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Clustering is a powerful machine learning tool for detecting structures in datasets. In the

medical field, clustering has been proven to be a powerful tool for discovering patterns

and structure in labeled and unlabeled datasets. Unlike supervised methods, clustering

is an unsupervised method that works on datasets in which there is no outcome (target)

variable nor is anything known about the relationship between the observations, that is,

unlabeled data. In this paper, we focus on studying and reviewing clustering methods that

have been applied to datasets of neurological diseases, especially Alzheimer’s disease

(AD). The aim is to provide insights into which clustering technique is more suitable

for partitioning patients of AD based on their similarity. This is important as clustering

algorithms can find patterns across patients that are difficult for medical practitioners

to find. We further discuss the implications of the use of clustering algorithms in the

treatment of AD. We found that clustering analysis can point to several features that

underlie the conversion from early-stage AD to advanced AD. Furthermore, future work

can apply semi-clustering algorithms on AD datasets, which will enhance clusters by

including additional information.

Keywords: clustering, neurological diseases, Alzheimer’s disease, unsupervised learning, machine learning

techniques

INTRODUCTION

There has been an increasing interest in themedical community to usemachine learning techniques
for disease diagnosis (Kononenko, 2001). This is due to the increases in availability of medical
datasets, such as Twinanda et al. (2017), Srivastav et al. (2018), Alzheimer’s Disease Neuroimaging
Initiative (ADNI), and UC Irvine Machine Learning Repository, among others. The accumulation
of large datasets has become more feasible recently due to the advancements in hardware (fast,
cheap computers), the availability of public and private medical and healthcare datasets, and
machine learning classification and clustering methods.

Supervised learning is the process of learning (approximating) a mapping function from a set of
input variables to a target variable. The term “supervised” here refers to the training process of the
algorithm being supervised by having the correct answers (i.e., we know what the target outcome
is). However, when one only has a set of variables and no corresponding output variables (i.e.,
the data are unlabeled), then the learning process is called unsupervised. Thus, in unsupervised
learning, there are no correct answers for the training procedure to learn from and the learning
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algorithm is left to discover the structures in the datasets.
One of the most important unsupervised learning techniques is
clustering, which is the process of partitioning a set of data points
according to some measure of similarity (e.g., distance). The goal
of clustering is to reveal subgroups within heterogeneous data
such that each individual cluster has greater homogeneity than
the whole (Eick et al., 2004). Table 1 summarizes the different
types of machine learning methods and some of their real-world
applications. In many applications, obtaining labeled data is
often difficult, costly, and/or time-consuming, while collecting
unlabeled data may be relatively easy. Such cases result in a
dataset consisting of a large number of unlabeled variables and
a small set of labeled variables. Semi-supervised learning uses
both labeled and unlabeled data to improve the accuracy of the
learning model.

Several studies have used clustering methods to facilitate the
diagnosis of several disorders (Vogt and Nagel, 1992; Nugent and
Meila, 2010; Li and Zhu, 2013; Nithya et al., 2013; Wiwie et al.,
2015). For example, clustering techniques have been applied to
the diagnosis of breast cancer (Chen, 2014), Parkinson’s disease
(Polat, 2012; Nilashi et al., 2016), headache (Wu et al., 2015),
mental health and psychiatric disorders (Trevithick et al., 2015),
heart and diabetes diseases (Yilmaz et al., 2014), andHuntington’s
disease (Nikas and Low, 2011), among many others.

Alzheimer’s disease (AD) is one of the most common
neurodegenerative diseases, particularly in old age (Ryu et al.,
2010), and is among the most common causes of dementia in
senior individuals (Ryu et al., 2010; Cuingnet et al., 2011). AD
leads to structural and functional loss of neurons in the cortex
and hippocampal regions, among other brain areas. A number of
studies in the past 20 years have pointed out possible biomarkers
for the diagnosis of AD, including brain atrophy revealed by
magnetic resonance imaging (Mueller et al., 2006; Seppi and
Poewe, 2010).

METHOD

In this paper, we summarize prior studies that use clustering
methods on AD datasets to gain more insights into the disease’s
nature, diagnosis, and progression. In the following sections,
we describe the most common clustering algorithms and their
application on AD datasets in the literature. A computer search

TABLE 1 | Types of machine learning methods.

Learning type Supervised Unsupervised Semi-supervised

Type of data Data points have labels. Data points do not have corresponding labels. A subset of the data points is labeled.

Learning process Analyzing the training data to learn a

function that can be used for

predicting the labels of new

examples.

Modeling the structure or the distribution of the

data in order to find patterns and gain new

insights from the data.

Utilizing unlabeled data with labeled data to

learn better models.

Applications Fraud detection, detecting spam

emails, predicting real estate prices.

Clustering customers’ data and market

segmentation, learning rule associations, image

segmentation, gene clustering.

When it is expensive to annotate every data

point (e.g., using humans), this type of learning

is suitable. Examples: web content

classification, medical predictions.

Firstly, the nature of the data is stated, then the objective of the type of learning is discussed, and finally some real-world examples are mentioned.

was carried out, containing the clustering and AD. This search
was performed in PubMed and Google Scholar.

CLUSTERING ALGORITHMS

k-Means
The k-Means clustering algorithm (Forgy, 1965) is a classical
unsupervised learning method. This algorithm takes n
observations and an integer k. The output is a partition of
the n observations into k sets such that each observation belongs
to the cluster with the nearest mean. The following steps
summarize the operations of k-Means.

Initialize k cluster centers. In practice, this can be done by
either randomly selecting k center

1. points from the n observations or random generation of k
center points.

2. Calculate the distance between each observation and the
cluster centers.

3. Assign each point to the cluster whose distance from its center
is minimum of all the cluster centers.

4. Recompute the positions of the k centers as the cluster mean.
5. Recompute the distance between each data point and the

newly computed centers. Repeat steps 3 and 4 until all data
points are assigned to the same cluster (data points do
not move).

The choice of k is usually influenced by prior knowledge
regarding the nature of the data or by using clustering
validity measures.

Escudero et al. (2011) investigated how applying k-Means
clustering to a subject’s medical history may shed light on
the likelihood of conversion from mild cognitive impairment
(MCI) to AD. The dataset used was obtained from the ADNI
database and consists of 375 subjects. The selected features
included the number of ApoE s4 alleles, ADAS-Cog (Alzheimer’s
Disease Assessment Scale-Cog), Mini-Mental State Examination
(MMSE) scores, MRI (magnetic resonance imaging), and CSF
(cerebrospinal fluid) data from cognitively normal (CN), MCI,
and AD individuals. The authors tested the potential of how
having the following five sets of features can better diagnose AD:
(1) ADAS-Cog, MMSE, and ApoE genotype obtained from a
blood sample; (2) CSF; (3) MRI; (4) CSF and MRI; and (5) all
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of the above features. The first analysis involved clustering the
subjects according to each of the five scenarios (i.e., using only
a subset of the variables based on the set of features described
above) using k-Means and approximating the occurrence of the
medical history of AD in each set. More than 69% of the AD
subjects and about half of the MCI individuals were always
assigned to the pathological bioprofile.

In the second analysis, k-Means was applied to the CN and
AD subjects, and the obtained clusters were used to split the
MCI subjects into CN-like and AD-like, that is, which MCI
subjects may stay as healthy individuals and which may convert
to AD. Next, the rate of decline to AD was used to evaluate the
utility of this clustering algorithm in the early diagnosis of AD
at the MCI stage. The fifth set of features (which included all
features) provided larger differences between the evolution of
CN-like and AD-like subjects at the 12-month follow-up. The
number of subjects assigned to CN-like and AD-like was 82
and 96, respectively. This indicates that the combination of all
clinical tests and biomarkers outperformed using any of them
in isolation.

In a recent study, Tosto et al. (2016) applied k-Means
clustering algorithm on a dataset of 3,502 patients with
AD with longitudinal assessments from the National
Alzheimer’s Coordinating Center database, with 394 providing
neuropathological data. The authors were interested in
examining subgroups of patients with variable trajectories
of extrapyramidal sign progression (which include movement
disorders such as postural instability, tremors and rigidity, body
restlessness, and abnormal gait, among others) and their clinical
and neuropathological correlates. Tosto et al. (2016) observed
the following three clusters of extrapyramidal sign progression:
no/low (n = 1,583), medium (n = 1,259), and high (n = 660)
extrapyramidal burden. The high extrapyramidal cluster had
greater cognitive and neuropsychiatric impairment (particularly
hallucinations), relative to the other clusters. Moreover, despite
the three clusters having similar AD pathology, the high
extrapyramidal burden cluster had a significantly greater
number of patients diagnosed with dementia with Lewy bodies.

In another recent study, Price et al. (2015) recruited
participants with AD or vascular dementia and collected MRI
measures of infarction, whole brain volume, and leukoaraiosis
(LA), as well as neurocognitive measures in all participants. A k-
Means cluster analysis derived three cluster-groups characterized
by single-domain amnestic (n= 41), single-domain dysexecutive
(n = 26), and multi-domain (n = 26) phenotypes. The multi-
domain patients scored worse on language measures than the
other clusters, yet they were equally impaired on tests of memory
when compared to the amnestic group. The three cluster-groups
were relatively dissociable in neuroradiological parameters, in
which the amnestic and multi-domain clusters had smaller
hippocampal volume than the third cluster, while the single-
domain dysexecutive cluster had greater deep periventricular
(i.e., between periventricular and infracortical regions) and
whole brain LA. The volume of the caudate and lacunar
infarction did not differ between the three clusters. There
was a negative association between the volume of the caudate
nucleus and total LA in the dysexecutive and multi-domain

clusters. These results suggest the existence of neuroradiological
heterogeneity between patients diagnosed with AD/vascular
dementia spectrum dementia.

k-Means-Mode
This algorithm can deal with both numeric (continuous) and
categorical data. Each cluster center is an array of means and
modes for continuous and categorical attributes, respectively.
The steps of the algorithm is similar to that of the classical k-
Means; the means and modes are calculated for each cluster as
previously stated, and then each point ismoved to the cluster with
minimum distance. For continuous features, Euclidean distance
is often used, and for discrete features, Hamming distance is
often used.

Paul and Hoque (2010) have applied the k-Means-Mode
clustering algorithm to medical datasets to predict the likelihood
of diseases. The likelihood of the disease in a cluster is defined
as the number of patients that have the disease divided by
the total number of points in the clusters. In other words,
it is the probability of finding the disease in the cluster. The
average likelihood of all clusters is the actual probability of
the disease in the data, which can be found by brute-force
methods. Accuracy is the ratio between average likelihood and
actual likelihood. Experimental results show that when the
algorithm was applied on the Zoo dataset from the University
of California at Irvine (UCI) Machine Learning Repository and
a diabetes dataset, an accuracy of about 95% is achieved. Other
algorithms like k-Means and k-Mode achieved lower than 65%
accuracy, suggesting that the k-Means-Mode algorithm is better
at clustering data than k-Means and k-Mode algorithms.

Multi-Layer Clustering
The first step of the multi-layer clustering process is to determine
the similarity between each pair of examples. This is done by
creating an artificial binary classification problem having the
original patient records as the positive example, while negative
examples are generated by randomly mixing the values of the
attributes of the original examples among themselves. Next, a
predictive model is built to distinguish between the positive and
negative examples to determine the similarities between each
pair of examples. The Random rules algorithm (Pfahringer et al.,
2004; Almeida et al., 2013) is applied for each pair of records to
construct an example similarity table (EST) where the number of
rules covering the pair is calculated. An entry ei ,j in the table holds
the similarity value between the ith and the jth example. The
second step is to calculate the clustering-related variability (CRV)
measure for all examples. The single-layer clustering algorithm
starts by assigning each example to a single cluster. It then keeps
merging the most similar clusters in terms of the cluster CRV
score. The procedure stops when no further merge operations are
possible; that is, further merges do not result in a smaller CRV
score. In situations having more than one attribute layer (multi-
layer attributes), the artificial binary classification problem is
constructed for each attribute layer and the ESTs are built. As for
the algorithm, for each pair of clusters, the potential variability
reduction for all attribute layers is computed and the smallest
value for each pair is selected. Merging occurs if this value is

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2019 | Volume 13 | Article 31

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Alashwal et al. Clustering and Alzheimer’s Disease

positive, and if the value is positive for more than one pair, the
pair with the largest minimal value is chosen and these clusters
are merged.

Gamberger et al. (2016a) applied a multi-clustering method
to an AD dataset of both male and female patients comprising
243 biological and clinical features. The clusters obtained
showed differences between male and female patient groups,
including the existence of two male subpopulations with changes
to intracerebral and whole brain volumes. The multi-layer
clustering technique was used to deal with layers of attributes;
that is, a set of attributes is partitioned into several subsets
according to a criterion (e.g., laboratory data features and
clinical data features). The multi-layer clustering technique was
carried out independently on two groups of 317 female and
342 male patients. The first layer consisted of 56 biological
measurements and the second consisted of 187 symptoms and
clinical descriptors. The authors reported key differences between
male and female populations of patients. For example, in the
female population, there were two clusters, while in the male
population, there were four, two for patients having major issues
with dementia (denoted M1 andM2) and two for patients having
mild or no dementia (denoted M0A and M0B). There was one
large cluster in the female population, denoted F1, with patients
having significant problems with dementia, while patients in the
other cluster hadmild dementia symptoms (denoted F0). Patients
in cluster M2 were found to have higher than average intracranial
volume (ICV) and whole brain volumes when compared to
cognitively normal male patients. Such a cluster was not observed
in the female population. The M0A cluster was similar to cluster
F0 in the female population in terms of increased ICV values and
biological features, while cluster M0B had smaller than average
ICV values. This analysis showed that there are significant
gender-specific differences in AD patients and suggests that
taking gender into account may have important implications for
the treatment of AD.

The samemulti-layer clustering algorithm used by Gamberger
et al. (2016a) was also used on a dataset of 218 female and
344 male individuals with MCI. The algorithm first builds an
EST for each attribute layer and then the tables are used by
a bottom-up method to merge similar clusters together until
no further merging of clusters is possible. The goal of this
study is to find homogeneous groups of MCI individuals in
terms of baseline and prognostic features and to discover gender
differences within the groups. The algorithm produced a cluster
of “slow decliners” (i.e., individuals with MCI that slowly develop
dementia symptoms) consisting of 184 subjects that included
a subset of MCI individuals that had favorable baseline data
and prognosis. Another cluster given by the algorithm, termed
“rapid decliners” (i.e., individuals with MCI that rapidly develop
dementia symptoms; n = 240), consisted of a subset of MCI
subjects with a more impaired baseline status and a rapidly
progressing longitudinal cognitive course.Moreover, 138 subjects
did not fit in either of the two clusters. Males and females in
the “rapid decliners” cluster had worse baseline cognitive status
and smaller brain volumes than those in the “slow decliners”
cluster. The rate of progression from MCI to dementia for
females and males in the “rapid decliners” cluster was 69 and

61%, respectively. Conversely, the rate of progression from MCI
to dementia for females and males in the slow decliners cluster
was 9 and 16%, respectively.

Gamberger et al. (2016b) applied the multi-layer clustering
method used by Gamberger et al. (2016a) and Gamberger et al.
(2017) to an AD dataset obtained from ADNI. The dataset
consists of 187 cognitively normal (CN) subjects, 106 patients
with significant memory concern (SMC), 311 patients with early
MCI (EMCI), 164 patients with late MCI (LMCI), and 148
AD patients (916 subjects in total). There are two layers that
make up the features: layer 1 consists of 10 biological features
and layer 2 consists of 23 clinical features. The goal of this
study was to find clusters that are as large and homogeneous
as possible regarding both biological and clinical features. Three
clusters were identified having patients with different levels
of dementia. The first cluster, A, contained patients with low
volumes of hippocampus, entorhinal cortex, fusiform gyrus,
and middle temporal gyrus, as well as small intracerebral and
whole brain volumes. The number of subjects in that cluster
diagnosed with AD, LMCI, and EMCI were 30, 4, and 1,
respectively. Compared to CN subjects, patients in cluster A had
20% lower mean values for fusiform and midtemporal gyrus.
Moreover, patients in cluster A had, on average, a 30% smaller
entorhinal volume than the CN group. The authors regarded
it odd that patients with LMCI and EMCI were assigned to
this cluster, yet offered no explanation for this discrepancy.
It is quite possible that these individuals may be at risk for
converting to AD; this hypothesis should be tested in future work.
Further, patients in cluster A showed high Clinical Dementia
Rating Sum of Boxes (CDRSB), Alzheimer’s Disease Assessment
Scale (ADAS13), and Functional Assessment Questionnaire
(FAQ) scores and low Mini-Mental State Examination (MMSE)
and Montreal Cognitive Assessment (MoCA) scores, which
is consistent with patients suffering from acute dementia.
Importantly, the number of AD, LMCI, and EMCI patients in
the second cluster, B, was 10, 9, and 2, respectively. Patients
in this cluster have, to some extent, had smaller volumes
of entorhinal, hippocampus, fusiform, and midtemporal gyrus
that are about 20, 20, 10, and 10% (respectively) lower than
mean values for CN subjects. However, the intracranial volume
and whole brain volume were normal. Subjects in this cluster
had a moderate or mild type of AD, which is indicated
by a score above 3 in the CDRSB. An interesting feature
of patients in cluster B was that the values for cognitive
functions self-reported by the patients were higher than those
of the other clusters and of the mean values of the entire
AD population.

The third cluster, C, included patients with the lowest
degenerative changes in the hippocampus, entorhinal, fusiform,
and midtemporal gyrus. Moreover, patients in this cluster had
high scores of ventricular and whole brain volumes. Cluster C
patients had larger mean ventricle volume than CN subjects.
The values for the scales of the MoCA, FAQ, fluorodeoxyglucose
imaging (FDG), MMSE, and ADAS13 were all intermediate
between those of clusters A and B. Cluster C patients also showed
impairment, performing the Rey’s Auditory Verbal Learning Test
(RAVLT), and divided attention.
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This study shows that the nature of the cluster of patients
having problems with dementia is non-homogeneous. Moreover,
cognitively normal subjects are even more non-homogeneous as
a population, as the clustering algorithm reported here shows that
there are many clusters of controls as well. The number of AD
patients assigned to clusters A, B, and C is <50% of the entire
AD population. Another important finding of the current study is
the correlation between cognitive impairment and brain atrophy.
The presence of degenerative changes of the brain was found in
the three derived clusters. The greatest degeneration was found
in cluster A and the second greatest degeneration was found in
cluster B. The results obtained from cluster C indicate that brain
changes are responsible for a significant number of problemswith
dementia; however, they are not sufficient for AD development.

HIERARCHAL
AGGLOMERATIVE CLUSTERING

Hierarchal agglomerative clustering is a bottom-up approach
such that each data point begins in a separate cluster, and pairs
of clusters at the bottom are merged together as we go up the
hierarchy. This method can be summarized as follows:

1. Assign each object to a separate cluster.
2. For each pair of clusters, calculate the pairwise distance.

Then, build a matrix whose elements are the distance
values computed.

3. Find the pair of clusters with the shortest distance.
4. Merge the identified pair after removing both clusters from the

distance matrix.
5. Calculate all distances from this new cluster to all other

clusters and update the distance matrix.
6. Repeat these steps until the matrix is reduced to a

single element.

There are several distance metrics that can be used (e.g.,
Euclidean and Manhattan distances); however, the choice of a
metric determines the shape of the clusters produced. This is
because two clusters can be close to each other according to one
metric, but far from each other according to another metric.
It is recommended that an exploratory study be conducted on
several distance measures and the one that yields the best results
according to chosen performance measures is selected. Unlike k-
Means, the number of clusters is not determined by the user, and
generally, smaller clusters are generated, which can be helpful in
many domains.

Noh et al. (2014) collected high-resolution T1-weighted
volumetric MRIs from 152 patients in the early stages of AD.
A hierarchical agglomerative clustering analysis was applied to
measures of cortical thickness in these patients. Three emergent
clusters were compared with an age- and sex-matched control
group. The first cluster (A) was characterized by bilateral
medial temporal-dominant atrophy predominantly involving
anterior and posterior cingulate cortices (n = 52, 32.4%);
the second cluster (B) was characterized by parietal-dominant
atrophy involving bilateral parietal areas, precuneus, and bilateral
dorsolateral frontal areas (n = 28, 18.4%); and the third

cluster (C) was characterized by diffuse atrophy, in which
almost all association cortices demonstrated atrophy (except for
orbitofrontal and occipital areas) (n = 72, 47.4%). Patients in
the parietal-dominant cluster (B) were younger, had a younger
age at onset, and had the highest years of education. Patients
in the diffuse atrophy cluster (C) had the lowest mean cortical
thickness. Patients in the parietal-dominant cluster scored the
poorest across all neurocognitive tests (attention, visuospatial
function, memory, and frontal executive tasks) except for
language function measures. These results suggest that there
is considerable anatomical heterogeneity evident even in early
stages of AD, which may indicate multiple disease processes.

Hwang et al. (2016) conducted several analyses on a dataset
that includes 77 patients with AD recruited via the ADNI.
Patients underwent 3-T MRI, [18F]-fluorodeoxyglucose PET,
[18F]-florbetapir PET, and cerebrospinal (CSF) tests. Hierarchical
agglomerative cluster analysis was applied to measures of cortical
thickness, and the remaining measures were compared across
groups. Consistent with the study byNoh et al. (2014) andHwang
et al. (2016) observed three clusters, dominated by medial–
temporal atrophy (19.5%), parietal atrophy (24.7%), and diffuse
atrophy (55.8%). The parietal-dominant cluster was younger and
showed greater glucose hypometabolism in parietal and occipital
cortices, as well as pronounced amyloid-beta accumulation in
most brain regions. The medial–temporal dominant cluster
had greater glucose metabolism in the left hippocampus and
bilateral frontal cortices and poorer performance on memory
tests. There were no significant differences in CSF tests
between cluster-groups.

Racine et al. (2015) studied a sample of 103 asymptomatic
adults with genetic risk and parental family history of AD.
Participants underwent [C-11] Pittsburgh Compound B (PiB)
amyloid imaging, MRI, lumbar puncture, and neurocognitive
assessment at baseline, with 79 participants also undergoing
follow-up PiB imaging 2 years later. The hierarchical
agglomerative cluster analysis derived four cluster-groups
based on three biomarkers, including CSF total-tau, CSF Aβ42,
and average PiB burden across 8 AD-sensitive regions of
interest. All clusters were compared on amyloid accumulation
(controlling for PiB baseline, age, sex, and APOE4 status) as
well as on cognitive changes on tests of memory and executive
control (controlling for baseline scores, age, sex, APOE4 status,
education, and duration between testing visits). Cluster 4 showed
the greatest AD-like characteristics (low CSF Aβ42 and high
PiB), with greater amyloid accumulation over 2 years relative to
the other three clusters in regions affected by AD (precuneus,
posterior cingulate, and lateral temporal and parietal cortices).
Moreover, individuals in cluster 4 scored worse than those in
cluster 1 on immediate recall and worse than all three clusters
on delayed recall. Individuals in cluster 2 scored better than
individuals in cluster 3 on delayed recall and better than both
clusters 1 and 2 on total recall. These results suggest that
clustering at-risk individuals across validated biomarkers may
provide novel insights into those at greatest risk for amyloid
accumulation and cognitive decline.

Cappa et al. (2014) recruited 23 patients with posterior
cortical atrophy (PCA) and 16 patients with dementia of
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Alzheimer’s type (AD). First, a principal component analysis
was used to reduce 15 neurocognitive variables to the
following five factors: memory, language, perceptual processes,
visuospatial processes, and calculation (addition, subtraction,
and multiplication). These factors were then entered into
a hierarchical agglomerative cluster analysis. Four clusters
were derived and were characterized by visuospatial/perceptual,
memory, perceptual/calculation, and language performance.
Four clusters were derived, Cluster 1 (n= 9, 100% PCA), Cluster
2 (n = 10, 20% PCA), Cluster 3 (n = 6, 50% PCA), and Cluster
4 (n = 14, 64% PCA). The authors noted that AD pathology
appears to produce multiple distinct syndromal subtypes
involving impairment inmemory (classically associatedwith AD)
and visuospatial deficits (classically associated with PCA), as
well as in visual perception and language, which may indicate
heterogeneity in vulnerability of specific functional networks.

Armstrong and Wood (1994) applied hierarchical cluster
analysis to a group of 78 patients with AD. The dataset consisted
of 47 neuropathological measures, including the density and
distribution of senile plaques and neurofibrillary tangles. The
analyses indicated that an initial splitting of the sample could
be made, characterizing one large group (68%) who had a
relatively small distribution of senile plaques and neurofibrillary
tangles across the brain and a second smaller cluster (15%) who
had more diffusely spread lesions throughout the neocortex.
These clusters could be further divided based on the extent
of capillary amyloid angiopathy. Moreover, patients with a
limited development of senile plaques, neurofibrillary tangles,
and capillary amyloid angiopathy could be further split into an
early- and a late-onset group. Patients with familial AD were not
assigned to a single cluster; rather, they were distributed across
four of the five groups. Some patients with familial AD had
unique combinations of pathological features that did not closely
resemble the other clusters.

McCurry et al. (1999) recruited a population-based sample
of 205 patients with AD from the Alzheimer’s Disease Patient
Registry to investigate patterns of sleep problems. The authors
applied hierarchical cluster analysis (Lance and Williams, 1967)
to patients who were reported to have awakened their caregivers
from sleep. They identified one cluster with daytime inactivity
but few behavioral problems, another cluster with higher levels of
fearfulness, fidgeting and occasional sadness, and a third cluster
with multiple behavioral problems that included frequency bouts
of sadness, fearfulness, inactivity, fidgeting, and hallucinations.
The results demonstrate the heterogeneity of sleep disturbances
in AD, which may have implications for the direction of
interventions to homogeneous subgroups experiencing similar
patterns of sleep problems.

DISCUSSION

In this study, we were able to identify and review 13 articles
that applied clustering methods on mainly AD datasets. To our
knowledge, these are the only existing studies on clustering AD
datasets. The distribution of these articles over time is presented
in Figure 1.

Across all of these studies, there are four clustering algorithms
used: k-Means, k-Means-Mode, multi-layer clustering, and

hierarchical agglomerative clustering (see above sections for
description of these clustering algorithms). As Figure 2 shows,
hierarchical agglomerative was the most commonly used method
throughout the reviewed papers, followed by k-Means andmulti-
layer clustering and finally k-Means-Mode.

The reviewed studies vary across various dimensions
including the clustering algorithm used, the dataset used,
variables included in the dataset, and groups included in the
datasets (i.e., AD, controls, MCI). Some of the studies have
highlighted differences among males and females with AD
(Gamberger et al., 2016a,b). Noting that AD is more common
in females than in males (Viña and Lloret, 2010; Mazure and
Swendsen, 2016), it is possible that there are gender-specific
factors underlying the progression of AD in females. The
Gamberger et al. studies have highlighted several neural changes
between females and males with AD, suggesting that these
neural changes may be the underlying reason behind AD
being more common in females than in males. Some clustering
analyses have shown that AD is not a homogeneous disorder
and there are subtypes of AD patients. For example, Noh
et al. (2014) have shown that there are three clusters of AD
patients that differ in their neural damage. This is important
as it may suggest different treatment for each subgroup of
patients. Similar findings were also reported in Hwang et al.
(2016), thus confirming the existence of subtypes of AD patients.
Unlike other clustering studies, Racine et al. (2015) conducted
clustering analysis on a dataset that includes individuals at
risk for developing AD. The study was able to find several
features that explain why some individuals may convert to AD
while others do not. These features include low CSF Aβ42 and
impaired immediate recall. Cappa et al. (2014) also reported
the existence of several subtypes of AD patients that differ in
memory and visuospatial impairment. Price et al. (2015) found
that there were three groups of AD patients that are characterized
by memory, executive dysfunction, or multiple impairments.
Similarly, Tosto et al. (2016) found that there are three clusters
of AD patients that vary in their extrapyramidal symptoms.
According to Armstrong and Wood (1994), AD patients can be
subdivided into several groups based on the distribution of senile
plaques and neurofibrillary tangles in their brains. McCurry
et al. (1999) also reported that there are subtypes of AD patients
depending on their sleep disturbances. One problem with the
abovementioned studies is that they subtyped AD patients
based on very different features varying from neural, cognitive,
and clinical variables. Accordingly, it is thus unclear what the
subtypes of AD patients are, given the different features reported
in every study.

Further, to our knowledge, there were only three studies
that have used an MCI population in the clustering analysis
(Escudero et al., 2011; Gamberger et al., 2016a,b). Gamberger
et al. (2017) found that converting to dementia in individuals
with MCI is related to worse baseline cognitive dysfunction
as well as having smaller brain volumes. In another study,
Gamberger et al. (2016a) found that few individuals with EMCI
and some with LMCI were assigned to the same cluster as
most AD patients. While the authors did not explain these
results, it is possible that these MCI individuals may be at risk
of developing AD, and thus were assigned to the AD cluster.
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FIGURE 1 | A summary of the number of articles and their corresponding year of publication.

FIGURE 2 | The frequency of usage of clustering algorithms on Alzheimer’s disease data.

Escudero et al. (2011) evaluated several analytic approaches for
determining which MCI individuals are likely to convert to AD.
They found that by using a large dataset that includes clinical tests
and biomarkers in the clustering algorithms, greater accuracy
is achieved compared to using smaller numbers of variables
in isolation.

Further, to our knowledge, none of the existing studies on
clustering analysis have used a dataset that includes early-stage vs.
late-stage AD patients. Several experimental studies have shown
that these two groups differ profoundly in terms of clinical,
cognitive, and neural damage (Kauer-Sant’Anna et al., 2009). Like
MCI conversion to AD, clustering analysis can point to several
features that underlie the conversion from early-stage AD to
advanced AD.

Importantly, while some other medical studies have used
semi-clustering algorithms, to our knowledge, there are no
studies on using semi-clustering algorithms in AD. While

traditional clustering algorithms (as described in this article)
work on datasets in which there is no outcome (target) variable
nor is anything known about the relationship between the
observations (i.e., unlabeled data), semi-clustering enhances
clustering by using additional information as constraints
in the clustering process. This is helpful in identifying
clusters that are linked to a particular target variable. Such
additional information is often existent in the dataset or
provided by neurologists/clinicians to guide the clustering
process. Future work should apply semi-clustering methods
on AD.

FUTURE RESEARCH

As mentioned above, only three studies have used an MCI
population in the clustering analysis (Escudero et al., 2011;
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Gamberger et al., 2016a,b). Future research should use more
than three populations: healthy controls, individuals with MCI,
and AD patients. For example, none of the clustering used
subpopulations with MCI, such as amnestic vs. non-amnestic
MCI. Such populations are increasingly being studied in the
literature, as patients with amnestic MCI are more likely to
develop AD than patients with non-amnestic MCI (Mauri et al.,
2012; Monacelli et al., 2015).

Another type of clustering is known as fuzzy clustering, in
which the classification function causes the class members to
become a relative one and an object can belong to several classes
at the same time but with different degrees (Ahmadi et al., 2018).
Fuzzy clustering has many applications to health sciences, as
some individuals may or may not be diagnosed with a certain
disorder, depending on different conditions. This is quite relevant
to AD. Fuzzy clustering can help us understand the nature of
MCI, as some of these individuals may convert to AD, but others
may stay healthy.

Further, to our knowledge, different kinds of clustering
methods, such as latent profile analysis, were rarely applied to
AD datasets. These algorithms do not use a distance function,
but instead attempt to produce normally distributed clusters.

The latent profile analysis has been applied to several disorders
with some success. In one study, Aldridge and Roesch (2008)
used latent profile analysis to classify subgroups of adolescents
and examine rates of depression and anxiety in these different
groups. They observed three clusters of adolescents who vary
greatly in their depressive and anxiety symptoms. As another
example, Mitchell et al. (2007) used latent profile analysis to
subgroup individuals with eating disorders. The analysis revealed
five subtypes that have very different profiles. Future research
should use latent profile analysis clustering methods to better
understand the nature of MCI and their conversion to AD.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

ACKNOWLEDGMENTS

HA received financial support from the United Arab Emirates
University (grant no. CIT 31T085).

REFERENCES

Ahmadi, H., Gholamzadeh, M., Shahmoradi, L., Nilashi, M., and Rashvand,
P. (2018). Diseases diagnosis using fuzzy logic methods: A systematic
and meta-analysis review. Comput.. Methods Prog. Biomed. 161, 145–172.
doi: 10.1016/j.cmpb.2018.04.013

Aldridge, A. A., and Roesch, S. C. (2008). Developing coping typologies of
minority adolescents: a latent profile analysis. J. Adolesc. 31, 499–517.
doi: 10.1016/j.adolescence.2007.08.005

Almeida, E., Kosina, P., and Gama, J. (2013). “Random rules from data streams,” in
Proceedings of the 28th Annual ACM Symposium on Applied Computing (ACM)

(Coimbra),813–4.
Armstrong, R. A., andWood, L. (1994). The identification of pathological subtypes

of Alzheimer’s disease using cluster analysis. Acta Neuropathol. 88, 60–66.
doi: 10.1007/BF00294360

Cappa, A., Ciccarelli, N., Baldonero, E., Martelli, M., and Silveri, M. C.
(2014). Posterior ad-type pathology: cognitive subtypes emerging from
a cluster analysis. Behav. Neurol. 2014:259358. doi: 10.1155/2014/2
59358

Chen, C.-H. (2014). A hybrid intelligent model of analyzing clinical breast cancer
data using clustering techniques with feature selection. Appl. Soft. Comput. 20,
4–14. doi: 10.1016/j.asoc.2013.10.024

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehe’ricy, S., Habert,
M.-O., et al. (2011). Automatic classification of patients with Alzheimer’s
disease from structural MRI: a comparison of ten methods using the
ADNI database. Neuroimage 56, 766–81 329. doi: 10.1016/j.neuroimage.2010.
06.013

Eick, C. F., Zeidat, N., and Zhao, Z. (2004). “Supervised clustering-
algorithms and benefits,” in Tools with Artificial Intelligence, 2004. ICTAI

2004. 16th IEEE International Conference on (IEEE) (Boca Raton, FL),
774–776.

Escudero, J., Zajicek, J. P., and Ifeachor, E. (2011). Early detection and
characterization of Alzheimer’s disease in clinical scenarios using Bioprofile
concepts and K-means. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 6470–3.
doi: 10.1109/IEMBS.2011.6091597

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus
interpretability of classifications. Biometrics 21, 768–9.

Gamberger, D., Lavrac, N., Srivatsa, S., Tanzi, R. E., and Doraiswamy, P. M. (2017).
Identification of clusters of rapid and slow decliners among subjects at risk for
Alzheimer’s disease. Sci. Rep. 7:6763. doi: 10.1038/s41598-017-06624-y

Gamberger, D., Ženko, B., Mitelpunkt, A., Lavrač, N., and The Alzheimer’s Disease
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