AUTHOR=Petrič Tadej , Simpson Cole S. , Ude Aleš , Ijspeert Auke J. TITLE=Hammering Does Not Fit Fitts' Law JOURNAL=Frontiers in Computational Neuroscience VOLUME=11 YEAR=2017 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2017.00045 DOI=10.3389/fncom.2017.00045 ISSN=1662-5188 ABSTRACT=
While movement is essential to human wellbeing, we are still unable to reproduce the deftness and robustness of human movement in automatons or completely restore function to individuals with many types of motor impairment. To better understand how the human nervous system plans and controls movements, neuromechanists employ simple tasks such as upper extremity reaches and isometric force tasks. However, these simple tasks rarely consider impacts and may not capture aspects of motor control that arise from real-world complexity. Here we compared existing models of motor control with the results of a periodic targeted impact task extended from Bernstein's seminal work: hammering a nail into wood. We recorded impact forces and kinematics from 10 subjects hammering at different frequencies and with hammers with different physical properties (mass and face area). We found few statistical differences in most measures between different types of hammer, demonstrating human robustness to minor changes in dynamics. Because human motor control is thought to obey optimality principles, we also developed a feedforward optimal simulation with a neuromechanically inspired cost function that reproduces the experimental data. However, Fitts' Law, which relates movement time to distance traveled and target size, did not match our experimental data. We therefore propose a new model in which the distance moved is a logarithmic function of the time to move that yields better results (