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Previous work from our lab has demonstrated how the connectivity of brain circuits

constrains the repertoire of activity patterns that those circuits can display. Specifically,

we have shown that the principal components of spontaneous neural activity are

uniquely determined by the underlying circuit connections, and that although the principal

components do not uniquely resolve the circuit structure, they do reveal important

features about it. Expanding upon this framework on a larger scale of neural dynamics,

we have analyzed EEG data recorded with the standard 10–20 electrode system from

41 neurologically normal children and adolescents during stage 2, non-REM sleep. We

show that the principal components of EEG spindles, or sigma waves (10–16Hz), reveal

non-propagating, standing waves in the form of spherical harmonics. We mathematically

demonstrate that standing EEG waves exist when the spatial covariance and the

Laplacian operator on the head’s surface commute. This in turn implies that the

covariance between two EEG channels decreases as the inverse of their relative distance;

a relationship that we corroborate with empirical data. Using volume conduction theory,

we then demonstrate that superficial current sources are more synchronized at larger

distances, and determine the characteristic length of large-scale neural synchronization

as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis

that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we

also show that 8 additional patients with hypoplasia or complete agenesis of the corpus

callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly

exhibit standing EEG waves in the form of spherical harmonics. We conclude that

spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural

activity in the brain, which are associated with unconscious, light sleep. The analogy with

spherical harmonics in quantum mechanics suggests that the variances (eigenvalues) of

the principal components follow a Boltzmann distribution, or equivalently, that standing

waves are in a sort of “thermodynamic” equilibrium during non-REM sleep. By extension,

we speculate that consciousness emerges as the brain dynamics deviate from such

equilibrium.
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INTRODUCTION

Modern philosophy and science attribute the most significant
aspects of the human mind, such as consciousness, to neural
activity in the brain (Tononi and Edelman, 1998; McFadden,
2002; Rees et al., 2002; Libet, 2004; Lamme, 2006; Melloni
et al., 2007; Fingelkurts et al., 2013). This conception inevitably
leads scientists to pursue a better understanding of the brain
as a complex physical system, in the hope that even its most
perceptible, material properties will ultimately explain the highest
transcendent features of human cognition and the mind.

Macroscopic physical properties of brain activity, including
the electromagnetic fields generated by neural activity, are known
to change with the state of awareness (Walter et al., 1967;
Lehmann et al., 2001; Cahn and Polich, 2006; Fingelkurts et al.,
2012; Cicurel and Nicolelis, 2015). Technologies developed to
assess these phenomena therefore reveal information about the
state of an individual’s awareness, including but not limited
to stages of sleep, concentration, and motor activity, which
can be registered non-invasively as scalp electroencephalogram
(EEG) or magnetoencephalogram (MEG). Spatiotemporal EEG
and MEG patterns are sensitive enough to allow for an effective
discrimination between certain cognitive states such as alertness
and drowsiness (Sing and Russo, 2007), and even phenotypes
such as schizophrenia (Van Der Stelt and Belger, 2007), amnesia
(Babiloni et al., 2010), dyslexia (Babiloni et al., 2012), and autism
(García Domínguez et al., 2013; Pérez Velázquez and Galán,
2013). This suggests that despite their apparently random nature,
spontaneous patterns of brain activity are well-structured both in
space and time (Galán, 2008; Fingelkurts et al., 2010).

Our lab has previously demonstrated how brain circuit
connectivity constrains the activity patterns displayed in brain
circuits (Galán, 2008; Steinke and Galán, 2011). Specifically,
we have shown that the principal components of spontaneous
neural activity are uniquely determined by the underlying circuit
connectivity, and that although those principal components
do not uniquely resolve the circuit structure, they do reveal
important features about their functional connectivity, such
as the size of center-surround inhibition (Galán, 2008). More
generally, it is well-known from geophysics and climate research
that the principal components of spatiotemporal patterns of
physical parameters, such as surface sea-water temperature or air
pressure, represent stationary (i.e., non-propagating) oscillations,
also known as standing waves (Storch and Zwiers, 2001).
Standing waves are spatially constrained oscillations where each
point over the spatial domain is associated with a constant
maximum amplitude over time, giving rise to nodes where the
amplitude is consistently zero. On a spherical domain, standing
waves appear as spherical harmonics with multiple poles where
the amplitude of the wave is maximized. By definition, the
principal components identify spatial locations with a coherent
fluctuating pattern, a property that can be used to detect
stationary climate oscillations such as El Niño or the North
Atlantic Oscillation (Storch and Zwiers, 2001).

In neuroscience, the existence of standing EEG waves was
already predicted by early neural mass models of brain activity
(Nunez, 1981), which have been expanded and refined ever since

(Nunez, 1998; Nunez and Srinivasan, 2006a,b). Those models
also predict that, since the human head conforms to a sphere,
EEG signals can be mathematically expanded into a basis of
spherical harmonics (Wingeier et al., 2001). However, to the best
of our knowledge, no empirical evidence for physical waves in
the form of multipolar spherical harmonics has been provided to
date.

Sleep is often considered the true resting state of the brain,
and it is when “the most synchronized network patterns occur”
(Buzsaki andWatson, 2012), additionally lending ease to filtering
and analysis (Campbell, 2009). One of the most recognizable
features of EEG during sleep is the sleep “spindle,” or sigma
wave (10–16Hz), a characteristic phenomenon of non-rapid eye
movement (non-REM) sleep that is hypothesized to mediate the
process of memory consolidation (Schabus et al., 2004; Marshall
and Born, 2007), and is observed as simultaneous short-lived
wavelets across EEG channels (Andrillon et al., 2011; Bonjean
et al., 2012; Niknazar et al., 2015). Stage 2 non-REM sleep is the
most frequently employed stage for observing spindle activity,
and is dominated by centroparietal waves (Ayoub et al., 2013),
which are believed to be thalamo-cortical in nature (Bonjean
et al., 2012; Niknazar et al., 2015).

In this context, we have investigated the principal components
of EEG sigma waves during non-REM sleep in 41 children
and adolescents with no neurological conditions. First, we
show both mathematically and empirically that the principal
components of these waves are spherical harmonics, which in
turn represent standing waves on the head’s surface. Second, in
order to assess the thalamo-cortical nature of the spindles, we
performed similar analyses on 8 children with complete absence
of, or severe reduction in, inter-hemispherical cortico-cortical
connections, also known as the corpus callosum. The principal
components of sigma waves in these subjects are also spherical
harmonics, including dipoles and quadrupoles across both
hemispheres, suggesting that sleep spindles are mainly driven
by coherent thalamo-cortical oscillations, rather than cortico-
cortical oscillations. Third, using volume conduction theory, we
demonstrate that current densities over the brain’s surface can be
computed in a straightforward manner for standing EEG waves,
which subsequently allow us to define a characteristic length for
large-scale neural synchronization. Finally, we speculate about
the role of standing EEG waves in the conscious and unconscious
brain.

RESULTS

Overview of EEG Data
EEG data were captured with the standard 10–20 system (see
Methods) displayed in Figure 1A, with a total of 23 electrodes
(channels). Figure 1B shows the power spectral density (PSD)
of the raw EEG averaged across channels over 30min of stage
2 non-REM sleep, for a representative normal subject. The PSD
reveals a peak in the 10–16Hz range, indicating the presence of
sigma waves. These waves are prominent enough to be identified
visually. Band-pass filtering in the sigma frequency band
(Figure 1C) enhances their temporal profile of the canonical
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FIGURE 1 | EEG data acquisition and characteristics. (A) Electrode grid and axis orientations for 10–20 system; positive z-axis points out of the page, through

the Cz electrode. (B) Power spectrum for raw EEG signals averaged across channels from stage 2 non-REM sleep; a prominent peak is visible in the 10–16Hz

frequency range, corresponding to sigma waves. (C) Sigma-wave-filtered EEG traces; spindles are observed to be highly synchronous and present in all channels. (D)

Eigenvalue (variance) distribution of the principal components of EEG data. The noise level is determined by extrapolating the linear trend of the tail.
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spindle form: recurrent, highly synchronous wavelets that wax
and wane over the course of 0.5–2 s across all channels.

A principal component analysis of these filtered signals
provides us with 23 components (eigenvectors of the spatial
covariance matrix; see Methods) and their eigenvalues, the
latter of which represent the variance carried by the associated
principal component. Figure 1D displays the variance of the
principal components (eigenvalues) relative to the total variance
of the sigma waves (sum of all eigenvalues); the eigenvalues are
ranked from largest (left) to smallest (right). Background noise
contributes to the variance of each component, and the noise
level can be determined empirically by linear extrapolation of
the tail of the variance distribution (Mitra and Pesaran, 1999), as
shown in Figure 1D (red line). The signal-to-noise ratio (SNR)
for a given component is then computed as its variance divided
by its noise level.

Standing Waves and Spherical Harmonics
in Normal Subjects
The principal components of the sigma waves are displayed
in Figure 2 (right column) for a representative subject, in
comparison with standing waves on the sphere, also known as
spherical harmonics (left column), as predicted by wave theory in
physics (see Methods). The first eight components capture 79%
of the total variance in the data, and each of these components
has an SNR greater than 100%. There is a striking similarity
between the theoretical and empirical waves. The orientation of
the empirical waves relative to the Cartesian axes of the spherical
harmonics was determined with a three-dimensional rotation
(seeMethods), as reported in Figure 2. The inverse rotationmaps
the theoretical waves onto the empirical ones, allowing us to fully
appreciate their spatial similarity. Thus, by the theory outlined
in “Spherical Harmonics, Principal Components of the EEG,
Standing Waves” (see Methods), the electric potential over the
scalp filtered in the 10–16Hz frequency band is comprised of
standing linear waves. These results are highly consistent across
all 41 neurologically normal subjects considered for analysis.

Standing Waves and Spherical Harmonics
in Patients with Agenesis of the Corpus
Callosum
We conducted similar analyses on patients with hypoplasia or
complete agenesis of the corpus callosum. These patients are of
particular interest because they are instrumental in validating the
current view that sleep spindles are thalamo-cortical oscillations:
if EEG data of patients with a defective corpus callosum display
similar spherical harmonics (and consequently, standing waves)
to neurologically normal patients, then the waves cannot be solely
generated by cortico-cortical activity, owing to the absence or
malformation of inter-hemispherical connections, and they must
instead be thalamo-cortical in origin.

We investigated 8 patients with agenesis or hypoplasia of
the corpus callosum. Two patients in this cohort each had two
30-min EEG epochs of stage 2 sleep from different dates of
EEG recording; these recordings were also considered, for a
total of 10 EEG recordings included in analysis. Both complete

FIGURE 2 | Rotated spherical harmonics (left) and principal

components of sigma waves (right) from a representative normal

subject. The theoretical and empirical waves are strikingly similar, confirming

that EEG spindles during stage 2 non-REM sleep are standing

waves. Spherical harmonics are manually rotated according to the axes rotation

(Continued)
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FIGURE 2 | Continued

operators (denoted by R), based on the orientation of the empirical waves.

Principal components are shown from top to bottom in order of decreasing

eigenvalue (percentage of total variance). SNR: signal-to-noise ratio. Blue and

red correspond to opposing signs of the waves’ amplitude. Color scale covers

whole range from minimum to maximum amplitude.

agenesis and hypoplasia of the corpus callosum are easily
identified at any age by inspection of their MRI, where white
matter tracts connecting the two hemispheres appear missing or
underdeveloped (Figure 3).

In accordance with the hypothesis that sigma waves are
thalamo-cortical oscillations, we demonstrate in Figure 4 that
the first eight principal components (each of which has an
SNR greater than 100%, and which, together, capture 78% of
the total variance) of the waves from a representative patient
with complete agenesis of the corpus callosum are similar to
the dipolar and quadrupolar spherical harmonics as predicted
by theory, indicating that sigma waves exist spatiotemporally as
standing waves, generally consistent with the results from normal
patients. For some patients in the agenesis cohort, such as the one
shown here, there appear to be some minor deviations from this
trend. For example, the third component from the top depicted
in Figure 4, corresponding to spherical harmonic Y−1

1 , is more
concentrated in the “northern” hemisphere (z > 0) than in
the “southern” hemisphere (z < 0), resembling a hemispherical
harmonic. However, the spherical harmonic structure is mostly
preserved in all patients with agenesis or hypoplasia of the corpus
callosum, lending support to the current view that spindles are
truly thalamo-cortical oscillations.

Covariance and Inverse Relative Distance
As demonstrated in Methods, the existence of standing waves
implies that the spatial covariance of the EEG decreases with the
inverse of the relative distance. In agreement with this prediction,
Figure 5A shows that the covariance between two EEG channels
is significantly correlated (r = 0.42, p = 2e-12, Pearson’s
correlation) with the inverse of their relative distance. Notably,
the abscissa intercept of the linear regression is essentially zero,
confirming the direct proportionality of C(Ex, Ey) and 1

/∣

∣Ex− Ey
∣

∣,
as predicted by our theory. Data from all other subjects in both
the normal and agenesis cohorts exhibited similar trends, with no
significant differences or outliers.

Additionally, we show that the covariance of the current
density on the scalp, K(Ex, Ey), appears to decay similarly with
the inverse of the relative distance (r = 0.44, p = 2e-13,
Pearson’s correlation), but that it does so with a negative offset,
β (Figure 5B). The inverse of the abscissa intercept of regression,
D = α

/

β , then represents the characteristic length of large-scale
current source synchronization on the scalp (see “Characteristic
Length of Large-Scale Neural Synchronization” inMethods). The
values of D are clustered around a mean of 1.31 with a standard
deviation of 0.15 (normalized to the head radius) for all 51 EEG
recordings included in our analyses (Figure 5C). The geodesic
arc γ associated with characteristic length D clusters around a
mean of 82.4◦ with a standard deviation of 12.6◦ (Figure 5D).

DISCUSSION

Summary
We have provided five major results on the interpretation of
principal components of large-scale, spontaneous brain activity:
(1) the spatial maps of the principal components of spontaneous
EEG traces are conformal to spherical harmonics if standing
waves are present; (2) the covariance of the electric potential for
standing waves decays with the inverse of the relative distance;
(3) empirically, a similar trend holds for the covariance of
the current densities, but with an additional negative offset,
leading to a finite characteristic length of large-scale neural
synchronization for standing EEG waves; (4) sigma waves, or
EEG spindles, during stage 2 non-REM sleep exist as standing
waves, and confirm our theoretical predictions; and, (5) EEG
spindles are coherent, thalamo-cortical oscillations as they also
exist in patients with absence or underdevelopment of inter-
hemispherical cortical networks, suggesting that they are driven
and spatially coordinated by the thalamus.

Validation of Proposed Neural Mass
Models
Theoretical and computational neural-mass models, based on
the principle of global fields of synaptic action, have predicted
the presence of standing EEG waves for several decades (Nunez,
1981), but we believe that we are the first to show standing
waves in the form of spherical harmonics of the electric
potential. Inspired by mathematical discoveries in geophysics
and meteorology, we have expanded the theoretical framework
for interpreting principal component analyses of spatiotemporal
signals. These theoretical extensions enable us to interpret the
spherical harmonics observed in the principal components of
EEG recordings as the presence of standing waves. The regime of
stage 2, non-REM sleep provides an ideal context to corroborate
our theoretical predictions. Sleep spindles are known to have high
temporal synchrony across all areas of the cortex (Huguenard and
McCormick, 2007), as exemplified in Figure 1C, and therefore
are more likely to display large-scale spatial covariations over
time, which most readily manifest as spherical harmonics over
a domain conformal to a sphere.

Incidentally, we have also observed spherical harmonics in the
principal components of delta waves (∼1Hz). However, because
our EEG clips are only from stage 2 sleep, delta waves contribute
little to the EEG signals and are scarce in many subjects (data
not shown). So, we focused on the sigma waves, which clearly
dominate the EEG signals across all subjects.

Lack of Degeneracy and Symmetry
Breaking in Empirical Spherical Harmonics
Spherical harmonics appear in the solution to equations
involving the Laplacian in systems with spherical symmetry, as
is the case of Schrödinger’s equation in quantum mechanics for
electrons in hydrogenic atoms, in which the potential energy
only depends on the distance to the nucleus. This application of
quantum theory places emphasis on the concept of degeneracy
of harmonics, whereby several harmonics may share the same
energy (Atkins and Friedman, 2011). The angular part of the
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FIGURE 3 | MRI data for a normal subject (top) and for a subject with partial agenesis (bottom). A rift in the corpus callosum (arrows) is clearly visible in the

coronal MRI image for the patient with agenesis, which is not seen in the normal subject. White matter tracts connect below and through the cortex in the normal

subject, but do not do so in the patient with agenesis.

electronic wavefunction Ym
l

is degenerate for given l and all
integers m with −l ≤ m ≤ l, but the energy levels of these
harmonics may be split by breaking the spherical symmetry of
the system, for example, by applying an external electric field
to the atom, known as the Stark effect (Atkins and Friedman,
2011). The concept of degeneracy similarly applies to the
principal components of EEG waves: the relative contribution
of each component in a set representing degenerate harmonics
is expected to contribute the same amount to the total variance
of the system, i.e., have the same eigenvalues. However, from
Figure 1D, it is clear that the components, including the simplest
cases of dipoles (n = 1, 2, 3) and quadrupoles (n = 4, 5, ..., 8),
do not have the same eigenvalues, and thus we may conclude that
the spherical symmetry of the standing wave model is broken.

The symmetry breaking we observe can be attributed to at
least two aspects of scalp EEG recordings. The first aspect is
the effect of uneven sampling across the head: EEG electrodes

sample the northern hemisphere more thoroughly than the
southern hemisphere, and thus place greater emphasis on signals
with similar spatial bias. Considering the power and synchrony
of sigma waves (visible in Figures 1B,C, respectively) during
stage 2 non-REM sleep, spherical extrapolation of the already
synchronous northern hemisphere is most likely to accentuate
the z-axis dipolar component (Y0

1 ) in spatiotemporal principal
component decomposition, thereby increasing its eigenvalue and
breaking degeneracy with other dipolar components.

A second aspect contributing to symmetry breaking is the
effect of the non-spherical shapes of the human brain and
head. Indeed, geometrical differences between the head and
an actual sphere represent perturbations to the Laplacian in
a mathematical sense, and are therefore expected to alter the
distribution of its eigenvalues, as well as the degeneracy of its
principal components. The effect of the head’s shape on the
eigenvalues of the Laplacian is reminiscent of an exciting problem
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FIGURE 4 | Rotated spherical harmonics (left) and principal

components of sigma waves (right) for a representative subject with

agenesis of corpus callosum. As in Figure 2, theoretical and empirical

waves are strikingly similar, confirming that standing waves are also present in

patients with defective inter-hemispherical connections. Spherical harmonics

(Continued)

FIGURE 4 | Continued

are manually rotated according to the axes rotation operators (denoted by R),

based on the orientation of the empirical waves. Principal components are

shown from top to bottom in order of decreasing eigenvalue (percentage of

total variance). SNR: signal-to-noise ratio. Blue and red correspond to

opposing signs of the waves’ amplitude. Color scale covers whole range from

minimum to maximum amplitude.

in mathematical physics: can one hear the shape of a drum? (Kac,
1966).

Orientation of Spherical Waves and Its
Possible Interpretation
In addition to degeneracy arising from symmetry breaking,
principal components also display rotational differences, which
must be empirically determined (see Methods). These deviations
indicate that although brain activity during stage 2 non-REM
sleep may be effectively characterized using spherical harmonics,
their orientations may conceal information that differs from
individual to individual, and between different phenotypes.
Analyses of the rotations of these harmonics in future studies
may lead to finer understanding of the origins of sleep spindles
and other relevant EEG waves, as they could be related to specific
thalamo-cortical projections or excitatory-inhibitory networks in
the cortex. It is also possible that these rotations co-localize with
functional structures in the brain, such as white matter tracts.

Analogy with Quantum Mechanics:
“Thermodynamic” Equilibrium and
Consciousness
Non-REM sleep is considered to be the period when an individual
loses consciousness (Hobson and Pace-Schott, 2002), stage 2
non-REM is when gamma waves (which correlate with conscious
brain activity) begin to disappear (Balduzzi et al., 2008), and sleep
spindles are known to be integral to basic cognitive functions
such as memory consolidation (Marshall and Born, 2007). An
analogy of stage 2 spherical waves with statistical and quantum
mechanics provides an interesting framework to approach the
challenging problem of consciousness. First, we recall that the
relative variance of a principal component of spontaneous neural
activity, i.e., its normalized eigenvalue, can be interpreted as
a probability (Galán, 2008). For instance, if a given harmonic
is produced by the synchronous activity of n neurons out of
a very large total of N neurons, the relative weight of its
associated eigenvalue can be thought of as the ratio n/N. Thus,
the eigenvalue distribution of the spherical waves after proper
normalization is akin to a Boltzmann distribution, which, by
definition, represents a state of “thermodynamic” equilibrium.
It follows that transitions to the awake, conscious state, or to
the dreaming state observed in REM sleep, represent significant
deviations from this equilibrium.

The idea that consciousness is a manifestation of
electromagnetic fields generated by neural activity and,
reciprocally, that consciousness affects neural activity, has been
previously entertained by other authors, with different flavors.
Libet, in his theory of the conscious mental field, noted that
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FIGURE 5 | Large-scale neural synchronization. (A) As predicted by our theory (see Methods), the covariance of the EEG potential is proportional to the inverse of

the relative distance. This proportionality is direct, i.e., the abscissa intercept of regression is essentially zero. (B) Empirically, the covariance of the current sources also

shows a similar correlation with inverse distance, but with an additional horizontal offset which represents the inverse of the characteristic length of large-scale neural

synchronization (normalized to the head radius). (C) Across all subjects, the characteristic length, D, clusters tightly around a mean of 1.31 (normalized to the head

radius). (D) The angular length, or geodesic arc of the characteristic length, γ , clusters around a mean of 82.4◦.

consciousness also affects neural activity, and proposed that
electromagnetic fields provide the link between mind and
neural activity, and that the former is an emergent property of
the latter (Libet, 2004). McFadden, in his theory of conscious
electromagnetic information (McFadden, 2002, 2013), suggests
that consciousness is the component of the electromagnetic field
that feeds back to modulate neural activity, a view that is shared
by Fingelkurts’ brain-mind operational architectonics theory
(Fingelkurts and Fingelkurts, 2004).

In their recent relativistic brain theory, Cicurel and Nicolelis
argue that the brain works as an analog computer rather than
a digital one (Turing machine), and that analog computations
involve electromagnetic fields generated by white matter loops,
or “coils” (Cicurel and Nicolelis, 2015). The fluctuations of these
fields are continuous in both time and space, and they change
in response to external stimuli in a state-dependent manner, i.e.,
relative to the current state of the brain (hence the adjective
“relativistic”). These electromagnetic fields in turn constrain

and “glue” the firing of neurons (observed as spikes), defining
a mental space in which higher-order functions, including
consciousness, emerge. Consistent with this view, our theory and
experimental data show that the electric potential of the EEG
during unconscious, state 2 sleep oscillates in thalamo-cortical
loops (“coils”) spontaneously, adopting highly reproducible
configurations, which represent a true resting state of the brain.
As explained above, this is analogous to the thermodynamic
equilibrium in statistical and quantum mechanics, and suggests
that transitions to a conscious state represent deviations from this
equilibrium.

METHODS

Human Subjects and Patient Selection
Retrospective chart review and data collection from the EEG
database of the Pediatric Epilepsy Unit at University Hospitals
were both approved by the Institutional Review Board at
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Case Western Reserve University and University Hospitals of
Cleveland, as part of a broader project to investigate EEG
activity patterns in children and adolescents with neurological
conditions. This study concerns two groups of subjects: 41
neurologically normal controls, and 8 patients with agenesis or
hypoplasia of the corpus callosum. Two subjects of the latter
group had EEG recordings from two different dates of admission,
making up a total of 10 EEG recordings in the agenesis cohort.
Of the normal subjects, 14 (34%) were male and 27 (66%) were
female, with ages ranging from 9 months to 18 years; of the
subjects with agenesis or hypoplasia of the corpus callosum, 3
(37%) were male and 5 (63%) were female, with ages ranging
from 3 months to 14 years.

EEG Registration
EEG recordings were collected from subjects during overnight
sleep observations (8–12 h) at the Pediatric Epilepsy Unit
and used the standard 10–20 electrode system at a sampling
frequency of 200Hz, including the 23 electrodes shown in
Figure 1A: Fp1, Fp2, F7, F3, Fz, F4, F8, FT9, FT10, A1, T7,
C3, Cz, C4, T8, A2, P7, P3, Pz, P4, P8, O1, and O2. Electrodes
were referenced to a ground electrode placed on the center of
the forehead (Fpz) and all analyses were performed on EEG
waveforms referenced to this common electrode. After data
acquisition, 30min of uninterrupted stage 2 non-REM sleep
were identified by a hospital technician using standard criteria:
presence of sleep spindles and K-complexes, and fewer than
4 s of delta waves (0–4Hz) in a “page” of 15 s of EEG, in the
bipolar double-banana montage. In the case that multiple 30-min
epochs of stage 2 non-REM sleep were available from the same
observation, the chronologically first one was selected. Electrode
impedances were all maintained at or below 5 k� by means
of a surface electrode gel optimized for long-term monitoring
applications, throughout the 30min of stage 2 non-REM sleep.
These 30-min epochs were clipped from each EEG recording for
the subsequent analyses. All the analyzed EEG clips consisted of
high-quality recordings only and contained no artifacts.

Signal Processing
Analyses of EEG signals were performed in MATLAB Academic
Version 2015a. To investigate sigma waves, signals from each
electrode were mean-subtracted and filtered offline both forward
and backward in time (using MATLAB’s filtfilt function) with a
sixth-order Butterworth, band-pass filter between 10 and 16Hz.
Principal components were computed as the eigenvectors of the
covariance matrix of the filtered signals and ranked from highest
to lowest according to their eigenvalues. Spatial maps of the
principal components were displayed using the topoplot function
of the EEGLAB software package, version 13.4.4b (Delorme and
Makeig, 2004).

Definition of Spherical Harmonics
The Laplacian, 1, is a differential operator defined as the
divergence of the gradient of a scalar function, which in Cartesian
coordinates takes the form

1f (Ex) ≡ ∇ · ∇f (Ex) =

(

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)

f (Ex).

By definition, spherical harmonics are the eigenfunctions of the
Laplacian on a spherical surface, that is, any function function
u(Ex) which satisfies

1u(Ex) = −µu(Ex), (1)

where −µ is its associated eigenvalue, and the negative
sign is taken by convention to emphasize that it is a non-
positive number, and hence µ is non-negative. Using spherical
coordinates, the eigenvalues are given by µ = l(l + 1), where
l is a non-negative integer: l = 0, 1, 2, ... For a given value of
l, there are 2l + 1 eigenfunctions, one for each integer m with
−l ≤ m ≤ l. Each possible pair of m and l then determines an
n-th eigenfunction, or spherical harmonic, given by

un(Ex)=Ym
l (θ, ϕ)=



















































√

(2l + 1)
2π

(l − |m|)!
(l + |m|)!

P
|m|
l

(

cos(θ)
)

sin (|m|ϕ) ,

if m < 0
√

(2l + 1)
4π Pm

l

(

cos(θ)
)

,

if m = 0
√

(2l + 1)
2π

(l − m)!
(l + m)!

Pm
l

(

cos(θ)
)

cos (mϕ) ,

if m > 0

where Pm
l
(x) is the associated Legendre polynomial of degree l

and orderm; θ is the polar, or zenith, angle; and ϕ is the longitude,
or azimuth.

Spatial Rotation of Spherical Harmonics
The theoretical spherical harmonics above are defined relative
to the EEG’s Cartesian axes, x,y,z, as displayed in Figure 1A. By
convention, x points through the nasion (positive values toward
the anterior of the head), y through the left pre-auricular point
(positive values toward the left ear), and z directly upwards
(positive values toward the superior direction) through the Cz
electrode position. However, the orientation of these axes may
not coincide with the orientation of the axes x′,y′,z′, with respect
to which the empirical spherical harmonics are aligned. For the
purpose of comparing theoretical and empirical waves, as shown
in Figures 2, 4, one may need to transform the theoretical axes to
align themwith the empirical ones. This is accomplished through
at most one rotation around each of the Cartesian axes. It should
be noted that the order of the axes rotations matters, as these
operations do not commute. Without loss of generality, let us
assume that the required transformation consists of a sequence of
rotations around the x,y,z axes, of angles ωx, ωy, ωz, respectively.
The transformation of the axes is then given by





x′

y′

z′



 = Rz(ωz) · Ry(ωy) · Rx(ωx)





x

y

z



 ,

where the rotation matrices Rx,Ry,Rz are defined as
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Rx(ωx) =





1 0 0
0 cosωx − sinωx

0 − sinωx cosωx



 ,

Ry(ωy) =





cosωy 0 sinωy

0 1 0
− sinωy 0 cosωy



 ,

Rz(ωz) =





cosωz − sinωz 0
sinωz cosωz 0
0 0 1



 .

In practice, we do not rotate the theoretical axes, but transform
the coordinates of the harmonics themselves. To do this, we
perform the inverse transformation R−1

x (ωx) ·R
−1
y (ωy) ·R

−1
z (ωz)

on the coordinates of their maps.

Spherical Harmonics, Principal
Components of the EEG, Standing Waves
We demonstrate here that the principal components of EEG
spindles represent standing waves and are equivalent to spherical
harmonics. Let V(Ex, t) be the mean-subtracted electric potential
of the EEG at position Ex on the scalp at time t. The stationary
covariance of two potentials recorded at locations Ex = (x1, x2, x3)
and Ey = (y1, y2, y3) on the head’s surface is defined as their
product averaged in time:

C(Ex, Ey) = lim
T→∞

1

T

T
∫

0

V(Ex, t)V(Ey, t)dt ≡
〈

V(Ex, t)V(Ey, t)
〉

. (2)

On the head’s surface, which conforms to a spherical surface S,
the covariance operator acting on an arbitrary function of space
f (Ey) is defined as

∫

S

C(Ex, Ey)f (Ey)dS(Ey), (3)

where dS(Ey) denotes integration over S with respect to Ey. Note
that the covariance operator is an integral operator.

By definition, the principal components are the eigenfunctions
of the covariance operator, that is, any function v(Ex) which
satisfies

∫

S

C(Ex, Ey)v(Ey)dS(Ey) = λv(Ex),

where λ is its associated eigenvalue representing the signal’s
variance carried by that principal component. If none of the
eigenvalues are repeated or equal to zero (as is typically the case
for the empirical covariance operator due to the presence of noise
in the recorded signals), there are as many principal components
N as electrodes and they form an orthogonal basis, so that any
spatial function on S can be expanded on that basis. In particular,
for the electric potential at time t, one has

V(Ex, t) =
∑

n

an(t)vn(Ex), (4)

with an(t) =
∫

S

vn(Ex)V(Ex, t)dS(Ex), and n = 1, 2, ...,N. The time

series an(t) are uncorrelated with each other:

〈

an(t)am(t)
〉

=

∫

S

∫

S

vn(Ex)
〈

V(Ex, t)V(Ey, t)
〉

vm(Ey)dS(Ex)dS(Ey)

=

∫

S

∫

S

vn(Ex)C(Ex, Ey)vm(Ey)dS(Ex)dS(Ey)

=

∫

S

vn(Ex)

∫

S

C(Ex, Ey)vm(Ey)dS(Ex)dS(Ey)

= λm

∫

S

vn(Ex)vm(Ex)dS(Ex)

= λmδnm,

where δnm is the Kronecker delta function: δnm = 1, if n = m;
and δnm = 0, if n 6= m.

It is well-known in linear algebra that two linear operators
have the same eigenfunctions if, and only if, they commute (Horn
and Johnson, 1985), although the associated eigenvalues may
be different. Thus, the principal components will be identical
with the spherical harmonics if, and only if, the covariance
operator commutes with the Laplacian. Mathematically, this is
represented as

1Ex

∫

S

C(Ex, Ey)u(Ey)dS(Ey) =

∫

S

C(Ex, Ey)1Eyu(Ey)dS(Ey), (5)

where the subscript of the Laplacian denotes the coordinates
with respect to which we differentiate. Then, by replacing (2) in
(5), we have

∫

S

〈

1ExV(Ex, t)V(Ey, t)
〉

u(Ey)dS(Ey) =

∫

S

〈

V(Ex, t)V(Ey, t)
〉

1Eyu(Ey)dS(Ey).

Including the time-independent factors in the temporal average,
we obtain

∫

S

〈

1ExV(Ex, t)V(Ey, t)u(Ey)
〉

dS(Ey) =

∫

S

〈

V(Ex, t)V(Ey, t)1Eyu(Ey)
〉

dS(Ey).

This equation will hold in general if the integrands of both sides
are equal, which leads us to

1ExV(Ex, t)V(Ey, t)u(Ey) = V(Ex, t)V(Ey, t)1Eyu(Ey).

Simplifying the common factor, we obtain

1V(Ex, t)u(Ey) = V(Ex, t)1u(Ey).

On each side, we now regroup factors with the same variables:

1V(Ex, t)

V(Ex, t)
=

1u(Ey)

u(Ey)
.
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This equation will be satisfied for any Ex and Ey if each side is
constant, say, equal to−µ:

1V(Ex, t)

V(Ex, t)
=

1u(Ey)

u(Ey)
= −µ,

which leads to two equations. One is the eigenvalue problem for
the Laplacian

1u(Ey)+ µu(Ey) = 0, (6)

which is the same as Equation (1). The other is
1V(Ex, t) + µV(Ex, t) = 0, which, after factorizing the electric
potential into a time-dependent function and a space-dependent
function, V(Ex, t) = U(Ex) ·T(t), leads to the so-called Helmholtz’s
equation for a given µ:

1U(Ex)+ µU(Ex) = 0. (7)

Equations (6) and (7) are formally identical, so they have the
same solution. The solution to Helmholtz’s equation represents
a stationary, or standing, linear wave, whose amplitude profile
U(Ex) is modulated in time by T(t) without propagating. In
conclusion, if the recorded electric potential V(Ex, t) represents
a standing wave, the covariance operator and the Laplacian will
commute, and therefore they will have the same eigenfunctions.
As a result, for an electric potential over a spherical domain
(or a domain conformal to a sphere, such as the human head),
the principal components will be spherical harmonics (or a
conformal version of them).

Standing Waves and the Covariance of the
EEG
We know from linear algebra that a linear operator and its inverse
operator have the same eigenfunctions. The inverse operator of
the Laplacian is the Green’s operator:

∫

S

G(Ex, Ey)f (Ey)dS(Ey),

where G(Ex, Ey) is a Green’s function, satisfying

1ExG(Ex, Ey) = δ(Ex− Ey),

where δ is the Dirac delta function. For a spherical surface, the
Green’s function is proportional to the inverse of the relative
distance:

G(Ex, Ey) = −
1

4π
∣

∣Ex− Ey
∣

∣

.

Since the covariance operator for sigmawaves commutes with the
Laplacian, it should also commute with its inverse, the Green’s
operator. Thus, the following equality should hold:

∫

S

1

|Ex− Eu|

∫

S

C(Eu, Ey)u(Ey)dS(Ey)dS(Eu)

=

∫

S

C(Ex, Eu)

∫

S

u(Ey)
∣

∣Eu− Ey
∣

∣

dS(Ey)dS(Eu),

where the factor −1
/

(4π) has canceled out on each side.
Regrouping the integrands, one has

∫

S

∫

S

C(Eu, Ey)

|Ex− Eu|
u(Ey)dS(Ey)dS(Eu) =

∫

S

∫

S

C(Ex, Eu)
∣

∣Eu− Ey
∣

∣

u(Ey)dS(Ey)dS(Eu).

This equation will hold in general if the integrands of both sides
are equal, which leads us to

C(Eu, Ey)

|Ex− Eu|
=

C(Ex, Eu)
∣

∣Eu− Ey
∣

∣

.

By regrouping, on each side, factors with the same variables, we
obtain

C(Eu, Ey)
∣

∣Eu− Ey
∣

∣ = C(Ex, Eu) |Ex− Eu| .

This equation will be satisfied for any Ex, Ey, and Eu, if each side is
constant, which implies that

C(Ex, Ey) ∼
1

∣

∣Ex− Ey
∣

∣

.

We thus, conclude that for standing waves, the covariance of EEG
signals at two separate locations is proportional to the inverse of
their relative distance.

Spherical Harmonics, Volume Conduction,
and Current Densities
EEG signals can be physically described and modeled in
terms of volume conduction (Nunez and Srinivasan, 2006a).
Current densities due to neural activity propagate through
the brain and the skull, which behave as resistive media,
and in which capacitive and inductive effects are ignored,
as they are negligible for relatively slow fluctuations of the
electric fields. Thus, the volume conduction equation takes the
form

∇ ·
(

σ (Ex)∇V(Ex, t)
)

= −I(Ex, t),

where σ (Ex) is the conductivity tensor, V(Ex, t) is again the electric
potential, and I(Ex, t) is the current density (a source if positive,
and a sink if negative). In standard spherical models of the
human head, the conductivity tensor is considered isotropic
and homogeneous within the brain, but changes in conductivity
appear at the boundaries between brain, dura, skull, and skin. The
volume conduction problem then reduces to 4 equations of the
form

σ1V(Ex, t) = −I(Ex, t), (8)

each with a different value for the conductivity. The
global solution must then be properly “stitched” at the
boundaries between brain, dura, skull, and skin. Here, we
focus on (8) for a single domain, ignoring these boundary
effects. Then, by replacing (4) in (8) and using (1), we
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obtain an estimation of the current density on the head’s
surface:

I(Ex, t) = −σ
∑

n

an(t)µnvn(Ex). (9)

This series expansion converges more slowly than the series for
the electric potential (4), because although the variance of the
time series an(t) decreases roughly exponentially with n, the non-
degenerate eigenvalues of the Laplacian µn grow monotonically
with n. For instance, µn = 2 for dipolar harmonics, and µn = 6
for quadrupolar harmonics. We also note that because of the
limited spatial resolution of the standard EEG 10–20 electrode
grid, harmonics of higher order cannot be adequately resolved, so
the series expansion (9) must be truncated up to the quadrupolar
order.

From (4), the covariance of the EEG potential can be expressed
as a function of the principal components of the sigma waves:

〈

V(Ex, t)V(Ey, t)
〉

=
∑

n

∑

m

〈

an(t)am(t)
〉

vn(Ex)vm(Ey)

=
∑

n

λ2nv(Ex)v(Ey).

Similarly, from (9), the covariance of the current densities on the
head’s surface can be expressed as

K(Ex, Ey) =
〈

I(Ex, t)I(Ey, t)
〉

= σ 2
∑

n

∑

m

〈

an(t)am(t)
〉

µ2
nvn(Ex)vm(Ey)

= σ 2
∑

n

λ2nµ
2
nv(Ex)v(Ey).

In our calculations we normalize the current densities to the
conductivity, and their spatial covariance to the conductivity
squared, that is, we consider σ = 1.

Characteristic Length of Large-Scale
Neural Synchronization
We have shown above that the covariance of the EEG potential
decays with the inverse of the relative distance. Empirically, the
covariance of the current densities follows a similar trend but
with an additional, negative offset:

K(Ex, Ey) ∼
α

∣

∣Ex− Ey
∣

∣

− β,

with both α, β > 0. This indicates that there is a
finite distance, D = α

/

β , for which the covariance of
the current densities is zero. This distance represents the
characteristic length of large-scale neural synchronization: for
smaller distances, the current densities will be synchronized
(positively correlated), so that at both locations Ex and Ey there
are current sources (or sinks) at the same time; for larger
distances, the current densities are negatively correlated, so that
when there is a source at Ex, there will be a sink at Ey, and
vice versa. The angular distance, or equivalently, the geodesic
arc expressed in radians, for the characteristic length is then
given by

γ = acos

(

1−
D2

2ρ2

)

,

where ρ is the radius of the spherical head model, and 0 ≤ γ ≤
π . For comparison purposes, we normalize the radius for each
subject to ρ = 1 in Figures 5A–C.
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