) and with or without noise in the fixed connections
(i.e., “noised” or “unnoised”). There were 25 different settings
for the noised case, consisting of pairs of noise strength A and
noise fraction ρ, taken from A ∈ {0.25, 0.5, 1, 2, 4} and ρ ∈

{0.00125, 0.0025, 0.005, 0.01, 0.02}, respectively. Although the
values of A and ρ were fixed within each simulation setting, the
noise, εij,k, was generated independently for each of the 50 runs
and was fixed within each run. We set the other metaparameters,
as follows: θ = 1; A = ρ = 0 for the unnoised case; α1 = 0.1;
α2 = 0.1 for the intact setting (which was the same as in the
previous experiment) and α2 = 0 for the impaired setting; γ =

0.8; and τ = 0.5.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2020 | Volume 14 | Article 66

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Fujita et al. Reinforcement Learning With Fast Generalization

RESULTS

The Behavior of OVaRLAP
We evaluated OVaRLAP in a spatial navigation task in
painful grid-worlds by comparing its performance with those
of simple TD learning and MaxPain (Elfwing and Seymour,
2017). Figure 1A shows a schematic representation of these
algorithms. OVaRLAP achieves stimulus generalization based
on the similarity of states (Figure 2A) because it utilizes a
fixed neural network (gray arrows in Figure 1A, left) for the
preprocessing of the value learning network (blue and red
arrows in Figure 1A, left). By contrast, the other two algorithms,
which have look-up tables, show no stimulus generalization
(Figures 2B,C). The task in this study was to seek rewarded
goals while avoiding painful wall hits in which the agent had to
manage the trade-off between obtaining rewards and avoiding
pain (Figure 1B). We used five different grid-worlds, each of
which had a safe but lowly rewarded goal and a risky but highly
rewarded goal (Supplementary Figure S1).

Figures 3A–C show the average learning curves at each
episode over 50 independent runs for the grid-world shown
in Figure 1B. The reward per step of the OVaRLAP agent was
higher than that of the MaxPain agent, but it did not exceed
that of the simple TD learning agent (Figure 3A). Compared
to the other agents, the OVaRLAP agent reached each of the
goals with a smaller number of steps in the early learning
phase (Figure 3B). After 100 learning episodes, all three agents
showed a similar number of steps to reach either of the goals.
With regard to pain aversion, the OVaRLAP agent also showed
quick learning. The OVaRLAP agent exhibited fewer wall hits
in the early learning phase than the other agents did. However,
after 50 learning episodes, the number of wall hits of the
OVaRLAP agent was comparable to that of the simple TD
learning agent (Figure 3C). By contrast, the MaxPain agent
first hit the walls as many times as the simple TD learning
agent, but the number of wall hits then quickly decreased. The
OVaRLAP agent showed its characteristic performance in all of
the five simulation experiments, each of which had a different
grid-world with a similar spatial structure (Figures 3D–F). The
relative performance of the three agents was consistent when the
starting position was randomized (Supplementary Figure S2).
We also tested the OVaRLAP agents with various levels
of generalization (Figure 4A). The results showed that an
increase in generalization led to better performance unless the
generalization became too large, whereas too large generalization
deteriorated the performance (Figure 4B). These results suggest
that the OVaRLAP agent could learn a reward approach
and pain aversion in a very efficient manner owing to its
proper generalization, whereas it was inferior to the simple TD
in long-term reward learning and to MaxPain in long-term
pain aversion.

Figure 5 shows how the value function developed using the
three methods, in which OVaRLAP exhibited unique profiles
(Figure 5, top). First, the values of positions close to the walls
decreased, as did the values of the positions of the walls.
After only five learning episodes, this generalization constructed
a safe passage to the low-reward goal while simultaneously

causing a dip in the value function as a hazard to approach
the risky but high-reward goal. This value hazard completely
disappeared after 500 episodes because the reward learning had
propagated to the squares along the passage to the high-reward
goal. Thus, quick pain learning was essential for aggressive
pain aversion and conservative reward-seeking in the early
learning stage.

The simple TD learning algorithm did not construct any
value hazard to the high-reward goal during its learning
process because no special system existed for pain learning
(Figure 5, middle). The MaxPain algorithm also produced
hazards on the passage to the high-reward goal (Figure 5,
bottom). In contrast to OVaRLAP, the hazard progressively
increased as the learning proceeded and never flattened owing
to its strong pain learning ability. For this reason, the MaxPain
algorithm persistently maintained low values on the way to the
high-reward goal.

We further evaluated how the model agent navigates if
the environment is changed to have pain-free walls after the
agent has been trained with painful walls (other than walls,
everything is the same before and after the change). Interestingly,
the OVaRLAP agent quickly unlearnt the past painful stimuli,
compared to the other two models (Figure 6). This result
indicates that generalization worked not only in the early phase
of learning but also contributed to relearning timings induced by
environmental changes.

The Effect of a Disturbed OVaRLAP
We next examined how the learning behaviors of OVaRLAP
were disturbed by disabling weight updating by negative
TD errors and introducing noise to the fixed network
(Figure 1C). The generalization after obtaining a reward
became a little noisy because of the noise introduction
(Figure 7A). We applied this disturbed OVaRLAP to a grid-
world navigation task without pain (Figure 1D). We tested each
of the following two-by-two settings: normal or no update
for the negative TD error (i.e., “intact” or “impaired”), and
with or without noise in the fixed network (i.e., “noised”
or “unnoised”).

The impaired noised agent acquired an aberrant value
function: it increased the value for a specific position distant
from the goals, as if the position would give a positive reward
(Figure 7B, bottom right). The value function of the intact
noised agent was slightly noisy (Figure 7B, top right), but nearly
the same as that of the intact unnoised agent (Figure 7B, top
left). The impaired unnoised agent made the values around the
goals higher than those of the intact agents, but the values
for positions distant from the goals remained low (Figure 7B,
bottom left).

We ran 50 runs for each setting to confirm reproducibility.
For the noised agent, we applied a different pattern of noise
in each run. Figure 7C presents the maximum value and
its position in the value function after 40,000 steps in each
run. The intact agents always established the maximum
values at the positions of goals and maintained them
consistent to the actual amount of the rewards the agent
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FIGURE 2 | State values after a single update. The value function is updated after receiving a positive reward of one once with OVaRLAP (A), simple TD learning (B),

and MaxPain (C) at the center of a two-dimensional grid-world in Figure 1B. For OVaRLAP, the metaparameter θ is set as θ = 1 to introduce a moderate amount of

generalization.

obtained (Figure 7C, top row). The maximum values of
the impaired unnoised agent were higher than the actual
amount of the rewards (Figure 7C, bottom left). Their
positions were not necessarily the same as the actual goals,
but they were, at most, two steps away from the goals. In
contrast to these agents, the impaired noised agent produced
maximum values that were quite apart from the actual
goals (Figure 7C, bottom right). These values were higher
than the actual amount of rewards and were sometimes
exceedingly high.

For the noised case, we tested different noise settings
by varying the noise strength and the noise fraction
(Supplementary Figure S3), and for each we performed
50 runs. Supplementary Table S1 provides a summary
of the results and shows that the various levels of noise
induced aberrant valuation if the negative value neuron was
impaired. It also shows that sole large noise did not lead
to aberrant valuation as long as the negative value learning
was intact.

DISCUSSION

The Effect of Generalization and
Discrimination on Behaviors
In this study, we proposed a novel reinforcement learning
model named OVaRLAP to analyze how the computational
characteristics in the striatal dopamine system affect behaviors.
The OVaRLAP model reproduced stimulus generalization for
both reward learning and punishment learning. Discrimination
followed generalization to shape the value function, that is,
inhibiting excessive expectation of reward or punishment
caused by generalization. It was realized by the activity of
one pre-output neuron that offset the activity of the other
pre-output neuron. In the navigation task in painful grid-
worlds (Figures 3–5), punishment learning due to painful
wall hits was first generalized and subsequent unexpected

safeness caused discrimination. By contrast, in the case
of painless grid-world (Figure 7), generalization for reward
learning was followed by discrimination due to the unexpected
unrewarded outcome.

The OVaRLAP model enabled safe and efficient
exploration in the painful grid-world navigation
task. The transition of the value function for the
OVaRLAP agent shows how stimulus generalization
and discrimination contribute to managing the
trade-off between reward-seeking and pain aversion
(Figure 5, top).

First, punishment learning due to hitting walls generalized
quickly, as shown in the value function after five episodes.
It led to a preference for the center of the passage (i.e.,
pain aversion). Indeed, the OVaRLAP agent first showed fewer
wall hits than the simple TD learning and MaxPain agents
did (Figures 3C,F). This contributed to reducing the number
of steps to reach either of the goals in the early learning
phase (Figures 3B,E). Thereafter, The OVaRLAP agent increased
the values of positions close to the walls. This transition
indicated that the agent discriminated between the safe and
painful positions. This discrimination increased the tendency
to reach the high-reward goal. In short, stimulus generalization
of punishment learning induced pain aversion, followed by
discrimination for switching to reward-seeking. The simple
TD learning agent did not show pain aversion (Figure 5,
middle). Its value function was optimized to maximize future
reward, which is consistent with its high reward per step
(Figures 3A,D). TheMaxPain agent showed strong pain aversion
based on its separate value learning system to expect future
pain (Figure 5, bottom row). It achieved very few wall hits
(Figures 3B,E) while maintaining pain aversion and low values
on the way to the high-reward goal, and this corresponded
to a lower reward per step compared to the other agents
(Figures 3A,D).

Stimulus generalization and discrimination were effective
in safe and efficient exploration; however, dysfunction in
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FIGURE 3 | Average performance of OVaRLAP, the simple TD learning, and MaxPain in the painful grid-world navigation task. (A) The average reward per step, (B)

the average number of steps to either of the two goals, and (C) the average number of wall hits, based on the three types of agents after each number of learning

episodes on the horizontal axis. The grid world shown in Figure 1B was used. The number of steps to either of the two goals and the number of wall hits for the first

50 learning episodes are magnified in the top right insets of (B,C), respectively. Each average (on the vertical axis) was obtained over 50 separate runs and then

smoothed using a moving average over the preceding 11 episodes (on the horizontal axis). The thick lines represent the moving averages and the shadow areas

indicate the moving standard deviations. (D–F) The average performance over five simulation experiments, each of which used a grid-world with different

configurations. The grid world shown in Figure 1B and its variants were used (Supplementary Figure S1 presents the details of the variants). (D) The average

reward per step, (E) the average number of steps to either of the two goals, and (F) the average number of wall hits, based on the three types of agents after five

learning episodes and 500 learning episodes, are shown. Each bar indicates the average over five grid-world configurations, after taking the average over 50 separate

runs with each grid-world configuration. Each error bar represents the standard deviation over the five configurations. For OVaRLAP, the metaparameter θ was set as

θ = 1 to induce a moderate amount of generalization.

the system may induce aberrant learning behaviors. First,
too large of a generalization deteriorated the performance of
the OVaRLAP agent (Figure 4), which is consistent with the

previous reports that generalization to an abnormal extent
is associated with psychiatric disorders (Dunsmoor and Paz,
2015; Asok et al., 2018). Second, the impaired update for
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FIGURE 4 | The painful grid-world navigation task for OVaRLAP with various amount of generalization. (A) State values after a single update for OVaRLAP with a

variety of metaparameter settings, θ ∈ {0.44, 0.66, 1.0, 1.5, 2.2}, which control the level of generalization. The value function is updated after receiving a positive

reward of one once at the center of a two-dimensional grid-world in Figure 1B. (B) The average performance over five simulation experiments, each of which used a

grid-world with a different configuration than the others. The grid-world shown in Figure 1B and its variants were used (Supplementary Figure S1 presents the

details of the variants). The average reward per step (left), the average number of steps to either of the two goals (middle), and the average number of wall hits (right),

over five OVaRLAP agents with different metaparameter settings, θ ∈ {0.44, 0.66, 1.0, 1.5, 2.2} , after five learning episodes and 500 learning episodes, are shown.

Each bar indicates the average over five grid-world configurations, after taking the average over 50 separate runs with each grid-world configuration. Each error bar

represents the standard deviation over the five configurations.

the negative TD error combined with the noise in the fixed
connections induced aberrant valuation in OVaRLAP (Figure 7,
Supplementary Table S1). The value increased by noisy stimulus
generalization was not reshaped by discrimination because
of the impairment of the punishment learning. A single
update of the value was only slightly affected by the noisy
stimulus generalization (Figure 7A); however, as the number
of arrivals to the actual goals increased, such aberrant updates
of the value function would have allotted abnormally high
values to some positions that were actually of no reward
(Figures 7B–C).

Computation Underlying Generalization
The structure of OVaRLAP provides insight into the
neurobiological basis of stimulus generalization and
discrimination. The two pre-output neurons separately
responded to positive and negative prediction errors to
update the connections between the hidden-layer neurons and
the corresponding pre-output neuron. This hybrid learning
system exhibits good correspondence to the striatal dopamine
system in which D1- and D2-SPNs differentially respond to
dopamine so that the connections between the cortex and the
striatal SPNs are differently modulated (Reynolds et al., 2001;

Hikida et al., 2013; Yagishita et al., 2014). Transforming the
input into the hidden-layer activity approximates the process by
which an external stimulus and the internal state are encoded
into neural activity patterns of the cortex. This process is
assumed to be rather independent from dopamine-dependent
plasticity. However, this process should not be based simply
on random connections because the similarity of the inputs
has to be maintained in the encoding process to achieve
stimulus generalization. Instead, encoding could be learned in a
different manner from the reward-related learning. Therefore,
the fixed connections between the input and hidden layers
in OVaRLAP can be the result of learning for such encoding
process. How the brain learns the encoding process is a topic
for future research, but some implications are derived from
computational models of the primary visual cortex and the
primary auditory cortex that adopted unsupervised learning
(Hyvärinen and Hoyer, 2001; Terashima and Okada, 2012).

The encoding process may also depend on additional
functions other than learning. It has been reported that the
prefrontal dopamine system could be involved in processing
incoming sensory signals such as working memory and
attention (Ott and Nieder, 2019). Although we have not
modeled the prefrontal dopamine system in the current
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FIGURE 5 | Transition of the value function for each model in the grid-world navigation task. The average state values over 50 separate runs after 5, 30, 150, and 500

learning episodes for OVaRLAP (top row), simple TD learning (middle row), and MaxPain (bottom row), when applied to the painful grid-world navigation task shown in

Figure 1B. An outline of the grid-world is shown on the floor of each plot. The black lines indicate walls. The black, green, and yellow circles are the starting position,

the low-reward goal, and the high-reward goal, respectively. For OVaRLAP, the metaparameter θ is set as θ = 1 to introduce a moderate level of generalization. For

MaxPain, the result of the subtraction of the value function for the pain from the value function for the positive reward (i.e., the main factor for decision-making) is

displayed.

OVaRLAP model, one possible implementation would allow
prefrontal dopamine to modify the information transmission
from the input layer to the hidden layer and thereby
alter generalization.

Compared to ordinary reinforcement learning algorithms,
the uniqueness of the OVaRLAP model is that it is characterized
by fast generalization and separation of positive and negative
value learning. Its advantages in safe and efficient exploration
primarily appeared due to fast generalization, whereas its
potential defect in causing maladaptive behaviors was attributed
to fast generalization and also separation of positive and
negative value learning. Mikhael and Bogacz previously
demonstrated the advantage of separation of positive and
negative values (Mikhael and Bogacz, 2016). Their model
coded reward uncertainty into the sum of synaptic weights
of D1- and D2-SPNs. In addition, their model could adjust

for the tendency to choose or avoid risky options by
changing the weight of the positive and negative values,
which is assumed to reflect tonic dopamine levels. This
model is consistent with risk-taking behaviors observed in
patients of Huntington’s disease, in which striatal neurons
are closely involved (Kalkhoven et al., 2014). To further
discuss advantages of separation of positive and negative
values is beyond the scope of our current study, although
the OVaRLAP model may also exhibit such advantages. The
OVaRLAP model can encode reward uncertainty in distinct
connections updated by positive and negative TD errors (red
and blue arrows, respectively, in Figure 1A, left), and can
adjust a risk-taking tendency by changing the connection
weights between the pre-output neurons to the output
neuron, which were set as constants for simplicity in the
current study.
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FIGURE 6 | Relearning values of walls after environmental changes. OVaRLAP, the simple TD learning, and MaxPain were applied to a grid-world navigation task in

which the agent was trained with painful walls until the 500th episode and the environment was changed at the 500th episode to have pain-free walls (other than

walls, everything was the same before and after the change). The grid-world shown in Figure 1B was used. The state-value averaged over all wall positions is plotted

for each of the three agents, on the horizontal axis indicating the number of learning episodes. Each average (on the vertical axis) is obtained over 50 separate runs

and the shadow areas indicate the standard deviation. For OVaRLAP, the metaparameter θ is set as θ = 1 to introduce a moderate level of generalization.

Hypotheses on Psychiatric Disorders
The potential defect of OVaRLAP that causes maladaptive
behaviors could provide a hypothesis on psychiatric disorders.
Based on the correspondence between OVaRLAP and the
brain, our results with the disturbed OVaRLAP showed the
possibility that the noisy encoding process in the cortex and
the impairment of dopamine-dependent plasticity induce
abnormal stimulus generalization and discrimination, which
may underlie delusional symptoms. The relationship between
cortical disconnectivity and disrupted learning in schizophrenia
has been implied in computational studies (Hoffman and
Dobscha, 1989; Hoffman and McGlashan, 1997); therefore,
alterations in cortical connectivity could be a cause of a noisy
encoding process. Histological examinations and diffusion
tensor imaging studies of patients with schizophrenia revealed
reduced dendritic spine density and disrupted white matter
connectivity, respectively (Garey et al., 1998; Ellison-Wright and
Bullmore, 2009; van den Heuvel et al., 2016). Reinforcement
learning models have been used for attempts to explain
positive symptoms, including delusions, in schizophrenia
(Deserno et al., 2013; Katahira and Yamashita, 2017; Maia and
Frank, 2017). However, these studies do not link abnormal
cortical connectivity to positive symptoms. Rather, they
attribute positive symptoms to aberrant salience (i.e., a surprise
response to non-salient events) (Kapur, 2003). Thus, they
focused on abnormalities in the dopamine system, which
was also supported by neurobiological evidence (Howes
et al., 2012; Daberkow et al., 2013). The OVaRLAP model is
a new corticostriatal learning model that relates delusional
symptoms to abnormalities in cortical connectivity and the
dopamine system.

The relationship between abnormal stimulus generalization
and schizophrenia has been investigated in psychological
research (Buss and Daniell, 1967; Ralph, 1968; Kahnt
and Tobler, 2016) based on the hypothesis that abnormal

generalization underlies delusional symptoms in schizophrenia.
Some studies imply heightened stimulus generalization in
schizophrenia (Ralph, 1968; Kahnt and Tobler, 2016). However,
the reported abnormality was not sufficiently remarkable
for explaining delusion in a straightforward manner. This
could be attributed to the conditioning paradigm used for
their behavioral experiments. Patients with schizophrenia
have various deficits in cognitive function; therefore,
the experimental design needs to be simple to attribute
the result to stimulus generalization rather than other
factors. Computational models may potentially be used to
investigate how a specific deficit in cognitive function leads
to psychotic symptoms through complex learning processes.
The OVaRLAP model showed that a small abnormality in
stimulus generalization in combination with an unbalanced
response to positive and negative prediction error may induce
aberrant valuation after reward-related learning, including
action selection, state transition, and obtaining rewards from
multiple sources.

Conclusions
The OVaRLAP model updates synaptic weights of the
last layer in a multilayer neural network, which reflects
dopamine-dependent plasticity of corticostriatal synapses
(Reynolds et al., 2001). In contrast to ELM (Huang
et al., 2006), where fixed connections between the input
and hidden layers are set randomly, we set the fixed
connections of the OVaRLAP model to maintain the
similarity of inputs in the hidden-layer representation.
The OVaRLAP model enabled fast generalization of
reward and punishment learning. In the painful grid-
world navigation tasks, it demonstrated a quick reward
approach and efficient pain aversion in the early learning
phase and achieved safe and efficient exploration. However,
disturbances of the OVaRLAP network that caused
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FIGURE 7 | The TD learning task for disturbed OVaRLAP. (A) The value function is updated after reaching the left-bottom goal of the grid-world shown in Figure 1D

once with OVaRLAP without noise (left) and with noise (right). (B) The value function after 120 learning episodes in a single run for OVaRLAP with intact and impaired

updates (top and bottom rows, respectively) for the negative TD error with and without noise (right and left columns, respectively) in the fixed connections. (C) The

maximum value and its position in the value function after 40,000 time steps in total (378.8 learning episodes on average) in each run. Each panel shows the

maximum values in 50 separate runs for OVaRLAP under the following settings: intact or impaired updates (top or bottom row, respectively) for the negative TD error,

and without noise or with noise (left or right column, respectively) in the fixed connections. In the noisy case, the noise was independently introduced to the

initialization of the fixed connections for each run.

noisy generalization and impaired discrimination led to
aberrant valuation.

These results suggested the advantage and potential drawback
of generalization by the striatal dopamine system with regard
to adaptive behaviors. These results are consistent with previous
theories in behavioral science (Dunsmoor and Paz, 2015; Kahnt
and Tobler, 2016; Asok et al., 2018), in which generalization is
considered to be adaptive, whereas abnormal generalization is

implicated in maladaptive behaviors. The OVaRLAP model also
gives insight into the neurobiological basis of generalization and
its dysfunction. The process for encoding external stimuli and
internal states into neural activity patterns of the cortex may be
learned independently from reward-related learning. Disruption
of this encoding process induced by altered cortical connectivity
may disturb reward- and punishment-related learning, possibly
underlying delusional symptoms of psychiatric disorders.
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