AUTHOR=Urizar Oscar J. , Baig Mirza S. , Barakova Emilia I. , Regazzoni Carlo S. , Marcenaro Lucio , Rauterberg Matthias TITLE=A Hierarchical Bayesian Model for Crowd Emotions JOURNAL=Frontiers in Computational Neuroscience VOLUME=10 YEAR=2016 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2016.00063 DOI=10.3389/fncom.2016.00063 ISSN=1662-5188 ABSTRACT=
Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds.