
ORIGINAL RESEARCH
published: 23 January 2020

doi: 10.3389/fncom.2019.00096

Frontiers in Computational Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 96

Edited by:

Yilei Zhang,

Nanyang Technological University,

Singapore

Reviewed by:

Yuanyuan Mi,

Chongqing University, China

Guangtao Zhai,

Shanghai Jiao Tong University, China

*Correspondence:

Caixia Wang

wangcaixia@cfau.edu.cn

Received: 03 September 2019

Accepted: 23 December 2019

Published: 23 January 2020

Citation:

Wang C and Zhang K (2020)

Equilibrium States and Their Stability

in the Head-Direction Ring Network.

Front. Comput. Neurosci. 13:96.

doi: 10.3389/fncom.2019.00096

Equilibrium States and Their Stability
in the Head-Direction Ring Network

Caixia Wang 1,2* and Kechen Zhang 2

1 School of International Economics, China Foreign Affairs University, Beijing, China, 2Department of Biomedical Engineering,

Johns Hopkins University School of Medicine, Baltimore, MD, United States

Head-direction cells have been found in several areas in the mammalian brains. The

firing rate of an ideal head-direction cell reaches its peak value only when the animal’s

head points in a specific direction, and this preferred direction stays the same regardless

of spatial location. In this paper we combine mathematical analytical techniques and

numerical simulations to fully analyze the equilibrium states of a generic ring attractor

network, which is a widely used modeling framework for the head-direction system.

Under specific conditions, all solutions of the ring network are bounded, and there exists

a Lyapunov function that guarantees the stability of the network for any given inputs,

which may come from multiple sources in the biological system, including self-motion

information for inertially based updating and landmark information for calibration. We

focus on the first few terms of the Fourier series of the ring network to explicitly solve for all

possible equilibrium states, followed by a stability analysis based on small perturbations.

In particular, these equilibrium states include the standard single-peaked activity pattern

as well as double-peaked activity pattern, whose existence is unknown but has testable

experimental implications. To our surprise, we have also found an asymmetric equilibrium

activity profile even when the network connectivity is strictly symmetric. Finally we

examine how these different equilibrium solutions depend on the network parameters

and obtain the phase diagrams in the parameter space of the ring network.

Keywords: continuous attractor network, ring network, neural field, dynamical system, Fourier analysis, stability

1. INTRODUCTION

Head-direction cells were first reported in several brain areas related to the limbic system in the
rodents (Taube, 2007) and later in other mammalian species such as monkeys (Robertson et al.,
1999) and bats (Finkelstein et al., 2015). A stereotypical head-direction cell increases its firing rate
when the animal’s head is facing in a specific direction in a world-centered coordinate system
regardless of the animal’s spatial location, and the firing rate decreases to its baseline level as the
animal’s head turns away from the preferred direction (Taube et al., 1990). It has been proposed
that the head-direction cells may form a ring network that allows an activity bump to be self-
sustained by attractor dynamics, and the peak position of the activity bump is updated by self-
motion information and calibrated by learned landmarks (Skaggs et al., 1995; Redish et al., 1996;
Zhang, 1996). Multiple versions of the ring network have been studied for the head-direction cells
(Goodridge and Touretzky, 2000; Arleo and Gerstner, 2001; Sharp et al., 2001; Stringer et al., 2002;
Xie et al., 2002; Song and Wang, 2005) as well as for a variety of applications beyond the original
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head-direction system (Ben-Yishai et al., 1995; Pouget et al., 1998;
Hahnloser et al., 2000; Kakaria and de Bivort, 2017; Zhang et al.,
2019). Besides head-direction cells, attractor networks have been
used as a general theoretical framework for modeling other types
of spatial cells in the hippocampus and related systems (Knierim
and Zhang, 2012).

The equilibrium state of the head-direction ring network is
often visualized as a single bump of activity whose peak position
corresponds to the animal’s current heading direction (Figure 1,
top and middle rows). While this picture is compelling and
highly intuitive, it is not the only theoretical possibility for
explaining the experimental data. For instance, imagine that the
ring network can sustain two activity bumps instead of one
(Figure 1, bottom row), then if one records from an individual
cell in the ring, one would still find a head-direction cell with
a perfectly normal, single-peaked tuning curve, assuming that
the activity bumps now rotates at half of the speed as the single
activity bump. Indeed, if we focus on a single cell corresponding
to north, we see that in both situations, the cell fires at maximal
rate only when the animal is facing north (N).

Despite the functional equivalence, the structures of the
two ring networks are different. More specifically, unlike the
standard single-peaked network, the double-peaked network
has strong connections between cells in opposing directions
although they are not as strong as the connections between
neighboring cells. In the consideration above, we assume that
the rotation speed is halved in the double-peaked network. If
the rotation speed is kept the same, then the network should
generate tuning curves with two peaks that are 180◦ apart.
In fact, double-peaked head-direction tuning curves have been
reported in the retrosplenial cortex (Jacob et al., 2017), although
the phenomenon could be attributed to a single preferred

FIGURE 1 | Head-direction ring network. In the classic view, the head direction of a rat (Top) is represented by the peak location of the activity bump (Middle: red

shades) in a ring of head-direction cells. An alternative possibility is a ring network that allows two stable activity bumps that rotate at half of the speed (Bottom).

direction switching back and forth in time rather than implying
a truly double-peaked activity pattern (Page and Jeffery, 2018).
The consideration above can be generalized readily to activity
patterns with three or more peaks. The possible existence of
multi-peaked activities in the head-direction system together
with their potential functional significance has motivated us
to examine the equilibrium states in the ring network model
in greater depth.

This paper is aimed at a thorough analysis of the
equilibrium states in the ring network, with a focus on
the exact conditions for the existence of activity patterns
with multiple peaks. We will use the simple continuous
ring network to simplify the mathematical analysis. The
rotational symmetry of the system allows Fourier analysis to
be used effectively. We strive to derive the exact analytical
conditions whenever possible, and the analytical treatments are
complemented by systematic numerical simulations. Once the
exact expressions of all different kinds of equilibrium states
are obtained, we will employ small perturbations and eigen-
analysis of the linearized system to determine the stabilities
of these equilibrium states. We will examine the dependence
of various equilibrium states on the network parameters and
summarize the results by the phase diagrams. Our analysis
may provide a necessary step for extending the application
and analysis of the ring network beyond the classic single-
peaked condition.

2. MATERIALS AND METHODS

We consider a continuous formulation of the head-direction
system which has a continuous ring structure (Zhang, 1996).
Such continuous formulation has a long history in neural
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modeling (Wilson and Cowan, 1972; Amari, 1977; Bressloff,
2012). The standard simplified time evolution continuous
dynamics is governed by the equation

τ
∂u(θ , t)

∂t
= −u(θ , t)+w(θ , t)∗g(u(θ , t))+ I(θ , t), θ ∈ [0, 2π),

(1)
where the convolution is defined by

w(θ , t) ∗ g(u(θ , t)) =
1

2π

∫ 2π

0
w(θ − ϕ, t)g(u(ϕ, t))dϕ. (2)

In this system, u(θ , t) represents the state of voltage of a unit
with θ as its preferred direction, w(θ − ϕ, t) represents the
synaptic weight between units with θ − ϕ being the difference
of their preferred directions, g(u) is a monotone increasing and
sigmoid gain function, I(θ , t) represents external inputs, τ is a
time constant, θ is head-direction, and variable t is time. So the
whole head-direction system is given by

τ
∂u(θ , t)

∂t
= −u(θ , t)+

1

2π

∫ 2π

0
w(θ − ϕ, t)g(u(ϕ, t))dϕ

+I(θ , t), θ ∈ [0, 2π). (3)

3. RESULTS

3.1. General Properties of Head-Direction
Ring Network
3.1.1. Boundedness of Solutions
According to the form of Equation (3), we multiply integrating

factor e
t
τ of both sides of this equation. It is easy to get the

solution of Equation (3) as follows:

u(θ , t) =
u(θ , 0)

e
t
τ

+

∫ t
0 e

s
τ

(

∫ 2π
0 w(θ − ϕ, s)g(u(ϕ, s))dϕ

)

ds

2πτe
t
τ

+
∫ t
0 e

s
τ I(θ , s)ds

τe
t
τ

. (4)

Obviously, as t → +∞ the first term u(θ , 0)/e
t
τ tends to zero.

If w(θ , t) and g(u) are bounded function, then the second term is
bounded. This is because:

∣

∣

∣

∣

∫ 2π

0
w(θ − ϕ, s)g(u(ϕ, s))dϕ

∣

∣

∣

∣

≤
∫ 2π

0
|w(θ − ϕ, s)g(u(ϕ, s))|dϕ ≤ 2πM, (5)

where M is the maximum value of the integrand. At the same
time we have:

∣

∣

∣

∣

∣

∣

∫ t
0 e

s
τ

(

∫ 2π
0 w(θ − ϕ, s)g(u(ϕ, s))dϕ

)

ds

2πτe
t
τ

∣

∣

∣

∣

∣

∣

≤
M

∫ t
0 e

s
τ ds

τe
t
τ

≤ M, (t → +∞). (6)

So when t → +∞ the second term of solutions (4) is bounded. In
general the external inputs I(θ , t) is also bounded, thus we know
that the third term of solutions (4) is bounded, too.

Therefore if synaptic weight w(θ , t), gain function g(u)
and external inputs I(θ , t) are bounded, then all solutions
of system (3) are tending to a bounded domain rather than
wandering in the whole space. Namely as variable t tends to
infinity, the average net state u(θ , t) for each head-direction cell is
bounded and changes in a bounded domain. Meanwhile we find
that if there is no external input (i.e., I(θ , t) = 0), then |u(θ , t)| is
less than the maximum of the product of |w(θ , t)| and |g(u(θ , t))|
as t → +∞. So the output of system (3) is under control by
synaptic weight and gain function.

3.1.2. The Form of Solutions
The structure of head-direction model is a homogeneous and
continuous ring network, so the synaptic weight w(θ , t) and
external input I(θ , t) are periodic with period 2π . We have the
Fourier series expansions of w(θ , t) and I(θ , t) as follows:

w(θ , t) =
+∞
∑

n=−∞
wn(t)e

inθ , I(θ , t) =
+∞
∑

n=−∞
In(t)e

inθ . (7)

According to the form of solutions (4), we know u(θ , t) and
g(u(θ , t)) are also periodic with period 2π on θ . So the Fourier
series expansions of u(θ , t) and g(u(θ , t)) are given as follows:

u(θ , t) =
+∞
∑

n=−∞
un(t)e

inθ , g(u(θ , t)) =
+∞
∑

n=−∞
gn(t)e

inθ . (8)

According to the convolution theorem, we know that if g(u(θ , t))
andw(θ , t) are in L1([−π ,π]), then the Fourier series coefficients
of 2π-periodic convolution of w(θ) and g(u(θ)) are given by:

[w(θ , t) ∗ g(u(θ , t))]n(t) = wn(t) · gn(t), n = 0,±1,±2, · · · . (9)

Therefore the Fourier series coefficients of system (3) have the
following relationships:

τ
dun(t)

dt
= −un(t)+ wn(t) · gn(t)+ In(t), n = 0,±1,±2, · · · .

(10)
Notice that when external input I(θ , t) is a constant and the
Fourier series coefficients of synaptic weight w(θ , t) just have
finite term, i.e.,

w(θ , t) =
+m
∑

n=−m

wn(t)e
inθ , (11)

then when |n| > m the Fourier series coefficients of solution
u(θ , t) is:

τ
dun(t)

dt
= −un(t), (12)

i.e.,

un(t) = un(0)e
− t

τ . (13)
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Obviously the Fourier series coefficients of solution u(θ , t) will
reduce to zero (t → +∞) when |n| > m. When the synaptic
weight w(θ , t) and sigmoid function g(u) are chosen in some
special forms, we can derive the form and properties of the
solutions, especially the equilibrium solutions.

3.1.3. The Equilibrium Solutions
Until now, as far as we know the general solutions of the ring
attractor network (3) can not be solved, but we can get special
solutions, such as equilibrium solutions. Once the equilibrium
states are determined, we can further obtain the properties of
other solutions near the equilibrium solutions by local stability
analysis. Sometimes we even determine the tendency of all
solutions in the solution space.

Base on the definition of an equilibrium solution, we let

∂u(θ , t)

∂t
= 0. (14)

This equation shows that the equilibrium solutions is
independent of time t. In other words, the activity u(θ , t)
does not change with time. In the head-direction neural
network, different equilibrium solutions are related to different
equilibrium states. We write u(θ , t) = u(θ) which depends only
on variable θ . An equilibrium solution satisfies:

u(θ) =
1

2π

∫ 2π

0
w(θ − ϕ, t)g(u(ϕ))dϕ + I(θ , t). (15)

Here we assume I(θ , t) represents a fixed external input current
(i.e., I(θ , t) = I), so the system has equilibrium solutions if and
only if the synaptic weight w(θ , t) is also independent of time t.
That means w(θ , t) = w(θ) and the equilibrium solution satisfies

u(θ) =
1

2π

∫ 2π

0
w(θ − ϕ)g(u(ϕ))dϕ + I. (16)

As mentioned in section 3.1.2 we know that w(θ , t), u(θ , t)
and I(θ , t) are periodic with period 2π on θ . According to
Equation (16) we conclude that the equilibrium solution u(θ) is
always rotation-invariant. It means that if u(θ) is an equilibrium
solution of system (3), then u(θ − θ0) is also an equilibrium
solution. Therefore from the viewpoint of symmetry, we show
that every head-direction cell in the ring network has similar
equilibrium states. Amathematical verification of this conclusion
is in the next paragraph.

Because u(θ) is an equilibrium solution which satisfies
(Equation 16) for any θ0, we have:

u(θ − θ0) =
1

2π

∫ 2π

0
w(θ − θ0 − ϕ)g(u(ϕ))dϕ + I. (17)

Set ϕ = φ − θ0 and plug this relation into the integration, then
we get:

u(θ − θ0)

=
1

2π

∫ 2π+θ0

θ0

w(θ − θ0 − (φ − θ0))g(u(φ − θ0))d(φ − θ0)+ I.

(18)

That is,

u(θ − θ0) = 1
2π

∫ 2π
0 w(θ − φ)g(u(φ − θ0))dφ + I. (19)

Thus u(θ − θ0) also is an equilibrium solution. According to this
property there is no need to consider any shift of head direction,
and we only need to focus on the mathematical forms all the
equilibrium solutions.

Since constant I can be absorbed into the constant term of
w(θ), we will set I = 0 in the following analysis. Now we choose
w(θ) as a Fourier series with finite terms:

w(θ) = a0 + a1 cos θ + b1 sin θ + a2 cos 2θ

+b2 sin 2θ + · · · + an cos nθ + bn sin nθ , (20)

and then an equilibrium solution satisfies

u(θ) =
1

2π

∫ 2π

0
(a0 + a1 cos(θ − ϕ)+ a2 cos 2(θ − ϕ)

+ · · · + an cos n(θ − ϕ))g(u(ϕ))dϕ

+
1

2π

∫ 2π

0
(b1 sin(θ − ϕ)+ b2 sin 2(θ − ϕ)

+ · · · + bn sin n(θ − ϕ))g(u(ϕ))dϕ. (21)

Since

1

2π

(∫ 2π

0
an cos n(θ − ϕ)g(u(ϕ))dϕ (22)

+
∫ 2π

0
bn sin n(θ − ϕ)g(u(ϕ))dϕ

)

= An cos nθ

+Bn sin nθ ,

where

An = 1
2π

(

an
∫ 2π
0 cos nϕg(u(ϕ))dϕ − bn

∫ 2π
0 sin nϕg(u(ϕ))dϕ

)

,

Bn = 1
2π

(

an
∫ 2π
0 sin nϕg(u(ϕ))dϕ + bn

∫ 2π
0 cos nϕg(u(ϕ))dϕ

)

,

(23)
the equilibrium solution u(θ) has a similar form as w(θ), namely,

u(θ) = A+ A1 cos θ + B1 sin θ + A2 cos 2θ + B2 sin 2θ

+ · · · + An cos θ + Bn sin θ . (24)

Therefore we find that the form of the equilibrium states
of the ring network depends heavily on the form of the
synaptic weights.

3.1.4. Lyapunov Function
In this section we consider the stability of system (14) by
constructing a continuous version of a Lyapunov function
for symmetric networks (Cohen and Grossberg, 1983;
Hopfield, 1984). The Lyapunov function or energy function is
as follows:

E =
∫ 2π

0

∫ g(u(θ ,t))

0
(g−1(V)− I)dVdθ
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−
1

4π

∫ 2π

0

∫ 2π

0
w(θ − ϕ)g(u(ϕ, t))g(u(θ , t))dϕdθ .

(25)

Obviously, the energy function is bounded and the time
derivative of Equation (25) is:

dE/dt =
∫ 2π
0 (g−1(g(u(θ , t)))− I)

dg(u(θ ,t))
dt

dθ

− 1
4π

∫ 2π
0

∫ 2π
0 w(θ − ϕ, t)

(

g(u(ϕ, t))
dg(u(θ ,t))

dt

+g(u(θ , t))
dg(u(ϕ,t))

dt

)

dϕdθ .

(26)

We find if w(θ) is even, i.e., w(θ − ϕ) = w(ϕ − θ), then

∫ 2π

0

∫ 2π

0
w(θ − ϕ, t)g(u(ϕ, t))

dg(u(θ , t))

dt
dϕdθ (27)

=
∫ 2π

0

∫ 2π

0
w(θ − ϕ, t)g(u(θ , t))

dg(u(ϕ, t))

dt
dϕdθ .

Thus its time derivative becomes:

dE/dt =
∫ 2π
0 (u(θ , t)− I)

dg(u(θ ,t))
dt

dθ

− 1
2π

∫ 2π
0

∫ 2π
0 w(θ − ϕ, t)g(u(ϕ, t))

dg(u(θ ,t)
dt

dϕdθ

=
∫ 2π
0 [u(θ , t)− I − 1

2π

∫ 2π
0 w(θ

−ϕ, t)g(u(ϕ, t))dϕ]
dg(u(θ ,t))

dt
dθ

= −τ
∫ 2π
0

dg−1(g(u(θ ,t)))
dg(u(θ ,t))

· ( dg(u(θ ,t))
dt

)2dθ .

(28)

Since V = g(u) is a monotonically increasing gain function, its
inverse function u = g−1(V) is also a monotonically increasing

function, i.e.,
dg−1(V)

dV
> 0. Since the time parameter τ > 0, we

obtain dE
dt

≤ 0, where dE
dt

= 0 if and only if u(θ , t) = u(θ) which
is an equilibrium state.

Therefore when the synaptic weight w(θ) is even, the gain
function g(u) is monotonically increasing, and the synaptic
weight and the gain function are all bounded, all solutions of
system (3) are convergent to the corresponding equilibrium
states as t → +∞. If the system has one, and only one,
equilibrium solution, then this equilibrium solution must have
global stability. That means all flows of system (3) converge to
this stable state no matter what the initial state is.

3.2. An Example of Head-Direction Ring
Network
Based on the above analysis, in order to get all equilibrium
solutions we just need to pay attention to the Fourier form of the
synaptic weight. Here we choose the synaptic weight as w(θ) =
a + b cos θ + c cos 2θ which only has three terms. Of course, the
conclusions and methods can be extended to more general cases
as long as the synaptic weight has finite terms.

According to the analysis in section 3.1.3, we know that the
equilibrium solutions of system have the following form:

u(θ) = a0 + b1 cos θ + b2 sin θ + c1 cos 2θ + c2 sin 2θ , (29)

where,

a0 = a
∫ 2π
0 g(u(ϕ))dϕ,

b1 = b
∫ 2π
0 cosϕ g(u(ϕ))dϕ, b2 = b

∫ 2π
0 sinϕ g(u(ϕ))dϕ,

c1 = c
∫ 2π
0 cos 2ϕ g(u(ϕ))dϕ, c2 = c

∫ 2π
0 sin 2ϕ g(u(ϕ))dϕ.

(30)
Once synaptic weight is chosen, we can determine the form
of equilibrium solutions. According to the solution (29), the
equilibrium solution u(θ) has a similar form as synaptic weight
w(θ). Therefore if the synaptic weight has no more than two
peaks, then all equilibrium solutions have no more than two
peaks. That is, an equilibrium of the systemmay be a flat solution,
a single-peaked solution, or a double-peaked solution, and on the
basis of relationship (30) all equilibrium solutions are dependent
on control parameters a, b and c. In fact we can obtain all
the equilibrium solutions when the sigmoid function g(u) is
also chosen.

The gain function is often described by the sigmoid:

g(u) =
1

1+ e−k(u−u0)
, (31)

where k > 0 is the gain and u0 is the threshold. For convenience
in this paper we set the threshold u0 = 0. When the gain k is
larger enough or as k → +∞, the form of the gain function
converges to the Heaviside step function, and the derivative of
the gain function reduces to the Dirac δ function.

Here we choose I(θ , t) = 0, g(u) =H(u) =Heaviside(u), and
w(θ) = a+ b cos θ + c cos 2θ . Now the ring network becomes:

τ
∂u(θ , t)

∂t
= −u(θ , t)+

1

2π

∫ 2π

0

(

a+ b cos(θ − ϕ)

+c cos 2(θ − ϕ)
)

H(u(ϕ, t))dϕ. (32)

The equilibrium solution equation becomes:

u(θ) =
1

2π

∫ 2π

0

(

a+ b cos(θ − ϕ)+ c cos 2(θ − ϕ)
)

H(u(ϕ))dϕ.

(33)
Parameter a only moves the equilibrium state u(θ) up and down,
without changing its shape. So we set parameter a = 0 in
this paper. Figure 2A shows synaptic weight function w(θ) and
Figure 2B shows the weight matrix of the ring network, with
parameters a = 0, b = 3 and c = 2.

3.2.1. All Possible Equilibrium States
The general form of the equilibrium solutions in system (32) is:

u(θ) = a0 + b1 cos θ + b2 sin θ + c1 cos 2θ + c2 sin 2θ . (34)
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FIGURE 2 | The synaptic weights for parameters a = 0, b = 3 and c = 2. (A) Diagram of weight profile w(θ ) = a+ b cos θ + c cos 2θ . (B) The synaptic weight matrix

of the ring network.

Using basic trigonometric formula, we rewrite this form as:

u(θ) = A+ B cos(θ − θ1)+ C cos 2(θ − θ2), (35)

where A = a0, B =
√

b21 + b22, C =
√

c21 + c22, θ1 = arctan b2
b1

and 2θ2 = arctan c2
c1
. As mentioned in section 3.1.3 for any

θ0 if u(θ) is a solution of system (32), then u(θ − θ0) is also
a solution. So we should pay attention only to the form of the
equilibrium solutions and ignore the influence of the phase-
shift θ0. Meanwhile according to Equation (35) we know that
any equilibrium solution is a linear combination of functions
cos(θ − θ1) and cos 2(θ − θ2). Next we will discuss all possible
linear combinations of these three terms and solve for the exact
equilibrium states respectively.

Case 1: u(θ) = A.
The first situation is that the equilibrium solution is a constant.

If u(θ) = A is a solution of system (32), then

u(θ) =
H(A)

2π

∫ 2π

0
(a+ b cos(θ − ϕ)+ c cos 2(θ − ϕ))dϕ,

i.e.,

u(θ) = aH(A). (36)

Since a = 0, the constant A = a
∫ 2π
0 g(u(ϕ))dϕ is always equal

to zero. In other words, we have u(θ) = 0 as the only constant
solution of the system. The general form of non-zero equilibrium
solution for head-direction neural network (32) is:

u(θ) = B cos(θ − θ1)+ C cos 2(θ − θ2), (37)

where B and C are unknown constants and θ1 and θ2 are
unknown angles.

Case 2: u(θ) = B cos(θ − θ0),B > 0.
Due to rotation-invariance, we just need to find one solution

of this form u(θ) = B cos θ(B > 0). Plugging u(θ) = B cos θ(B >

0) into (Equation 33) we have the following equality:

u(θ) =
1

2π

∫ 2π

0
(b cos(θ − ϕ)+ c cos 2(θ − ϕ))H(B cosϕ)dϕ

i.e.,

u(θ) =
1

2π

∫ π
2

− π
2

(b cos(θ − ϕ)+ c cos 2(θ − ϕ))dϕ =
b

π
cos θ .

(38)
So if b > 0, then u(θ) = b

π
cos(θ − θ0) is the equilibrium

solution for any θ0; If b < 0, then there is no equilibrium solution
like this form. For parameters a = 0, b = 3 and c = 2, we
show the solution u(θ) = b

π
cos(θ − π) in Figure 3A. Figure 3B

shows numerical simulation with initial state u0 is 0.1
b
π
cos(θ −

π) with additional small perturbations, and as t → +∞, the
state approaches this equilibrium solution, suggesting that the

equilibrium solution u(θ) = b
π
cos(θ − θ0) is likely to be stable.

We will return this stability problem in section 3.2.2.
Case 3: u(θ) = C cos 2(θ − θ0),C > 0.
Similar to case 2, we just need to find one special equilibrium

solution u(θ) = C cos 2θ and its coefficient C > 0. After that
we can obtain all the equilibrium solutions with the form u(θ) =
C cos 2(θ − θ0)(C > 0). Plugging u(θ) = C cos 2θ into (Equation
33) we find the following equality:

u(θ) = 1
2π

∫ 2π
0 (b cos(θ − ϕ)+ c cos 2(θ − ϕ))H(C cos 2ϕ)dϕ

= 1
2π

∫

π
4
−π
4

(b cos(θ − ϕ)+ c cos 2(θ − ϕ))dϕ

+ 1
2π

∫

5π
4

3π
4

(b cos(θ − ϕ)+ c cos 2(θ − ϕ))dϕ

= c
π
cos 2θ .

(39)
So we have the following conclusion. If c > 0, then u(θ) =
c
π
cos 2(θ −θ0) is the equilibrium solution for system (32) for any

θ0; If c < 0, then there is no equilibrium solution like this form.
Figure 4A shows solution u(θ) = c

π
cos(θ − π

2 ) for parameters
a = 0, b = 3 and c = 2. Figure 4B shows the time evolution
with initial state u0 = 0.1 c

π
cos 2(θ − π

2 )) with additional small
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FIGURE 3 | Equilibrium state for parameters a = 0, b = 3, and c = 2. (A) The equilibrium solution u(θ ) = b
π
cos(θ − π ). (B) The time evolution when initial state is u0 is

0.1b
π

cos(θ − π ) with additional small perturbations, where the blue curve is the equilibrium solution u(θ ) = b
π
cos(θ − π ). Parameters: number of head-direction cells

N = 500, τ = 1, time step 1t = 0.1, and maximum steps 500.

FIGURE 4 | Another equilibrium state for the same parameters as Figure 3. (A) The equilibrium solution u(θ ) = c
π
cos(θ − π

2 ). (B) The time evolution when the initial

state u0 is 0.1 c
π
cos 2(θ − π

2 )) with additional small perturbations. The blue curve is the equilibrium solution u(θ ) = c
π
cos(θ − π

2 ).

perturbation. The result indicates that this equilibrium solution
is probably stable.

Case 4: u(θ) = B cos(θ − θ1) + C cos 2(θ − θ2), B > 0 and
C > 0.

When the equilibrium solutions have form B cos(θ − θ1) +
C cos 2(θ − θ2), we change the form of equilibrium solution
as follows:

B cos(θ−θ1)+C cos 2(θ−θ1−(θ2−θ1)) = B cosφ+C cos 2(φ−φ0),
(40)

where φ = θ − θ1 and φ0 = θ2 − θ1. Due to the
property of equilibrium solutions we just need to find the basic
equilibrium solutions

u(φ) = B cosφ + C cos 2(φ − φ0). (41)

By numerical simulation we find that the phase diagram of
u(φ) has two situations as parameters B, C and φ0 are changing.

One situation is there is only one positive domain above φ-axis
in period 2π , another situation is there are two positive domains
above φ-axis in period 2π . Because positive domain decides the
value of Heaviside function, we have to discuss these two cases
respectively. In this section we mainly consider the first situation
in which u(φ) just has one positive domain above φ-axis in period
2π . that is shown in Figure 5A.

As a equilibrium solution, we plug u(φ) = B cosφ +
C cos 2(φ − φ0) into Equation (33) to obtain

u(φ) = B cosφ + C cos 2(φ − φ0) = 1
2π

∫ 2π
0 (b cos(φ − ϕ)

+c cos 2(φ − ϕ))H(B cosφ + C cos 2(φ − φ0))dϕ

= 1
2π

∫ α′

α
(b cos(φ − ϕ)+ c cos 2(φ − ϕ))dϕ,

(42)
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FIGURE 5 | Equilibrium states for parameters a = 0, b = 1, and c = 1.5, with other parameters the same as Figure 3. (A) A sketch of u(θ ) = B cosφ

+ C cos 2(φ − φ0),B ≥ C > 0. (B) The profile of synaptic weight function w(θ ) = a+ b cos θ + c cos 2θ . (C) The equilibrium solution u1 (θ ) = b
π

√

c+b
2c cos θ+

√
c2−b2
2π

cos 2θ . (D) The time evolution for initial state u0 = 0.1u1(θ ) with additional small perturbations. The blue lines indicates the equilibrium solution. (E) The

equilibrium solution u2(θ ) = b
π

√

c+b
2c cos θ −

√
c2−b2
2π

cos 2θ . (F) The time evolution for initial state u0 = 0.1u2(θ ) with additional small perturbations. The blue lines

indicates the equilibrium solution.

i.e.,

u(φ) =
b

π
sin

α′ − α

2
cos(φ −

α′ + α

2
)

+
c

2π
sin(α′ − α) cos 2(φ −

α′ + α

2
). (43)

For any value φ (Equation 43) must hold, which means that the

corresponding coefficients must be equal. So we get sin(α′+α
2 ) =

0, i.e., sin(α′ + α) = 0 and sin 2φ0 = 0. This result shows that in
this case if the system has an equilibrium solution, then its form
must be u(φ) = B cosφ ± C cos 2φ. And the parameters B and C
must satisfy the following relationship:

B cosφ ± C cos 2φ =
b

π
sinα cosφ +

c

2π
sin 2α cos 2φ. (44)

Comparing the corresponding coefficients we have B = b
π
sinα

and ±C = c
2π sin 2α. Since α is a root of equation u(φ) = 0,

next we should solve equation u(φ) = 0. We find sinα = 0,
cosα = 0 and cos 2α = − b

c . Because B > 0 and C > 0,

we keep cos 2α = − b
c and reject the others. If cos 2α = − b

c

is a valid root, we have | bc | < 1, i.e., |b| < |c|. So we obtain

sinα =
√

c+b
2c and cosα = ±

√

c−b
2c . At the same time we have

B = b
π

√

c+b
2c and C = c

π

√

c2−b2

4c2
. For the equations to hold there

is only one positive domain in period 2π , we have B ≥ C > 0, i.e.,

b
π

√

c+b
2c ≥ c

π

√

c2−b2

4c2
> 0, and the parameter sb and cmust satisfy

2b ≥ c > 0. Comprehensively, in the first situation if the system
has the equilibrium solution u(φ) = B cosφ ± C cos 2φ, then
parameters b and c must satisfy the condition 0 < b < c ≤ 2b.
So we have the following conclusion: If 0 < b < c ≤ 2b, then for
any θ0 the system has an equilibrium solution of the form:

u(θ) =
b

π

√

c+ b

2c
cos(θ − θ0)±

√
c2 − b2

2π
cos 2(θ − θ0). (45)
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For parameters a = 0, b = 1 and c = 1.5, the profile of the
synaptic weight is shown in Figure 5B. By numerical simulation
we find two of this kind solutions as shown in Figures 5C,E, while
Figures 5D,F are time evolution with initial state u0 = 0.1u(θ)
with additional small perturbations. The results suggest that this
type of solutions may be stable too.

Now we consider the second situation two domains above φ-
axis in period 2π as shown in Figure 6A. As above analysis we
know the basic form of this kind equilibrium solution is u(φ) =
B cosφ+C cos 2(φ−φ0). Plug u(φ) into the equilibrium solution
Equation (33), we get

u(φ) = B cosφ + C cos 2(φ − φ0) = 1
2π

∫ 2π
0 (b cos(φ − ϕ)

+c cos 2(φ − ϕ))H(B cosφ + C cos 2(φ − φ0))dϕ

= 1
2π

∫ α′

α
(b cos(φ − ϕ)+ c cos 2(φ − ϕ))dϕ

+ 1
2π

∫ β ′

β
(b cos(φ − ϕ)+ c cos 2(φ − ϕ))dϕ

= b
2π (cosα − cosα′ + cosβ − cosβ ′) sinφ

− b
2π (sinα − sinα′ + sinβ − sinβ ′) cosφ

+ c
4π (cos 2α − cos 2α′ + cos 2β − cos 2β ′) sin 2φ

− c
4π (sin 2α − sin 2α′ + sin 2β − sin 2β ′) cos 2φ.

(46)
Compare the corresponding relationship we have cosα−cosα′+
cosβ − cosβ ′ = 0, where α,α′,β and β ′ are four roots of
equation u(φ) = 0. That means we have to solve equation u(φ) =
B cosφ + C cos 2(φ − φ0) = 0. Using trigonometric formulas to
expand u(φ) = 0 the equation u(φ) = 0 becomes:

B cosφ + C(2 cos2 φ − 1) cos 2φ0 + 2C sinφ cosφ sin 2φ0 = 0.
(47)

For convenience let x = cosφ and k = B
C we square both side of

the Equation (47), then the Equation (47) becomes

(kx+ (2x2 − 1) cos 2φ0)
2 = 4(1− x2)x2(1− cos 2φ2

0), (48)

i.e.,

4x4+4k cos 2φ0x
3+(k2−4)x2−2k cos 2φ0x+cos2 2φ0 = 0. (49)

According to the four roots of Equation (49), we can find that
if and only if 2φ0 is equals to 0, π

2 ,π and 3π
2 , then the roots of

Equation (47) hold the corresponding relation cosα − cosα′ +
cosβ − cosβ ′ = 0. This result can be seen in Figure 6B. Four
solid lines represent four roots of Equation (49), and two dash
lines are all possible combination of cosα−cosα′+cosβ−cosβ ′.
According to Figure 6Bwe find that if and only if 2φ0 equals 0,

π
2 ,

π and 3π
2 , then four roots of Equation (47) satisfy cosα−cosα′+

cosβ−cosβ ′ = 0, where k = 0.8. By using numerical simulation
we find when k is selected other positive number, although the
amount of wing flexing for all lines are changing, the positions
of all points of intersection on 2φ0-axis are immovability. And
the change of picture is successive. That means if and only if
2φ0 is equals to 0, π

2 ,π and 3π
2 , then the system may be exist

equilibrium solutions which have two domains above φ-axis. Let
us consider these four situations one by one.

(1) 2φ0 = 0.
If 2φ0 = 0, then system (32)may be have one kind of

equilibrium solutions which like u(φ) = B cosφ + C cos 2φ
which has two positive domain in period 2π . In this case the
roots of u(θ) = 0 are −α, α, β and 2π − β . So plug u(φ) =
B cosφ + C cos 2φ into (Equation 33), and then we obtain the
relationship as follow

u(φ) = B cosφ + C cos 2φ =
b

π
(sinα − sinβ) cosφ

+
c

2π
(sin 2α − sin 2β) cos 2φ. (50)

Since −α, α, β and 2π − β are four roots of equation u(θ) = 0,
thus we should get the following the following equalities:







b
π
(sinα − sinβ) cosα + c

2π (sin 2α − sin 2β) cos 2α = 0,

b
π
(sinα − sinβ) cosβ + c

2π (sin 2α − sin 2β) cos 2β = 0.
(51)

FIGURE 6 | (A) A sketch of u(θ ) = B cosφ + C cos 2(φ − φ0 ), 0 < B < C. (B) Four solid lines represent the four roots of Equation (49), i.e., cosα, cosα′, cosβ and

cosβ ′, while two dash lines represent all possibilities of cos− cosα′ + cosβ − cosβ ′. Parameter k = 0.8.
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Let the first equation of (51) minus the second equation of
(51), we have

b

π
(sinα − sinβ)(cosα − cosβ)

+
c

2π
(sin 2α − sin 2β)(cos 2β − cos 2β) = 0. (52)

Since cos 2β − cos 2β = 2(sinβ − sinα)(sinβ + sinα) and
sinα 6= sinβ , thus the above equality becomes:

b(cosα−cosβ)−c(2 sinα cosα−2 sinβ cosβ)(sinβ+sinα) = 0.
(53)

For −α, α, β and 2π − β are four roots of equation u(φ) =
B cosφ + C cos 2φ = 0, we get:

2C cos2 φ + B cosφ − C = 0. (54)

So we have cosα · cosβ = − 1
2 . Plug cosβ = − 1

2 cosα into
(Equation 53) and compute cosα. In order to keep meaningful

during computational process we set 0 < b < 2c and b
c 6= 1

2 ,

then we have cosα =
√

s−
√
s2−1
2 , where s =

2− b
c+

√

2b
c

2 . Therefore
we have the following conclusion:

If 0 < b < 2c and b
c 6= 1

2 , then for any θ0 the system has
equilibrium solutions which are

u(θ) = b
π
(
√
1−m2 −

√
4m2−1
2m ) cos(θ − θ0)+ c

π
(m

√
1−m2

+
√
4m2−1
4m2 ) cos 2(θ − θ0),

(55)
where

m = cosα =

√

2− b
c +

√

2b
c −

√

b2

c2
− 2b

c − 2b
c

√

2b
c + 4

√

2b
c

2
.

(56)
(2) 2φ0 = π .
When 2φ0 = π the analyzing and calculating process is the

same as 2φ0 = 0. Because of this we omit the complex calculation
and present the conclusion directly.

If 0 < b < 2c and b
c 6= 1

2 , then for any θ0 the system has
equilibrium solutions which are

u(θ) =
b

π
(

√
4m2 − 1

2m
−

√

1−m2) cos(θ − θ0)

−
c

π
(

√
4m2 − 1

4m2
+m

√

1−m2) cos 2(θ − θ0), (57)

where

m = cosα =

√

2− b
c +

√

2 b
c +

√

b2

c2
− 2 b

c − 2 b
c

√

2 b
c + 4

√

2 b
c

2
.

(58)

When parameters set a = 0, b = 3 and c = 2 and 0 <

b < 2c, Figures 7A,C show the equilibrium solution (55)
and equilibrium solution (57). Meanwhile we can see the time
evolution of solution (55) and solution (57) from Figures 7B,D.
Obviously, these two kinds of equilibrium solutions keep
immovability when t tends to infinity.

(3) 2φ0 = π
2 .

If 2φ0 = π
2 , then the equilibrium solutions of system (32) like

u(φ) = B cosφ +C sin 2φ. In this case the four roots of u(φ) = 0
are−α, π

2 , π +α and 3π
2 . As one kind of equilibrium solution we

Plug u(φ) = B cosφ +C sin 2φ into equation and then we obtain
the relation as follow:

u(θ) = B cos θ + C sin 2θ =
b

π
sinα cos θ +

c

π
cos2 α sin 2θ .

(59)
Since−α is root of equation u(θ) = 0, then we have:

u(−α) =
b

π
sinα cosα −

c

π
cos2 α sin 2α = 0 (60)

i.e.,

b sinα cosα − 2c cos3 α sinα = 0. (61)

Solve above equation and get the roots cosα = 0, sinα = 0 and

cos2 α = b
2c . For B > 0 and C > 0 we choose cos2 α = b

2c ,
other roots are given up. Of course, the parameter must meet

0 < b
2c < 1, i.e., 0 < b < 2c. Therefore we have sinα =

√

2c−b
2c .

Now we get another form equilibrium solution which is

u(θ) =
b

π

√

2c− b

2c
cos θ +

b

2π
sin 2θ . (62)

In a words, if 0 < b < 2c, then for any θ0 the system has
equilibrium solutions which are:

u(θ) =
b

π

√

2c− b

2c
cos(θ − θ0)+

b

2π
sin 2(θ − θ0). (63)

When parameters are chosen a = 0, b = 3 and c = 2, which
satisfy 0 < b < 2c, you must get this equilibrium solution.
Figure 8A is time evolution of equilibrium solutions (63).

(4) 2φ0 = 3π
2 .

Actually when 2φ0 = 3π
2 the analysis and calculating process

is in the same way as 2φ0 = π
2 . Here we ignore the complex

calculating process and give the follow conclusion:
If 0 < b < 2c, then for any θ0 the system has equilibrium

solution which are

u(θ) =
b

π

√

2c− b

2c
cos(θ − θ0)−

b

2π
sin 2(θ − θ0). (64)

We find that this kind solution is mirror-symmetry with
equilibrium solution (63). Actually in equilibrium solution (63)
if we replace θ − θ0 with −(θ − θ0), then we get equilibrium
solution (64). So we can image the graph of equilibrium
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FIGURE 7 | Equilibrium states for parameters a = 0, b = 3 and c = 2, which satisfy 0 < b < 2c and b
c
6= 1

2 . The network contains N = 1000 head-direction cells,

τ = 1 and time step 1t = 0.1. (A) The equilibrium solution (55). (B) The time evolution of the equilibrium solution (55), where blue line represents the equilibrium

solution (55). (C) The equilibrium solution (57). (D) The time evolution of equilibrium solution (57), where blue line represents the equilibrium solution (57).

FIGURE 8 | Equilibrium states for parameters a = 0, b = 3, and c = 2, which satisfy 0 < b < 2c and b
c
6= 1

2 . The network contains N = 1000 head-direction cells,

τ = 1 and time step 1t = 0.1. (A) The time evolution of equilibrium solution (63) conforms that the state is stationary. (B) The time evolution of equilibrium

solution (63) with disturbances in the initial state indicates that the equilibrium is unstable. (C) Comparison chart, where the blue line represents the equilibrium

solution (63), the red line represents the final state starting from (63) after 100, 000 time steps, which matches perfectly with the one-peaked stable equilibrium solution

u(θ ) = b
π
cos(θ − 6.5π

42 ) as indicated by the green stars.

solution (64) according to equilibrium solution (63). To our
surprise, we find that equilibrium solution (63) and equilibrium
solution (64) are two asymmetric equilibrium activity pattern
even when the network connectivity pattern is strictly symmetric.

3.2.2. The Local Stability of Equilibrium States
In order to analyze the stability of equilibrium solutions we select
n head-direction neural cells which have the preferred direction
from 0 to 2π , and they are 1·2π

n , 2·2π
n , . . ., n·2π

n . Therefore
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the head-direction neural network which contains n units is
as follows

τ
∂

∂t











u(θ1, t)
u(θ2, t)

...
u(θn, t)











= −











u(θ1, t)
u(θ2, t)

...
u(θn, t)











(65)

+
1

n











w(θ1 − θ1) w(θ1 − θ2) . . . w(θ1 − θn)
w(θ2 − θ1) w(θ2 − θ2) . . . w(θ2 − θn)

...
...

. . .
...

w(θn − θ1) w(θn − θ2) . . . w(θn − θn)





















g(u(θ1, t))
g(u(θ2, t))

...
g(u(θn, t))











.

We set solution u(θ , t) = u(θ) + ε(θ , t), where u(θ) is a
equilibrium solution and ε(θ , t) is a small perturbation. Use
Taylor’s expansion to expand g(u(θ , t)) at u(θ), we have:

g(u(θ , t)) = g(u(θ)+ε(θ , t)) = g(u(θ))+g′(u(θ))ε(θ , t))+O(ε2).
(66)

So as to further consider the perturbation equation of equilibrium
solutions. We plug Taylor’s expansion of g(u(θ , t)) into Equation
(65), then we have

τ
∂E

∂t
= −(U + E)+

1

n
W(G1 + GE)+ O(E2) (67)

where

E =











ε(θ1, t)
ε(θ2, t)

...
ε(θn, t)











,

W =











w(θ1 − θ1) w(θ1 − θ2) . . . w(θ1 − θn)
w(θ2 − θ1) w(θ2 − θ2) . . . w(θ2 − θn)

...
...

. . .
...

w(θn − θ1) w(θn − θ2) . . . w(θn − θn)











, (68)

U =











u(θ1)
u(θ2)
...

u(θn)











,G1 =











g(u(θ1))
g(u(θ2))

...
g(u(θn))











,

G =











g′(u(θ1)) 0 . . . 0
0 g′(u(θ2)) . . . 0
...

...
. . .

...
0 0 . . . g′(u(θn))











,

Since u(θ) is the equilibrium solution, we haveU = 1
nWG1. Thus

head-direction neural network (67) can be simplified as follows:

τ
∂E

∂t
= −E+

1

n
WGE+O(E2) = (−I+

1

n
WG) ·E+O(E2), (69)

and the linear part is

τ
∂E

∂t
= JE, (70)

where J = −I+ 1
nWG is the Jacobianmatrix and I is n×n identity

matrix. The general solution to this linear ordinary differential
equations is:

E = c1e
λ1tV1 + c2e

λ2tV2 + · · · + cne
λntVn, (71)

where λ1, λ2, · · · , λn are eigenvalues of the Jacobian matrix,
V1,V2, · · · ,Vn are corresponding eigenvectors, and c1, c2, · · · , cn
are any constant. It is easy to obtain that the stability of
perturbation (Equation 69) depends on the eigenvectors of the
Jacobian matrix. Since synaptic weight function w(θ) is even
and periodic, the corresponding matrix W is a circulatory
and symmetric matrix. According to properties of a circulatory
and symmetric matrix (Gray, 2005; Tee, 2007) we can get the
normalized and orthogonal eigenvectors of 1

nW. They are

Vj =
1
√
n
(ρ0

j , ρ
1
j , · · · , ρ

n−1
j )T , j = 0, 1, · · · , n− 1, (72)

where ρj = exp( 2π in j) (j = 0, 1, · · · , n − 1) are the n-th roots of
unity and i is the imaginary unit. The corresponding eigenvalues6
are given by

λj =
1

n

(

w(0
2π

n
)ρ0

j + w(1
2π

n
)ρ1

j + · · · + w((n− 1)
2π

n
)ρn−1

j

)T

,

j = 0, 1, · · · , n− 1. (73)

Since

ρn−k
j = exp(j

(n− k)2π

n
i) = exp(j

−k2π

n
i) = exp(j

k2π

n
i)

= ρk
j , j = 0, 1, · · · , n− 1, (74)

thus

ρn−k
j + ρk

j = ρk
j + ρk

j = 2 cos(
2kπ

n
j), j = 0, 1, · · · , n− 1. (75)

So we change the form of eigenvalues as follows:

λj =
1

n
[w(0

2π

n
) cos(0

2π

n
j)+ w(1

2π

n
) cos(1

2kπ

n
j)

+ · · · + w((n− 1)
2π

n
) cos((n− 1)

2π

n
j)]. (76)

i.e.,

λj =
1

n

n−1
∑

k=0

w(k
2π

n
) cos(k

2π

n
j), j = 0, 1, · · · , n− 1. (77)

As n tends to infinite the eigenvalues become:

λj = lim
n→∞

1

n

n−1
∑

k=0

w(k
2π

n
) cos(k

2π

n
j) =

1

2π

∫ 2π

0
w(ϕ) cos(jϕ)dϕ,

j = 0, 1, · · · , n− 1. (78)
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Because of the synaptic weight w(θ) = b cos θ + c cos 2θ , the
eigenvalues of matrix 1

nW are:

λ0 = 0, λ1 =
b

2
, λ2 =

c

2
, λ3 = 0, · · · , λn−1 = 0. (79)

Set V = (V0,V1,V2, · · · ,Vn−1), obviously V is an normal
orthogonal matrix and the characteristic equation becomes

f (λ) =
∣

∣

∣

∣

VT(λ + 1)IV − VT(
1

n
WG)V

∣

∣

∣

∣

=
∣

∣

∣

∣

(λ + 1)I − (VT(
1

n
W)V)(VTGV)

∣

∣

∣

∣

, (80)

where

VT 1

n
WV =



















0 0 0 0 · · · 0
0 b

2 0 0 · · · 0
0 0 c

2 0 · · · 0
0 0 0 0 · · · 0
...
...

...
...
. . .

...
0 0 0 0 · · · 0



















= K. (81)

We have the characteristic equation as follows

f (λ) =
∣

∣

∣
(λ + 1)I − K(VTGV)

∣

∣

∣
. (82)

Now we can obtain all the eigenvalues from Equation (82) when
the equilibrium solution is chosen, and then we can further
determine the stability of each equilibrium solution.

Case 1: u(θ) = 0.
Since u(θ) = 0, we have

VTGV = VT











g′(0) 0 · · · 0
0 g′(0) · · · 0
...

...
. . .

...
0 0 · · · g′(0)











V = g′(0)VTIV = g′(0)I.

(83)
Thus

VT( 1nW)V · VTGV = g′(0) · I ·



















0 0 0 0 · · · 0
0 b

2 0 0 · · · 0
0 0 c

2 0 · · · 0
0 0 0 0 · · · 0
...
...

...
...
. . .

...
0 0 0 0 · · · 0



















13g =



















0 0 0 0 · · · 0
0 g′(0) b2 0 0 · · · 0
0 0 g′(0) c2 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0



















.

(84)

So the eigenvalues of characteristic Equation (82) are

λ1 = −1, λ2 = −1+
g′(0)b

2
,

λ3 = −1+
g′(0)c

2
, λ4 = . . . = λn = −1. (85)

Here g(u) is a Heaviside function and g′(u) is Dirac delta
function. That means g′(0) = +∞. So if b < 0 and c < 0 all the
eigenvalues are negative, then equilibrium solution u(θ) = 0 is
stable. Otherwise, if b > 0 or c > 0 there is at least one eigenvalue
larger than 0, then equilibrium solution u(θ) = 0 is unstable.

In order to discuss the stability of other equilibrium solutions,
we set (VT( 1nW)V)(VTGV) = (gi,j)n×n, thus the characteristic
Equation (82) is given by

f (λ) = (λ + 1)n−2 ·
∣

∣

∣

∣

λ + 1− b
2 g22 λ + 1− b

2 g23
λ + 1− c

2g32 λ + 1− c
2g33

∣

∣

∣

∣

i.e.,

f (λ) = (λ + 1)n−2
(

(λ + 1)2 − ( b2 g22 +
c
2 g33)(λ + 1)

+ bc
4 (g22g33 − g23g32)

)

,

(86)

where

g22 = 1
n

(

g′(u(θ1))(ρ
0
1 )

2 + g′(u(θ2))(ρ
1
1 )

2

+ · · · + g′(u(θn))(ρ
n−1
1 )2

)

,

g33 = 1
n

(

g′(u(θ1))(ρ
0
2 )

2 + g′(u(θ2))(ρ
1
2 )

2

+ · · · + g′(u(θn))(ρ
n−1
2 )2

)

,

g32 = g32 = 1
n

(

g′(u(θ1))ρ
0
1ρ

0
2 + g′(u(θ2))ρ

1
1ρ

1
2

+ · · · + g′(u(θn))ρ
n−1
1 ρn−1

2

)

.

(87)

As n approaches infinity, Equation(87) become

g22 = 1
2π

∫ 2π
0 g′(u(θ))e2θ idθ , g33 = 1

2π

∫ 2π
0 g′(u(θ))e4θ idθ ,

g23 = g32 = 1
2π

∫ 2π
0 g′(u(θ))e3θ idθ .

(88)
So we can further determine the stability of other
equilibrium solutions.

Case 2: u(θ) = b
π
cos θ , b > 0.

When the equilibrium is u(θ) = b
π
cos θ(b > 0), we have:

g22 = 1
2π

(

∫ π

0 g′(u(θ))e2iθdθ +
∫ 2π
π

g′(u(θ))e2iθdθ
)

= 1
2π

(

∫ − b
π

b
π

g′(u)e2i arccos(
π
b
u) − π

b√
1−( π

b
u)2

du

+
∫

b
π

− b
π

g′(u)e2i(2π−arccos( π
b
u))

π
b√

1−( π
b
u)2

du

)

= − 1
b
.

(89)

Use the same computing method, we obtain

g33 =
1

b
, g32 = g32 = 0. (90)
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Therefore characteristic (Equation 82) is

f (λ) = (λ + 1)n−2((λ + 1)2 + (
1

2
−

c

2b
)(λ + 1)−

c

4b
). (91)

Thus the eigenvalues are

λ1 = · · · = λn−2 = −1, λn−1 = −
3

2
, λn = −1+

c

2b
. (92)

Because of b > 0 when parameters satisfy c < 2b all eigenvalues

are negative, thus equilibrium solution u(θ) = b
π
cos θ(b > 0)

is stable.
Case 3: u(θ) = c

π
cos 2θ , c > 0.

When the equilibrium is u(θ) = c
π
cos 2θ(c > 0), by

computation we get

g22 = 0, g33 = −
1

c
, g32 = g32 = 0. (93)

Therefore the characteristic Equation (82) is

f (λ) = (λ + 1)n−1((λ + 1)+
1

2
), (94)

and the eigenvalues are:

λ1 = · · · = λn−1 = −1, λn = −
3

2
. (95)

All the eigenvalues are negative, so u(θ) = c
π
cos 2θ(c > 0)

is stable.

Case 4: u(θ) = b
π

√

c+b
2c cos θ ±

√
c2−b2

2π cos 2θ , 0 < b <

c≤2b.

When the equilibrium is u(θ) = b
π

√

c+b
2c cos θ +

c
π

√
c2−b2

2c cos 2θ(0 < b < c ≤ 2b), we obtain

g22 =
−2b

2c2 + bc− b2
g33 =

4b2 − 2c2

(2c2 + bc− b2)c
,

g32 = g32 =
−2(2b+ c)

√

c−b
2c

2c2 + bc− b2
. (96)

Therefore characteristic equation is

f (λ) = (λ + 1)n−2

(

(λ + 1)2 +
c2 − b2

2c2 + bc− b2
(λ + 1)

−
b2c2 + bc3

2(2c2 + bc− b2)2

)

. (97)

For convenient we set k = c
b
, the Equation (97) becomes

f (λ) = (λ + 1)n−2

(

(λ + 1)2 +
k2 − 1

2k2 + k− 1
(λ + 1)

−
k2 + k3

2(2k2 + k− 1)2

)

. (98)

Thus the eigenvalues are

λ1 = · · · = λn−2 = −1, λn−1,n = −1

+
−1+ 2k+ k2 − 2k3 ±

√
1− 4k+ 4k2 + 2k3 − 7k4 + 4k5 + 4k6

2(1− 3k+ 4k3)
.

(99)

Obviously when parameters satisfy 0 < b < c ≤ 2b, i.e.,
1 < k ≤ 2, all eigenvalues are negative. So the equilibrium

solution u(θ) = b
π

√

c+b
2c cos θ + c

π

√
c2−b2

2c cos 2θ is stable. By

the same analysis method we also get that solution u(θ) =
b
π

√

c+b
2c cos θ − c

π

√
c2−b2

2c cos 2θ is stable too.

According to the Equation (86), we know that at least n −
2 eigenvalues of the four remaining equilibrium solutions are
equals to−1 and at most two eigenvalues are different. So we just
need to consider these different eigenvalues in each case. And the
two different eigenvalues satisfy equation

f1(λ) = (λ + 1)2 − ( b2 g22 +
c
2 g33)(λ + 1)+ bc

4 (g22g33 − g23g32),

thus all the eigenvalues are:

λ1 = · · · = λn−2 = −1, λn−1,n

= −1+ bg22+cg33±
√

(bg22+cg33)2−4bc(g22g33−g23g32)

4 ,

Since g23 = g32, we have

λn−1,n = −1+ bg22+cg33±
√

(bg22−cg33)2+4bcg223
4 .

Since (bg22 − cg33)
2 + 4bcg223 > 0, we know all eigenvalues of the

four remaining equilibrium solutions are real numbers and the
greatest eigenvalue is

λmax = λn = −1+ bg22+cg33+
√

(bg22−cg33)2+4bcg223
4 , (100)

where,

g22 = 1
2π

∫ 2π
0 g′(u(θ))e2θ idθ , g33 = 1

2π

∫ 2π
0 g′(u(θ))e4θ idθ ,

g23 = 1
2π

∫ 2π
0 g′(u(θ))e3θ idθ .

Obviously if λmax < 0, all eigenvalues are negative, so that the
corresponding equilibrium solution is stable. If λmax > 0, at least
one eigenvalue is positive, so that the corresponding equilibrium
solution is unstable. Therefore putting the equilibrium solution
into Equation (100) allows allows us to determine the stability of
the equilibrium solution.

For example, in the equilibrium solution u(θ) =
b
π

√

2c−b
2c cos(θ − θ0) + b

2π sin 2(θ − θ0) (63) we set the

parameters as a = 0, b = 3, c = 2, and θ0 = 0 to obtain
u(θ) = 3

2π (1 + 2 sin θ) cos θ . Plugging this equilibrium solution
into (Equation 100), we find that the maximum eigenvalues
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of the equilibrium solutions are positive. This means that the
equilibrium solution (63) are unstable. That is, adding small
perturbations to the equilibrium solutions (63) will make the
state moving away from the equilibrium solutions (63), as
shown in Figure 8B. In fact the state approaches other stable
equilibrium solution. As illustrated in Figure 8B we find that the
state converges to the one-peaked stable equilibrium solution
given by uθ = 3

π
cos(θ − θ0). This result is confirmed in

Figure 8C where the blue line is the equilibrium solution (63),
the red line represents the state of the system after 100, 000 time
steps starting from the equilibrium solution (63) as the initial
state, and the green star line is the one-peaked stable equilibrium
solution u(θ) = 3

π
cos(θ − 6.5π

42 ). We can see that the system
starts from an unstable equilibrium state but converges gradually
to this stable equilibrium.

3.2.3. Phase Diagram in the Parameter Space of the

Ring Network
So far we have obtained all kinds of equilibrium solutions and
determined their stability when the synaptic weight is w(θ) =
a+b cos θ+c cos 2θ and sigmoid function is g(u) = Heaviside(u).
We find that the form of these solutions are strongly dependent
on weight coefficients a, b and c. The values of these parameters
determine not only the form of the equilibrium solutions, but also
their stability. Setting parameter a = 0, we summarize the results
in section 3.2.1 with the following conclusion.

Proposition:

(i) For any b and c, system (32) has one, and only one, constant
equilibrium solution u(θ) = 0;

(ii) When b > 0, system (32) has symmetric and one-peaked

equilibrium solutions u(θ) = b
π
cos(θ − θ0);

(iii) When c > 0, system (32) has symmetric and two-peaked
equilibrium solutions u(θ) = c

π
cos 2(θ − θ0);

(iv) When 0 < b < c < 2b, the system (32) has the
equilibrium solutions

u(θ) =
b

π

√

c+ b

2c
cos(θ−θ0)±

√
c2 − b2

2π
cos 2(θ−θ0); 4©

(v) When 0 < b < 2c, the system (32) has four kinds of special
equilibrium solutions:

u(θ) =
b

π

√

2c− b

2c
cos(θ − θ0)±

b

2π
sin 2(θ − θ0)

and

u(θ) = ± b
π
(
√
1−m2 −

√
4m2−1
2m ) cos(θ − θ0)

± c
π
(m

√
1−m2 +

√
4m2−1
4m2 ) cos 2(θ − θ0), 5©

where

m =

√

2− b
c +

√

2b
c ∓

√

b2

c2
− 2b

c − 2b
c

√

2b
c + 4

√

2b
c

2
.

The distribution of all possible equilibrium solutions in
system (32) is shown in Figure 9.

3.2.4. Shifting Mechanism
In head-direction ring network, one important biological
characteristics is that the attractor bumps can shift in time in
response to a head turn. In Figure 10 we select N = 500 head-
direction cells, and time step 1t = 0.01, and use numerical
simulation to demonstrate the shiftingmechanism. Following the
derivative rule (Zhang, 1996), now the synaptic weight becomes:

w1(θ) = w(θ)+ α
dw(θ)

dθ
, (101)

where the original synaptic weight is w(θ) = a + b cos θ +
c cos 2θ , α is the speed of shifting. Here we choose α = 0.2 and
initial values are equilibrium solutions plus small disturbances.
Figures 10A,B show the shifting mechanism for the one-peaked

attractor state u(θ) = b
π
cos θ and the two-peaked attractor state

u(θ) = b
π
cos 2θ , with parameters a = 0, b = 3, and c = 2.

Figure 10C shows the shifting mechanism for the stable special

two peaked attractor state u(θ) = b
π

√

c+b
2c cos θ −

√
c2−b2

2π cos 2θ ,

with parameters a = 0, b = 1 and c = 1.5.

4. DISCUSSION

We have analyzed the equilibrium states of the head-direction
ring network and found multiple solutions. Even for the simplest
network with step gain function and only two Fourier terms
in the weight distribution profile, there are a rich variety of
equilibrium solutions. Some of the equilibrium solutions are well

FIGURE 9 | Phase diagram for the distribution of all possible equilibrium

solutions in head-direction ring network.
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FIGURE 10 | (A) Shifting of equilibrium solution u(θ ) = b
π
cos(θ ), with parameters a = 0,b = 3, c = 2; (B) Shifting of equilibrium solution u(θ ) = c

π
cos(2θ ), with

parameters a = 0,b = 3, c = 2; (C) Shifting of equilibrium solution u(θ ) = b
π

√

c+b
2c cos θ −

√
c2−b2
2π

cos 2θ , with parameters a = 0,b = 1, c = 1.5.

known, such as the flat solution and the single-peaked solution,
while other solutions are unexpected, such as the asymmetric
solutions. In particular, the equilibrium states with two peaks can
be generated under many parameter combinations. A necessary
condition for the two peaked solution is that the weight profile
must have a Fourier component with two peaks. Our analysis
reconfirms that it is possible for the ring network to have two
stable activity bumps as illustrated in Figure 1. To determine
how these different types of equilibrium states depend on
the parameters, we have calculated the phase diagram in the
parameter space of the ring network with step gain function.
Our method can be extended other gain functions such as the
standard sigmoidal gain function, as discussed below.

The simple head-direction ring network has some essential
dynamical features such as boundedness of state, convergence
to stable equilibrium states, and strong dependence of the
equilibrium states on the synaptic weight. In this paper our
analytical treatment relies on several simplifying assumptions
such as truncated Fourier series and step gain function. To
generate the equilibrium states, we assume an even weight
function w(−θ) = w(θ) which is equivalent to symmetric
reciprocal connection weights because the existence of a
Lyapunov function guarantees the stability in this situation. We
have only briefly considered the case of asymmetric weights
by adding a derivative of the weight profile in order to
shift the activity bumps. The parameters in synaptic weight
w(θ) are the main control parameters that determine the
form of an equilibrium state and its stability. As mentioned
in section 3, parameter a determines the position of the
constant solution, parameter b determines the existence of
one-peaked equilibrium solutions, parameter c determines the
existence of two-peaked equilibrium solutions, and the values
of parameters a, b and c together determine the exact form of
an equilibrium state as well as its stability. We find that if the
head-direction ring network has one equilibrium solution, then
there must exist at least one stable equilibrium solution, i.e., one
attractor solution.

The step gain function or Heaviside function may be regarded
as the limit of the standard sigmoidal gain function as the
slope approaches infinity. When the slope of the sigmoidal gain
function is not too small, the behaviors of the ring network
are qualitatively quite similar to the network with Heaviside
function. For example, consider a ring network with the gain
function g(u) = 1

1+e−ku with k = 2 and the weight function

w(θ) = a + b cos θ + c cos 2θ . The parameters a, b and c also
determine which kind of equilibrium states the ring network has
as well as their stabilities in a manner similar to the network
with Heaviside function. The equilibrium state of the systemmay
allow a flat solution, a one-peaked solution and a two-peaked
solution, as shown in Figure 11. For k = 2, a = 0, b = 3.5, and
c = 3.5, the equilibrium state is constant 0, as shown Figure 11A.
Actually because parameter a = 0, we know that u(θ) = 0 is
the one and the only constant solution of the system. Figure 11B
shows the final state reaching a one-peaked equilibrium state for
parameters a = 0, b = 4.5, and c = 3.5. Figure 11C shows a
two-peaked equilibrium solution for parameters a = 0, b = 3.5
and c = 4.5. In addition, according to section 3.2.2 we obtain
that when

g′(0)b

2
< 1 and

g′(0)c

2
< 1, (102)

i.e.,

b <
8

k
and c <

8

k
, (103)

the constant solution u(θ) = 0 is stable. Furthermore b = 8
k

and c = 8
k
demarcate the boundary of different parameter

domains which contain different types of equilibrium solutions.
Figure 12A shows the parameter space for a = 0 and k =
2. Such phase diagram is obtained by repeated numerical
simulation with random initial states. The one-peaked state
u0 = cos θ , the two-peaked state u0 = cos 2θ , and the flat
state u(θ) = 0 are all possible equilibrium state, depending
on the parameters. In the red domain, u(θ) = 0 is the
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FIGURE 11 | Equilibrium states in the ring network with sigmoidal gain function g(u) = 1
1+e−2u . The number of head-direction cells N = 50, τ = 1, and time step

1t = 0.001. The synaptic weight function is also w(θ ) = b cos θ + c cos 2θ and parameter a = 0. (A) When b = 3.5 and c = 3.5, starting from a random initial state,

the final state converges to a flat solution u(θ ) = 0. (B) When b = 4.5 and c = 3.5, starting from a random initial state, the final state converges to a one-peaked

equilibrium solution. (C) When b = 3.5 and c = 4.5, starting from a random initial state, the final state converges to a two-peaked equilibrium solution.

FIGURE 12 | The phase diagram for the distribution of equilibrium states in the ring network with the sigmoidal gain function g(u) = 1
1+e−ku . The number of

head-direction cells N = 50, τ = 1 and time step 1t = 0.001. The synaptic weight function is still w(θ ) = b cos θ + c cos 2θ and parameter a is 0. The equilibrium state

of the system is strongly dependent on parameters b, c and k. (A) The parameter space of head-direction ring network when k is set to 2 and the initial values are

random, u0 = cos θ and u0 = cos 2θ . The red domain represents flat equilibrium states, the blue domain represents one-peaked equilibrium states, the green domain

represents two-peaked equilibrium states, and black domain allows both one-peaked equilibrium states and two peaked equilibrium states. (B) The parameter space

with different gain k, where k = 2, k = 4, k = 8, and k = +∞ and the initial state is same as (A).

stable equilibrium state. In the blue domain, the state of system
converges to the one-peaked equilibrium state. While in the
green domain, the state of system converges to the two-peaked
equilibrium state, and in black domain the state may converge
to either a one-peaked equilibrium state or a two-peaked state,
depending on the initial state. In other words, gain k determines
the boundary of different domains. The phase diagrams for
different gain k are shown in Figure 12B, where are four cases
with k = 2, k = 4, k = 8, and k = +∞. We can

see that phase diagram changes gradually as the gain slope
k changes.

Our analysis reveals a diverse set of equilibrium states of
the ring network. Although an unstable equilibrium state is not
as robust as a stable equilibrium state, it might be useful for
generating slow dynamics that slows down around these special
states. The existence of stable activity pattern with multiple peaks
provides a theoretical foundation for future study of the head-
direction system so that new data analysis methods and new
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experimental designs could be developed to distinguish different
computational mechanisms.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

This paper was completed and written by CWunder the guidance
of KZ.

FUNDING

KZ was supported partially by NIH grant U01NS111695.

REFERENCES

Amari, S. I. (1977). Dynamics of pattern formation in lateral-inhibition type neural

fields. Biol. Cybernet. 27, 77–87.

Arleo, A., and Gerstner, W. (2001). Spatial orientation in navigating

agents: modeling head-direction cells. Neurocomputing 38, 1059–1065.

doi: 10.1016/S0925-2312(01)00572-0

Ben-Yishai, R., Bar-Or, R. L., and Sompolinsky, H. (1995). Theory of orientation

tuning in visual cortex. Proc. Natl. Acad. Sci. U.S.A. 92, 3844–3848.

Bressloff, P. C. (2012). Spatiotemporal dynamics of continuum neural fields. J.

Phys. A Math. Theor. 45:033001. doi: 10.1088/1751-8113/45/3/033001

Cohen, M. A., and Grossberg, S. (1983). Absolute stability of global pattern

formation and parallel memory storage by competitive neural networks. IEEE

Trans. Syst. Man Cybernet. 5, 815–826.

Finkelstein, A., Derdikman, D., Rubin, A., Foerster, J. N., Las, L., and Ulanovsky N.

(2015). Three-dimensional head-direction coding in the bat brain. Nature 517,

159–164. doi: 10.1038/nature14031

Goodridge, J. P., and Touretzky, D. S. (2000). Modeling attractor deformation

in the rodent head-direction system. J Neurophysiol. 83, 3402–3410.

doi: 10.1152/jn.2000.83.6.3402

Gray, R. M. (2005). Toeplitz and circulant matrices: a review. Commun. Inform.

Theory 2, 155–239. doi: 10.1561/0100000006

Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Seung, H. S.

(2000). Digital selection and analogue amplification coexist in a cortex-inspired

silicon circuit. Nature 405:947. doi: 10.1038/35016072

Hopfield, J. J. (1984). Neurons with graded response have collective computational

properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A 10,

3088–3092.

Jacob, P.-Y., Casali, G., Spieser, L., Page, H., Overington, D., and Jeffery, K. (2017).

An independent, landmark-dominated head-direction signal in dysgranular

retrosplenial cortex. Nat. Neurosci. 20, 173–175. doi: 10.1038/nn.4465

Kakaria, K. S., and de Bivort, B. L. (2017). Ring attractor dynamics emerge from a

spiking model of the entire protocerebral bridge. Front. Behav. Neurosci. 11:8.

doi: 10.3389/fnbeh.2017.00008

Knierim, J. J., and Zhang, K. (2012). Attractor dynamics of spatially correlated

neural activity in the limbic system. Ann. Rev. Neurosci. 35, 267–285.

doi: 10.1146/annurev-neuro-062111-150351

Page, H. J., and Jeffery, K. J. (2018). Landmark-based updating of the head direction

system by retrosplenial cortex: a computational model. Front. Cell. Neurosci.

12:191. doi: 10.3389/fncel.2018.00191

Pouget, A., Zhang, K., Deneve, S., and Latham, P. E. (1998). Statistically efficient

estimation using population coding. Neural Comput. 10, 373–401.

Redish, A. D., Elga, A. N., and Touretzky, D. S. (1996). A coupled attractor model

of the rodent head direction system. Network Comput. Neural Syst. 7, 671–685.

Robertson, R. G., Rolls, E. T., Georges-François, P., and Panzeri, S. (1999). Head

direction cells in the primate pre-subiculum. Hippocampus 9, 206–219.

Sharp, P. E., Blair, H. T., and Cho, J. (2001). The anatomical and computational

basis of the rat head-direction cell signal. Trends Neurosci. 24, 289–294.

doi: 10.1016/S0166-2236(00)01797-5

Skaggs, W. E., Knierim, J. J., Kudrimoti, H. S., and McNaughton, B. L. (1995). A

model of the neural basis of the rats sense of direction. Adv. Neural Inf. Process.

Syst. 7, 173–180.

Song, P., and Wang, X. J. (2005). Angular path integration by

moving “hill of activity”: a spiking neuron model without recurrent

excitation of the head-direction system. J. Neurosci. 25, 1002–1014.

doi: 10.1523/JNEUROSCI.4172-04.2005

Stringer, S. M., Trappenberg, T. P., Rolls, E. T., and Araujo, I. (2002).

Self-organizing continuous attractor networks and path integration: one-

dimensional models of head direction cells. Network Comput. Neural Syst. 13,

217–242. doi: 10.1080/net.13.2.217.242

Taube, J. S. (2007). The head direction signal: origins and

sensory-motor integration. Annu. Rev. Neurosci. 30, 181–207.

doi: 10.1146/annurev.neuro.29.051605.112854

Taube, J. S., Muller, R. U., and Ranck, J. B. (1990). Head-direction cells recorded

from the postsubiculum in freely moving rats. I. Description and quantitative

analysis. J. Neurosci. 10, 420–435.

Tee, G. J. (2007). Eigenvectors of block circulant and alternating circulant matrices.

N. Zeal. J. Math. 36, 195–211.

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interactions in

localized populations of model neurons. Biophys. J. 12, 1–24.

Xie, X., Hahnloser, R. H., and Seung, H. S. (2002). Double-ring

network model of the head-direction system. Phys. Rev. E 66:041902.

doi: 10.1103/PhysRevE.66.041902

Zhang, K. (1996). Representation of spatial orientation by the intrinsic

dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16,

2112–2126.

Zhang, W. H., Wang, H., Chen, A., Gu, Y., Lee, T. S., Wong, K. M.,

and Wu, S. (2019). Complementary congruent and opposite neurons

achieve concurrent multisensory integration and segregation. eLife 8:e43753.

doi: 10.7554/eLife.43753

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Wang and Zhang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 January 2020 | Volume 13 | Article 96

https://doi.org/10.1016/S0925-2312(01)00572-0
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1038/nature14031
https://doi.org/10.1152/jn.2000.83.6.3402
https://doi.org/10.1561/0100000006
https://doi.org/10.1038/35016072
https://doi.org/10.1038/nn.4465
https://doi.org/10.3389/fnbeh.2017.00008
https://doi.org/10.1146/annurev-neuro-062111-150351
https://doi.org/10.3389/fncel.2018.00191
https://doi.org/10.1016/S0166-2236(00)01797-5
https://doi.org/10.1523/JNEUROSCI.4172-04.2005
https://doi.org/10.1080/net.13.2.217.242
https://doi.org/10.1146/annurev.neuro.29.051605.112854
https://doi.org/10.1103/PhysRevE.66.041902
https://doi.org/10.7554/eLife.43753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Equilibrium States and Their Stability in the Head-Direction Ring Network
	1. Introduction
	2. Materials and Methods
	3. Results
	3.1. General Properties of Head-Direction Ring Network
	3.1.1. Boundedness of Solutions
	3.1.2. The Form of Solutions
	3.1.3. The Equilibrium Solutions
	3.1.4. Lyapunov Function

	3.2. An Example of Head-Direction Ring Network
	3.2.1. All Possible Equilibrium States
	3.2.2. The Local Stability of Equilibrium States
	3.2.3. Phase Diagram in the Parameter Space of the Ring Network
	3.2.4. Shifting Mechanism


	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References




