AUTHOR=Ueyama Yuki TITLE=Mini-max feedback control as a computational theory of sensorimotor control in the presence of structural uncertainty JOURNAL=Frontiers in Computational Neuroscience VOLUME=8 YEAR=2014 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2014.00119 DOI=10.3389/fncom.2014.00119 ISSN=1662-5188 ABSTRACT=

We propose a mini-max feedback control (MMFC) model as a robust approach to human motor control under conditions of uncertain dynamics, such as structural uncertainty. The MMFC model is an expansion of the optimal feedback control (OFC) model. According to this scheme, motor commands are generated to minimize the maximal cost, based on an assumption of worst-case uncertainty, characterized by familiarity with novel dynamics. We simulated linear dynamic systems with different types of force fields–stable and unstable dynamics–and compared the performance of MMFC to that of OFC. MMFC delivered better performance than OFC in terms of stability and the achievement of tasks. Moreover, the gain in positional feedback with the MMFC model in the unstable dynamics was tuned to the direction of instability. It is assumed that the shape modulations of the gain in positional feedback in unstable dynamics played the same role as that played by end-point stiffness observed in human studies. Accordingly, we suggest that MMFC is a plausible model that predicts motor behavior under conditions of uncertain dynamics.