AUTHOR=Street Sterling TITLE=Upper Limit on the Thermodynamic Information Content of an Action Potential JOURNAL=Frontiers in Computational Neuroscience VOLUME=14 YEAR=2020 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2020.00037 DOI=10.3389/fncom.2020.00037 ISSN=1662-5188 ABSTRACT=

In computational neuroscience, spiking neurons are often analyzed as computing devices that register bits of information, with each action potential carrying at most one bit of Shannon entropy. Here, I question this interpretation by using Landauer's principle to estimate an upper limit for the quantity of thermodynamic information that can be processed within a single action potential in a typical mammalian neuron. A straightforward calculation shows that an action potential in a typical mammalian cortical pyramidal cell can process up to approximately 3.4 · 1011 bits of thermodynamic information, or about 4.9 · 1011 bits of Shannon entropy. This result suggests that an action potential can, in principle, carry much more than a single bit of Shannon entropy.