AUTHOR=Einarsson Hafsteinn , Gauy Marcelo M. , Lengler Johannes , Steger Angelika TITLE=A Model of Fast Hebbian Spike Latency Normalization JOURNAL=Frontiers in Computational Neuroscience VOLUME=11 YEAR=2017 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2017.00033 DOI=10.3389/fncom.2017.00033 ISSN=1662-5188 ABSTRACT=

Hebbian changes of excitatory synapses are driven by and enhance correlations between pre- and postsynaptic neuronal activations, forming a positive feedback loop that can lead to instability in simulated neural networks. Because Hebbian learning may occur on time scales of seconds to minutes, it is conjectured that some form of fast stabilization of neural firing is necessary to avoid runaway of excitation, but both the theoretical underpinning and the biological implementation for such homeostatic mechanism are to be fully investigated. Supported by analytical and computational arguments, we show that a Hebbian spike-timing-dependent metaplasticity rule, accounts for inherently-stable, quick tuning of the total input weight of a single neuron in the general scenario of asynchronous neural firing characterized by UP and DOWN states of activity.