AUTHOR=Li Huiyan , Sun Xiaojuan , Xiao Jinghua TITLE=Impacts of clustering on noise-induced spiking regularity in the excitatory neuronal networks of subnetworks JOURNAL=Frontiers in Computational Neuroscience VOLUME=9 YEAR=2015 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2015.00085 DOI=10.3389/fncom.2015.00085 ISSN=1662-5188 ABSTRACT=

In this paper, we investigate how clustering factors influent spiking regularity of the neuronal network of subnetworks. In order to do so, we fix the averaged coupling probability and the averaged coupling strength, and take the cluster number M, the ratio of intra-connection probability and inter-connection probability R, the ratio of intra-coupling strength and inter-coupling strength S as controlled parameters. With the obtained simulation results, we find that spiking regularity of the neuronal networks has little variations with changing of R and S when M is fixed. However, cluster number M could reduce the spiking regularity to low level when the uniform neuronal network's spiking regularity is at high level. Combined the obtained results, we can see that clustering factors have little influences on the spiking regularity when the entire energy is fixed, which could be controlled by the averaged coupling strength and the averaged connection probability.