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Jan Kaiser*, Rafatul Faria, Kerem Y. Camsari and Supriyo Datta

Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Modern machine learning is based on powerful algorithms running on digital computing

platforms and there is great interest in accelerating the learning process and making

it more energy efficient. In this paper we present a fully autonomous probabilistic

circuit for fast and efficient learning that makes no use of digital computing. Specifically

we use SPICE simulations to demonstrate a clockless autonomous circuit where the

required synaptic weights are read out in the form of analog voltages. This allows us to

demonstrate a circuit that can be built with existing technology to emulate the Boltzmann

machine learning algorithm based on gradient optimization of the maximum likelihood

function. Such autonomous circuits could be particularly of interest as standalone

learning devices in the context of mobile and edge computing.

Keywords: on-device learning, Boltzmann machine algorithm, probabilistic computing, magnetic tunnel junction

(MTJ), machine learning, analog circuit

1. INTRODUCTION

Machine learning, inference, and many other emerging applications (Schuman et al., 2017) make
use of stochastic neural networks comprising (1) a binary stochastic neuron (BSN) (Ackley et al.,
1985; Neal, 1992) and (2) a synapse that constructs the inputs Ii to the ith BSN from the outputsmj

of all other BSNs.
The output mi of the ith BSN fluctuates between +1 and −1 with a probability controlled by its

input

mi(t + τN) = sgn
[

tanh
(

Ii(t)
)

− r
]

(1)

where r represents a random number in the range [−1,+1], and τN is the time it takes for a neuron
to provide a stochastic outputmi in accordance with a new input Ii

1.
Usually the synaptic function, Ii({m}) is linear and is defined by a set of weightsWij such that

Ii(t + τS) =
∑

j

Wijmj(t) (2)

where τS is the time it takes to recompute the inputs {I} everytime the outputs {m} change. Typically
Equations (1), (2) are implemented in software, often with special accelerators for the synaptic
function using GPU/TPUs (Schmidhuber, 2015; Jouppi, 2016).

The time constants τN and τS are not important when Equations (1) and (2) are implemented on
a digital computer using a clock to ensure that neurons are updated sequentially and the synapse
is updated between any two updates. But they play an important role in clockless operation of
autonomous hardware that makes use of the natural physics of specific systems to implement
Equations (1) and (2) approximately. A key advantage of using BSNs is that Equation (1) can be

1Equation (1) can be written in binary notation with a unit step function and a sigmoid function.
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implemented compactly using stochastic magnetic tunnel
junctions (MTJs) as shown in Camsari et al. (2017a,b), while
resistive or capacitive crossbars can implement Equation (2)
(Hassan et al., 2019a). It has been shown that such hardware
implementations can operate autonomously without clocks, if the
BSN operates slower than the synapse, that is, if τN >> τS shown
by Sutton et al. (2019).

Stochastic neural networks defined by Equations (1) and (2)
can be used for inference whereby the weights Wij are designed
such that the system has a very high probability of visiting
configurations defined by {m} = {v}n, where {v}n represents
a specified set of patterns. However, the most challenging and
time-consuming part of implementing a neural network is not
the inference function, but the learning required to determine
the correct weightsWij for a given application. This is commonly
done using powerful cloud-based processors and there is great
interest in accelerating the learning process and making it more
energy efficient so that it can become a routine part of mobile and
edge computing.

In this paper we present a new approach to the problem
of fast and efficient learning that makes no use of digital
computing at all. Instead it makes use of the natural physics of
a fully autonomous probabilistic circuit composed of standard
electronic components like resistors, capacitors, and transistors
along with stochastic MTJs.

We focus on a fully visible Boltzmann machine (FVBM),
a form of stochastic recurrent neural network, for which the
most common learning algorithm is based on the gradient
ascent approach to optimize the maximum likelihood function
(Carreira-Perpinan and Hinton, 2005; Koller and Friedman,
2009). We use a slightly simplified version of this approach,
whereby the weights are changed incrementally according to

Wij(t + 1t) = Wij(t)+ ǫ[vivj −mimj − λWij(t)]

where ǫ is the learning parameter and λ is the regularization
parameter (Ng, 2004). The term vivj is the correlation between the
ith and the jth entry of the training vector {v}n. The term mimj

corresponds to the sampled correlation taken from the model’s
distribution. The advantage of this network topology is that the
learning rule is local since it only requires information of the two
neurons i and j connected by weightWij. In addition, the learning
rule can tolerate stochasticity for example in the form of sampling
noise which makes it an attractive algorithm to use for hardware
machine learning (Carreira-Perpinan and Hinton, 2005; Fischer
and Igel, 2014; Ernoult et al., 2019).

For our autonomous operation we replace the equation above
with its continuous time version (τL: learning time constant)

dWij

dt
=

vivj −mimj − λWij

τL
(3)

which we translate into an RC circuit by associatingWij with the
voltage on a capacitor C driven by a voltage source (Vv,ij − Vm,ij)
with a series resistance R (Figure 1):

C
dVij

dt
=

Vv,ij − Vm,ij − Vij

R
(4)

with vivj = Vv,ij/(VDD/2) and mimj = Vm,ij/(VDD/2). From
Figure 1 and comparing Equations (3), (4) it is easy to see
how the weights and the learning and regularization parameters
are mapped into circuit elements: Wij = AvVij/V0, λ =

V0/(AvVDD/2), and τL = λRC where Av is the voltage gain of
OP3 in Figure 1 and V0 is the reference voltage of the BSN. For
proper operation the learning time scale τL has to be much larger
than the neuron time τN to be able to collect enough statistics
throughout the learning process.

A key element of this approach is the representation of
the weights W with voltages rather than with programmable
resistances for which memristors and other technologies are still
in development (Li et al., 2018b). By contrast the charging of
capacitors is a textbook phenomenon, allowing us to design
a learning circuit that can be built today with established
technology. The idea of using capacitor voltages to represent
weights in neural networks has been presented by several authors
for different network topologies in analog learning circuits
(Schneider and Card, 1993; Card et al., 1994; Kim et al., 2017;
Sung et al., 2018). The use of capacitors has the advantage of
having a high level of linearity and symmetry for the weight
updates during the training process (Li et al., 2018a).

In section 2, we will describe such a learning circuit that
emulates Equations (1)–(3). The training images or patterns {v}n
are fed in as electrical signals into the input terminals, and the
synaptic weightsWij can then be read out in the form of voltages
from the output terminals. Alternatively the values can be stored
in a non-volatile memory from which they can subsequently be
read and used for inference. In section 3, we will present SPICE
simulations demonstrating the operation of this autonomous
learning circuit.

2. METHODS

The autonomous learning circuit has three parts where each
part represents one of the three Equations (1)–(3). On the left
hand side of Figure 1, the training data is fed into the circuit
by supplying a voltage Vv,ij which is given by the ith entry of
the bipolar training vector vi multiplied by the jth entry of the
training vector vj and scaled by the supply voltage VDD/2. The
training vectors can be fed in sequentially or as an average of
all training vectors. The weight voltage Vij across capacitor C
follows Equation (4) where Vv,ij is compared to voltage Vm,ij

which represents correlation of the outputs of BSNs mi and mj.
Voltage Vm,ij is computed in the circuit by using an XNOR gate
that is connected to the output of BSN i and BSN j. The synapse
in the center of the circuit connects weight voltages to neurons
according to Equation (2). VoltageVij has to bemultiplied by 1 or
−1 depending on the current value ofmj. This is accomplished by
using a switch which connects either the positive or the negative
node ofVij to the operational amplifiers OP1 andOP2. Here, OP1
accumulates all negative contributions and OP2 accumulates all
positive contributions of the synaptic function. The differential
amplifier OP3 takes the difference between the output voltages of
OP2 and OP1 and amplifies the voltage by amplification factor
Av. This voltage conversion is used to control the voltage level
of Vij in relation to the input voltage of each BSN. The voltage
level at the input of the BSN is fixed by the reference voltage
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FIGURE 1 | Clockless learning circuit designed to emulate Equations (1)–(3) autonomously.

of the BSN which is V0. However, the voltage level of Vij can
be adjusted and utilized to adjust the regularization parameter
λ in the learning rule (Equation 3). The functionality of the
BSN is described by Equation (1) where the dimensionless input
is given by Ii(t) = Vi,in(t)/V0. This relates the voltage Vij to
the dimensionless weight by Wij = AvVij/V0. The hardware
implementation of the BSN uses a stochastic MTJ in series with a
transistor as presented by Camsari et al. (2017b). Due to thermal
fluctuations of the low-barrier magnet (LBM) of the MTJ the
output voltage of the MTJ fluctuates randomly but with the right
statistics given by Equation (1). The time dynamics of the LBM
can be obtained by solving the stochastic Landau-Lifshitz-Gilbert
(LLG) equation. Due to the fast thermal fluctuations of the LBM
in the MTJ, Equation (1) can be evaluated on a subnanosecond
timescale leading to fast generation of samples (Hassan et al.,
2019b; Kaiser et al., 2019b).

Figure 1 just shows the hardware implementation of one
weight and one BSN. The size of the whole circuit depends on
the size of the training vector N. For every entry of the training
vector one BSN is needed. The number of weights which is the
number of RC-circuits is given by N(N − 1)/2 where every
connection between BSNs is assumed to be reciprocal. To learn
biases another N RC-circuits are needed.

The learning process is captured by Equations (3) and (4).
The whole learning process has similarity with the software
implementation of persistent contrastive divergence (PCD)
(Tieleman, 2008) since the circuit takes samples from the model’s

distribution (Vm,ij) and compares it to the target distribution
(Vv,ij) without reinitializing the Markov Chain after a weight
update. During the learning process voltageVij reaches a constant

average value where
dVij

dt
≈ 0. This voltage Vij = Vij,learned

corresponds to the learned weight.
For inference the capacitor C is replaced by a voltage

source of voltage Vij,learned. Consequently, the autonomous
circuit will compute the desired functionality given by the
training vectors. In general, training and inference have
to be performed on identical hardware in order to learn
around variations (see Supplementary Material for more
details). It is important to note that in inference mode this
circuit can be used for optimization by performing electrical
annealing. This is done by increasing all weight voltages
Vij by the same factor over time. In this way the ground
state of a Hamiltonian like the Ising Hamiltionian can be
found (Sutton et al., 2017; Camsari et al., 2019).

3. RESULTS

In this section the autonomous learning circuit in Figure 1

is simulated in SPICE. We show how the proposed circuit
can be used for both inference and learning. As examples, we
demonstrate the learning on a full adder (FA) and on 5 × 3
digit images. The BSN models are simulated in the framework
developed by Camsari et al. (2015). For all SPICE simulations the
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TABLE 1 | Truth table of a full adder.

A

v1

B

v2

Cin

v3

S

v4

Cout

v5

Dec PIdeal

−1 −1 −1 −1 −1 0 0.125

−1 −1 1 1 −1 6 0.125

−1 1 −1 1 −1 10 0.125

−1 1 1 −1 1 13 0.125

1 −1 −1 1 −1 18 0.125

1 −1 1 −1 1 21 0.125

1 1 −1 −1 1 25 0.125

1 1 1 1 1 31 0.125

Every 0 in the binary representation of the full adder is replaced by −1 in the bipolar

representation. “Dec” represents the decimal conversion of each line. PIdeal is the ideal

probability distribution were every line’s probability is p=1/8=0.125.

following parameters are used for the stochastic MTJ in the BSN
implementation: Saturation magnetization MS = 1,100 emu/cc,
LBM diameter D = 22 nm, LBM thickness l = 2 nm, TMR =

110%, damping coefficient α = 0.01, temperature T = 300 K
and demagnetization field HD = 4πMS with V = (D/2)2π l. For
the transistors, 14 nmHP-FinFET Predictive Technology Models
(PTM)2 are used with fin number fin = 1 for the inverters
and fin = 2 for XNOR-gates. Ideal operational amplifiers and
switches are used in the synapse. The characteristic time of the
BSNs τN is in the order of 100 ps (Hassan et al., 2019b) and
much larger than the time it takes for the synaptic connections,
namely the resistors and operational amplifiers, to propagate BSN
outputs to neighboring inputs. It has to be noted that in principle
other hardware implementations of the synapse for computing
Equation (2) could be utilized as long as the condition τN ≫ τS
is satisfied.

3.1. Learning Addition
As first training example, we use the probability distribution of
a full adder. The FA has 5 nodes and 10 weights that have to
be learned. In the case of the FA training, no biases are needed.
The probability distribution of a full adder with bipolar variables
is shown in Table 1. To learn this distribution the correlation
terms vivj in the learning rule have to be fed into the voltage node
Vv,ij. The correlation is dependent on what training vector/truth
table line is fed in. For the second line of the truth table for
example v1v2 = −1 · −1 = 1 and v1v3 = −1 · 1 = −1
with A being the first node, B the second node and so on. In
Figure 2B the correlation v1v5 is shown. For the sequential case
the value of v1v5 is obtained by circling through all lines of the
truth table where each training vector is shown for 1 ns. A and
Cout in Table 1 only differ in the fourth and fifth line for which
v1v5 = −1. For all other cases v1v5 = 1. The average of all lines
is shown as red solid line. Figure 2A shows the weight voltage
Vij with i = 1 and j = 5 for FA learning and the first 1,000 ns
of training. The following learning parameters have been used
for the FA: τL = 62.5 ns where C = 1 nF and R = 5 k�,
Av = 10, and Rf = 1 M�. This choice of learning parameters

2http://ptm.asu.edu/

FIGURE 2 | Feeding of training data into the circuit. (A) Weight voltage V1,5

over time for sequential and average feeding in of the correlation between

visible unit i and visible unit j for training a full adder. (B) Correlation v1v5 vs.

time t. All eight lines of the truth table of a full adder are cycled through where

every vector is shown for time T = 1 ns at a time. (C) Enlarged version of

subfigure (A). For sequential feeding in of data, the voltage change in v1v5
directly affects V1,5.

ensures that τL ≫ τN . Due to the averaging effect of the RC-
circuit both sequential and average feeding of the training vector
result in similar learning behavior as long as the RC-constant is
much larger than the timescale of sequential feeding. Figure 2C
shows the enlarged version of Figure 2A. For the sequential
feeding, voltage V1,5 changes substantially every time v1v5
switches to−1.

At the start of training all weight voltages are initialized to
0 V and the probability distribution is uniform. The training
is performed for 5,500 ns. In Figure 3A the ideal probability
distribution of the FA PIdeal is shown together with the
normalized histogram PSPICE of the sampled BSN configurations
taken from the last 500 ns of learning and compared to the
ideal distribution PIdeal. The training vector is fed in as an
average. For PSPICE the eight trained configurations of Table 1
are the dominant peaks. To monitor the training process,
the Kullback-Leibner divergence between the trained and the
ideal probability distribution KL(PIdeal||PSPICE(t)) is plotted as
a function of training time t in Figure 3B where PSPICE(t)
is the normalized histogram taken over 500 ns. PSPICE at
t = 0 corresponds to the histogram taken from t = 0 to
t = 500 ns. During training the KL divergence decreases
over time until it reaches a constant value at about 0.1. It has
to be noted that after the weight matrix is learned correctly
for a fully visible Boltzmann machine, the KL divergence can
be reduced further by increasing all weights uniformly by a
factor I0 which corresponds to inverse temperature of the
Boltzmann machine (Aarts and Korst, 1989). Figure 3 shows
that the probability distribution of a FA can be learned very
fast with the proposed autonomous learning circuit. In addition,
the learning performance is robust when components of the
circuit are subject to variation. In the Supplementary Material,
additional figures of the learning performance are shown
when the diameter of the magnet and the resistances of the
RC-circuits are subject to variation. The robustness against
variations can be explained by the fact that the circuit can
learn around variations. BSNs using LBMs under variations
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FIGURE 3 | Training of a full adder in SPICE. (A) Probability distribution of a

trained full adder is compared to the ideal distribution with binary inputs A, B,

Cin and outputs S and Cout. The training is performed for 5,500 ns. Blue bars

are the probability distribution extracted from SPICE simulations by creating a

histogram of the configurations of m over the last 500 ns of training. (B)

Kullback–Leibler divergence between PSPICE obtained by doing a moving

average of 500 ns and the target distribution defined as

KL(PIdeal||PSPICE(t)) =
∑

m PIdeal(m) log(PIdeal(m)/PTrain(m, t)). Following

parameters have been used in the simulations: C = 1 nF, R = 5 k�,

RF = 1 M�, Av = 10, V0 = 50 mV.

have also been analyzed by Abeed and Bandyopadhyay (2019)
and Drobitch and Bandyopadhyay (2019).

3.2. Learning Image Completion
As second example, the circuit is utilized to train 10 5 × 3 pixel
digit images shown in Figure 4A. Here, 105 reciprocal weights
and 15 biases have to be learned. The network is trained for 3,000
ns and the bipolar training data is fed in as average of the 10
vivj terms for every digit. The same learning parameters as in the
previous section are used here. In Figure 4B, the KL divergence
is shown as a function of time between the SPICE histogram
and the ideal probability distribution where the ideal distribution
has 10 peaks with each peak being 10% for each digit. Most of
the learning happens in the first 1,500 ns of training, however,
the KL divergence still reduces slightly during the later parts of
learning. After 3,000 ns the KL divergence reaches a value of
around 0.5.

For inference we replace the capacitor by a voltage source
where every voltage is given by the previously learned voltage
Vij. The circuit is run for 10 instances where every instance
has a unique clamping pattern of 6 pixels representing one of
the 10 digits. The clamped inputs are shown in Figure 4C. The
input of a clamped BSN is set to ±VDD/2. Each instance is run

FIGURE 4 | Training and testing of 5 × 3 digit images. (A) 5 × 3 digit images

from 0 to 9. (B) Kullback Leibner divergence during training for 3,000 ns using

the autonomous circuit. (C–E) Image completion: For inference, six unique

pixels are clamped for every digit (as shown in C). (D,E) show the heatmap of

BSN outputs during inference for running the circuit for 100 ns for (D) I0 = 1

and (E) I0 = 2.

for 100 ns and the outputs of the BSNs are monitored. The
BSNs fluctuate between the configurations given by the learned
probability distribution. In Figure 4D, the heat map of the output
of the BSNs is shown. For every digit themost likely configuration
is given by the trained digit image. To illustrate this point, the
amount of BSN fluctuations is reduced by increasing the learned
weight voltages by a factor of I0 = 2. The circuit is again run
in inference mode for 100 ns with the same clamping patterns.
In Figure 4E the heatmap is shown. The circuit locks into the
learned digit configuration. This shows that in inference mode
the circuit can be utilized for image completion.

4. DISCUSSION

In this paper we have presented a framework for mapping
a continuous version of Boltzmann machine learning rule
(Equation 3) to a clockless autonomous circuit. We have
shown full SPICE simulations to demonstrate the feasibility of
this circuit running without any digital component with the
learning parameters set by circuit parameters. Due to the fast
BSN operation, samples are drawn at subnanosecond speeds
leading to fast learning, as such the learning speed should
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be at least multiple orders of magnitudes faster compared
to other computing platforms (Adachi and Henderson, 2015;
Korenkevych et al., 2016; Terenin et al., 2019). The advantage
of this autonomous architecture is that it produces random
numbers naturally and does not rely on pseudo random number
generators like linear-feedback shift register (LFSRs) (which are
for example used in Bojnordi and Ipek, 2016). These LFSRs
have overhead and are not as compact and efficient as the
hardware BSN used in this paper. As shown by Borders et al.
(2019), typical LFSRs need about 10x more energy per flip and
more than 100x more area than an MTJ-based BSN. Another
advantage of this approach is that the interfacing with digital
hardware only needs to be performed after the learning has been
completed. Hence, no expensive analog-to-digital conversion has
to be performed during learning. We believe this approach could
be extended to other energy based machine learning algorithms
like equilibrium propagation introduced by Scellier and Bengio
(2017) to design autonomous circuits. Such standalone learning
devices could be particularly of interest in the context of mobile
and edge computing.
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