
METHODS ARTICLE
published: 18 November 2011

doi: 10.3389/fncom.2011.00049

Comparison of neuronal spike exchange methods
on a Blue Gene/P supercomputer
Michael Hines1*, Sameer Kumar2 and Felix Schürmann3

1 Department of Computer Science, Yale University, New Haven, CT, USA
2 International Business Machines T.J. Watson Research Center, Yorktown Heights, NY, USA
3 Blue Brain Project, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Edited by:

Terrence J. Sejnowski, The Salk
Institute for Biological Studies, USA

Reviewed by:

Brent Doiron, University of
Pittsburgh, USA
Markus Diesmann, RIKEN Brain
Science Institute, Japan

*Correspondence:

Michael Hines, Department of
Computer Science, Yale University,
New Haven, P.O. Box 208285,
CT 06520–8285, USA.
e-mail: michael.hines@yale.edu

For neural network simulations on parallel machines, interprocessor spike communication
can be a significant portion of the total simulation time. The performance of several spike
exchange methods using a Blue Gene/P (BG/P) supercomputer has been tested with
8–128 K cores using randomly connected networks of up to 32 M cells with 1 k
connections per cell and 4 M cells with 10 k connections per cell, i.e., on the order of 4·1010

connections (K is 1024, M is 10242, and k is 1000). The spike exchange methods used
are the standard Message Passing Interface (MPI) collective, MPI_Allgather, and several
variants of the non-blocking Multisend method either implemented via non-blocking
MPI_Isend, or exploiting the possibility of very low overhead direct memory access (DMA)
communication available on the BG/P. In all cases, the worst performing method was
that using MPI_Isend due to the high overhead of initiating a spike communication. The
two best performing methods—the persistent Multisend method using the Record-Replay
feature of the Deep Computing Messaging Framework DCMF_Multicast; and a two-phase
multisend in which a DCMF_Multicast is used to first send to a subset of phase one
destination cores, which then pass it on to their subset of phase two destination
cores—had similar performance with very low overhead for the initiation of spike
communication. Departure from ideal scaling for the Multisend methods is almost
completely due to load imbalance caused by the large variation in number of cells that
fire on each processor in the interval between synchronization. Spike exchange time
itself is negligible since transmission overlaps with computation and is handled by a
DMA controller. We conclude that ideal performance scaling will be ultimately limited by
imbalance between incoming processor spikes between synchronization intervals. Thus,
counterintuitively, maximization of load balance requires that the distribution of cells on
processors should not reflect neural net architecture but be randomly distributed so that
sets of cells which are burst firing together should be on different processors with their
targets on as large a set of processors as possible.

Keywords: computer simulation, neuronal networks, load balance, parallel simulation

INTRODUCTION
Fast simulations of large-scale spike-coupled neural networks
require parallel computation on large computer clusters. There
are a number of simulation environments that provide this
capability such as pGENESIS (Hereld et al., 2005), NEST
(Gewaltig and Diesmann, 2007) SPLIT (Djurfeldt et al., 2005),
NCS (Wilson et al., 2001), C2 (Ananthanarayanan and Modha,
2007), and others.

Interprocessor spike exchange is, of course, an essential mech-
anism in parallel network simulators. All simulators employ the
standard and widely available Message Passing Interface (MPI)
and most utilize the non-blocking point-to-point message pass-
ing function, MPI_Isend. NEURON (Migliore et al., 2006) chose
the simplest possible spike distribution mechanism which directly
distributes all spikes to all processors. This “Allgather” method
uses MPI_Allgather, and occasionally MPI_Allgatherv if there are
more spikes to be sent than fit in the fixed size MPI_Allgather

buffer. They note that this provides a baseline for future compari-
son with more sophisticated point-to-point routing methods and
that supercomputers often provide an optimized vendor imple-
mentation of MPI_Allgather(v) that yields hard to match perfor-
mance. For example, Eppler et al. (2007), using NEST, noted that
Allgather performs better on their 96 core cluster with Infiniband
switch than the Complete Pairwise Exchange (Tam and Wang,
2000) algorithm.

However, simulations are sometimes now being carried out on
many more processors than the number of connections per cell
(Markram, 2006; Ananthanarayanan et al., 2009). Also, the Blue
Gene/P (BG/P) architecture adds a Direct Memory Access (DMA)
engine to facilitate injecting packets to the network and receiving
packets from the torus network over its predecessor BG/L. This
allows the cores to offload packet management and enables bet-
ter overlap of communication and computation. Therefore, much
of MPI point-to-point messaging no longer uses processor time.

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 1

COMPUTATIONAL NEUROSCIENCE

http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/about
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/10.3389/fncom.2011.00049/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=396&d=1&sname=MichaelHines&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=311&d=1&sname=FelixSch�rmann&name=Science
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

Finally, much less overhead than MPI is obtainable through direct
use of the underlying Deep Computing Messaging Framework
(DCMF) (Kumar et al., 2008), which introduces a family of
non-blocking asynchronous collective calls on lists of processors
(vs pre-created communicators) called Multisend. The fam-
ily member that generalizes the non-blocking point-to-point
MPI_Isend by allowing a source processor to send the same mes-
sage to a user specified list of target processors is the non-blocking
point-to-many DCMF_Multicast function. For these reasons, we
decided to compare performance of the Allgather, MPI_Isend,
and DCMF_Multicast methods. Note that DCMF is extensible to
architectures other than BG/P.

Four considerations suggest that at some point Allgather scal-
ing will fall behind the others when number of processors is much
larger than number of connections per cell. First, MPI_Allgather
itself requires twice the time when the number of processors dou-
bles. Second, all incoming processor buffers must be examined
for spikes, even if the spike count for a given source processor
is 0. Third, every incoming spike requires a search in a table for
whether or not the spike is needed by at least one cell on the
processor. Fourth, it is not possible, at least on the BG/P, to over-
lap computation and communication. None of these issues apply
with MPI point-to-point and Multisend methods.

From the viewpoint of communication, large-scale spiking
neural networks consist of computational units, neurons, which
are connected by one-way delay lines to many other neurons.
Neurons generate logical events, spikes, at various moments in
time, to be delivered to many other neurons with some con-
stant propagation delay which can be different for different con-
nections. Neurons generally send their spikes to thousands of
neurons and receive spikes from thousands of neurons. A spike
or logical event is uniquely identified by the pair (i, ts) where,
the value of i or global identifier is an integer that labels the
individual neuron sending the spike and ts is the time at which
the spike is generated. If there is a source to target connection
between neurons i and j with connection delay dij , then neuron
j receives the spike at time ts + dij which causes an ij connec-
tion dependent discontinuity in one of neuron j’s parameters or
states. During time intervals between input events, the neuron
is typically defined by a system of continuous ordinary differ-
ential equations along with a threshold detector which watches
one of the states and determines when the output event is
generated.

METHODS
All simulations were carried out using the NEURON v 7.2 simu-
lation program (Hines and Carnevale, 1997) on the Argonne
National Labs Blue Gene/P Intrepid computer. Use of the
Record-Replay persistent multisend protocol for DCMF_Multicast
required building the DCMF V1R4M2 sources available from
http://www.dcmf.anl-external.org/dcmf.git after installing a patch
available upon request. The NEURON sources containing all the
spike exchange methods used in this paper are available from
the http://www.neuron.yale.edu/hg/z/neuron/nrnbgp/Mercurial
repository.

The specific neural network model used along with the
model parameters and raw timing data for the simulations

is available from ModelDB (http://www.senselab.med.yale.edu)
with accession number 137845.

ALLGATHER
The Allgather spike exchange method uses the MPI_Allgather
collective. MPI_Allgather is a blocking collective that synchronizes
all processes and cannot overlap with computation (but see
discussion with regard to MPI_Allgather and threads). Therefore,
to minimize the use of this collective, the Allgather method
exploits the fact that network connection delay intervals, typically
in the neighborhood of 1 ms (which generally includes axonal and
synaptic delay) are generally quite large compared to integration
time steps, typically in the neighborhood of 0.1 ms or smaller.
The computations are segregated into integration intervals which
are less than or equal to the minimum interprocessor network
connection delay. Therefore, any spike generated in an interval
does not have to be delivered to the target cells until after the
end of that interval. All processors work on the same interval,
synchronizing only at the end of the current integration interval.
Spikes generated by cells on a given processor are stored in
a buffer, list of (i, ts) pairs, and, at the end of an integration
interval, the spike count in the buffer along with a fixed size
portion of each buffer is exchanged with every other processor
using MPI_Allgather. If the number of spikes is larger than the
fixed size buffer, the overflow is sent using MPI_Allgatherv. (Note
that the contingent requirement of a subsequent MPI_Allgatherv
as well as the size of the latter buffer is known to all processors from
the spike count sent by the MPI_Allgather.) The need for overflow
exchange when the generated spikes do not fit into an optimum
size exchange payload can often be minimized by compressing the
spike pair information from 12 to 2 bytes. That is if there are less
than 256 cells per processor, the 4 byte integer identifier can be
mapped to a single byte. And if the integration interval consists
of less than 256 fixed sized integration steps (spikes occur on
time step boundaries), the 8 byte double precision spike time can
be mapped to the one byte step index within the interval. Such
compression is, of course, useless when sending and receiving
individual spikes since message overhead dominates the send
time until the message payload is greater than several hundreds
of bytes. Iteration over the Allgather receive buffers suffice to
lookup whether the processor has a target cell, which should
receive the spike and, if so, put the spike into the priority queue
for delivery at a future time.

Figure 1 illustrates, for the Allgather method, the flow of spike
information from the process where the spike was initiated to the
destination targets on another process.

For performance testing, MPI_Barrier was placed before the
MPI_Allgather to allow the distinction between synchronization
waiting due to variation in the time to compute the integration
interval, and the actual spike exchange time. A high-resolution
clock counter (increments approximately every nanosecond) was
saved on entry to Allgather, after MPI_Barrier, MPI_Allgather,
and exit from Allgather.

MULTISEND
The DCMF Multisend family of non-blocking collectives provides
a DCMF_Multicast function that allows a source processor to
send the same message to a list of target processors. The message

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

v

Rank 2 Rank 4

7
Post-cellsPre-cell

GID = 7

-80

-40

0

40

t1 2

n
GID
t
GID
t

1

−−−
−−−

7
1.475 n

GID
t
GID
t

1

−−−
−−−

n
GID
t
GID
t

−−−
−−−

0
−−−
−−−

n 0

.

.

.

.

.

.

7
1.475

t = 1.475

t = 2

MPI_Allgather

1

2

3

t = 2

FIGURE 1 | How the Allgather method communicates a spike event by a

cell on rank 2 to target cells on rank 4. The illustration uses a maximum
integration interval of 1 ms, a buffer size that can hold information about two
spikes, and assumes no overflow on any rank during the computation interval
between 1 and 2 ms. During the computation interval, a cell on rank 2 fires
and its firing time and identifying number are placed in the send buffer and
the buffer spike count is incremented. At the end of the computation interval,
2 ms in the illustration, MPI_Allgather sends the contents of its buffer to all

other machines (only the receive buffer for rank 4 is shown). Note that the
total receive buffer is the size of a send buffer times the number of processes
ordered by rank. When MPI_Allgather returns (t is still 2 ms), each process
checks all the spikes in its receive buffer by doing a hash table lookup
using the cell identifier as key. If a source object for one or more Network

destination time is placed on the queue. The computation interval from 2 to 3
then begins.

transfer over the network is managed on the BG/P by a DMA
engine so that the compute cores are not involved in packet
management and therefore, are fully available for computation
at the same time that communication is taking place. In fact,
MPI_Isend is implemented as a DCMF_Multicast with merely a
list of one target.

To provide the possibility of greater overlap between compu-
tation and spike exchange when a spike occurs close to the end
of an integration interval, the NEURON simulator implemen-
tation of the Multisend method for spike exchange provides the
option of dividing the minimum delay integration interval (dur-
ing which spikes are generated by neurons but are not needed
on other processors until a subsequent interval) into two equal
sub-intervals, call them A and B. Then a spike generated in sub-
interval A, which immediately initiates a DCMF_Multicast that
proceeds in the background, does not have to be delivered until
after sub-interval B completes and vice versa. This allows sig-
nificant time for the DCMF_Multicast to complete, in the sense
that spikes have arrived at the target processors, during nor-
mal computation time. As long as a multisend completes in less
than the sub-interval computation time, the time taken to actu-
ally transmit spikes should not contribute to the run-time. Each
cell contains a list of target processors that need the spike gen-
erated by that cell and this list is determined during setup time
based on the distribution of cells on the processors. When a spike
is generated and DCMF_Multicast initiated, the count of sent

spikes in the sub-interval is incremented by the size of the list.
The DCMF_Multicast has enough space (16 bytes) in its header
packet to contain the integer source cell identifier, the current A or
B sub-interval, and double precision spiketime. Therefore, spike
compression is obviated and no packet assembly is needed on the
target processor.

Spike messages arriving at the target processor indirectly cause
a callback to an incoming spike function registered by NEURON.
This function increments the count of received spikes for the
appropriate sub-interval and the spike information is appended
to the sub-interval’s incoming spike buffer. At least every time
step, the buffered incoming spikes are moved into the priority
queue by using a hash table look-up of the source object for all
the network connection objects that have targets on that proces-
sor and enqueueing the source object at a time corresponding
to the spike time plus the minimum connection delay to those
targets. Just before starting a sub-interval’s computation phase,
the conservation of sent and received spikes is checked with
MPI_Allreduce and, if total number sent is not equal to the total
number received, a loop is entered which handles incoming spikes
and moves them into the priority queue until conservation is sat-
isfied according to MPI_Allreduce. When conservation of spikes
is satisfied computation continues.

A minor DCMF detail alluded to above is that a spike
message arriving at the target processor does not directly inter-
rupt computation to call the incoming spike function callback

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 3

Connection objects is returned, the source object with its minimum target

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

v

GID
t

7
...

t

Receiver

t

Processor List
4

79
...

7468

DCMF_Multicast

7468
79

4

Rank 2 Rank 4

7

Post-cells

Pre-cell
GID = 7

-80

-40

0

40

t
AA AB B

GID 7

GID 7

during B
interval

 B

 B

Buffer B

1 2

1.475
1.475

1.475

during A
interval
t = 1.475

t = 1.475

t <= 2

FIGURE 2 | How the Multisend method communicates a spike event by

cell 7 on rank 2, to target cells on rank 4. The illustration uses a maximum
integration interval of 1 ms each of which is divided into two sub-intervals, A
and B. During the A sub-interval, a cell on rank 2 fires, immediately starts the
multisend transfer, here DCMF_Multicast, which initiates the non-blocking
sends of the spike to all the ranks which have one or more cells, which are
targets and increments the send count for the next interval by the number of
destination ranks. The DCMF_Multicast returns immediately and
computation on rank 2 continues, overlapping the transfer of messages from
rank 2 to all the destination ranks indicated in the processor list for the source
cell. The message is the same for all the destination ranks and consists of
the spike initiation time, the source cell global identifier, and the next
sub-interval at the end of which the spike must be received by all the ranks.

When a message is received, e.g., by rank 4 in the illustration, the spike
information is appended to the appropriate buffer for the sub-interval of the
message, in this case Buffer B, and the receive count for that sub-interval is
incremented by 1. At the end of each sub-interval, a loop of MPI_Allreduce
operations is performed, so every rank knows the total number of messages
sent and received, until those totals are equal. Occasionally during the
sub-interval computation and certainly by the end of the MPI_Allreduce loop,
the spike information in the sub-interval buffer is transferred to the event
queue by doing a hash table lookup using the source cell identifier as key.
The source object for the one or more Network Connection objects certainly
exists in the table and that source object with its minimum target destination
time is placed on the queue. Note that due to the MPI_Allreduce loop,
synchronization of all ranks takes place at the end of each sub-interval.

registered by NEURON. Instead, the callbacks are made when
the DCMF_Messager_advance function is called and we do this
at least every time step and conservation iteration.

Figure 2 illustrates, for the generic Multisend method, the flow
of spike information from the cell where the spike was initiated to
the destination targets on another process.

For performance testing, MPI_Barrier was placed before the
MPI_Allreduce to distinguish between synchronization waiting
due to variation in the time to compute the integration interval
and the underlying latency of the MPI_Allreduce. The high-
resolution clock counter mentioned earlier was saved before the
MPI_Barrier and before and after the conservation loop. From
the beginning of an integration interval to the beginning of the
following integration interval, total clock counter intervals were
also saved for source object lookup using the hash table, for
enqueueing the source object, and for the time needed to initiate
a Multisend.

MPI POINT-TO-POINT
In the above algorithm, the call to DCMF_Multicast can be
replaced by a loop over destination target processors of individual
calls to non-blocking MPI_Isend. MPI_Isend on BG/P has startup
overheads such as resource allocation, C++ object construc-
tion, translation of virtual addresses to physical addresses, and
construction of the DMA descriptor. The DCMF_Multicast call

has lower overheads as it is a single call with a single startup to
allocate all resources, translate the address once, and construct
the descriptor once as well and then injecting multiple descrip-
tors by just changing the destination field in the descriptor. With
MPI_Isend, the polling of DCMF_Messager_advance within inte-
gration intervals and within the conservation loop is also replaced
by a loop which checks MPI_Iprobe to determine if a message
has arrived. If so, the spiketime, Global Neuron Identifier (GID),
and sub-interval identifier is extracted from a MPI_Recv received
message and the spiketime and GID appended to the proper
sub-interval buffer.

MULTISEND METHOD VARIATIONS
As will be seen, there can be high variance in computation and
spike exchange time for integration intervals within a simula-
tion and this leads to excessive load imbalance. This led us to
investigate several variations of the two-sub-interval Multisend
and MPI point-to-point methods.

An obvious variation is the use of a single sub-interval. In
this case, any spike generated in the last time step of the full
“minimum network connection delay integration interval” must
make its way to the target machines during the conservation loop.

Another variation is the use of a two-phase strategy for send-
ing spikes to target processors. Instead of sending an output
spike to all Nt target processors, it is sent to only a subset of

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

size ∼√Nt target processors. When a spike is received by one of
these target processors, that target processor initiates a Multisend
to a ∼√Nt size subset of the remaining target processors. In
particular, setup time determination of the spike distribution pat-
terns is accomplished in several steps. First, the list of Nt target
processors of an output cell (the phase-one sender) is partitioned
into subsets of size approximately equal to the integer square
root of Nt . Second, one of the target processors in each subset is
randomly selected (specifies the phase-one target processor list)
and the subset list for each phase-one target processor, is sent
to that target where it is saved as the phase-two target list of
the source object (phase-two sender) associated with the spec-
ified global cell identifier. Note that there is no attempt to use
torus distance between machines to select subsets or the phase-
two sender. Both phase-one and phase-two sending and receiving
is identical to that described above for the Multisend method
but note that conservation will not be satisfied until the phase-
two receives have completed. If there are two sub-intervals, we
have observed very much better load balance when a phase-two
send is not allowed in the sub-interval of the phase-one send but
is forced to take place in the following sub-interval (Incoming
spikes are buffered and after each DCMF_Messager_advance,
only the buffered spikes required to be received by the end of
the current integration sub-interval are enqueued). In our first
implementation of the two-phase method, we imagined that it
would be helpful to allow phase-two spikes more time to make
their way to the target processors and therefore, also tried initi-
ating phase-two sends as needed for spikes in both sub-interval
buffers. This resulted in a curious and very large load imbalance
where phase-two spike exchange initiation time would interact
with the sub-interval computation time so that, independently
of which interval initiated a phase-one send, significantly more
phase-two send initiation would occur in one interval rather than
the other. Thus, the time used by adjacent sub-intervals oscillated
by a large amount and some processors would have consistently
longer A sub-interval durations and the others would have con-
sistently longer B sub-interval durations. This problem did not
occur when phase-one and phase-two sends were initiated in
different sub-intervals.

The final variation is the use of the Record-Replay feature
of DCMF_Multicast. For normal DCMF_Multicast, every time a
cell fires, its target list gets copied into one of a few descriptors
whose head and tail pointers are then given to the DMA network
communication engine. For the Record-Replay method a sepa-
rate descriptor is maintained for each cell. Only when the cell
first generates a spike does the target list get copied to the unique
descriptor for the cell. Subsequent firing of the cell only involves
giving the head and tail pointers of the proper descriptor to the
DMA engine. Thus, initiation overhead is extremely low.

TEST MODEL
In order to focus on spike exchange performance we use the
artificial spiking cell network (Kumar et al., 2010) designed to
minimize computation time.

Each artificial spiking cell fires intrinsically with a uniform
random interval between 20 and 40 ms, i.e., average 30 Hz fir-
ing frequency. Computation time of the artificial spiking cell

is proportional to the number of input spikes to the cell and
number of generated spikes by the cell and consists, for each input
and generated spike, mostly of evaluation of an exponential and
logarithm function. The exponential evaluation determines the
value of the cell state variable, m, given the state value, m0 when
previously calculated at time, t0.

m = m∞ + (m0 −m∞)e−(t−t0)

where, the steady state m∞ is chosen so that the state variable
moves from its initial value, 0, to its firing trigger value, 1 in the
randomly chosen interval, ti.

m∞ = 1/(1− e−ti)

A self-notification event is added to the event queue with a deliv-
ery time of ti. A spike input modifies the interval to the next
output spike of the cell by discontinuously changing the m state
variable,

m← m+ w

where, w is the weight of the specific source to target network con-
nection that delivers the spike to the target cell. If m ≥ 1, the cell’s
self-notification event is moved to the current time. Otherwise,
evaluation of a logarithm function updates the (future) firing
time of the cell’s output spike,

tf = ln
m∞ −m

m∞ − 1

by moving the self-notification event to tf . When the self-
notification event is delivered, the cell generates an output spike
event, m is set to 0, and a new self-notification event is added to
the event queue with a new random delivery time, ti. Note that
excitatory events (positive weight) decrease the interval between
output spikes and inhibitory events (negative weight) increase the
interval between output spikes.

Networks consisted of N = 256 K–32 M cells (K = 1024,
M= K2, and k = 1000). Each cell is randomly connected to
approximately C= 1 k or 10 k other cells (the number of connec-
tions is drawn from a uniform random distribution ranging from
C−�C/2 to C +�C/2 where �C is typically 100). The connec-
tion delay is 1 ms. All connection weights are set to 0 in order
to maintain each cell’s random firing behavior and eliminate any
connection dependent response behavior that might arise due to
the size of the network or the specific random connectivity. The
0 weights do not affect, or at least do not increase, cell computa-
tion time. Since each cell is associated with a distinct statistically
independent but reproducible random generator, the specific ran-
dom network topology and specific random firing of each cell is
independent of the number of processors or distribution of cells
among the processors.

Simulation runs are for 200 ms. That is 200 integration inter-
vals for the Allgather spike exchange method and 200 integra-
tion intervals or 400 A-B integration sub-intervals depending on
whether the use of one or two sub-intervals was chosen for the
Multisend methods. Simulations were run on 8–128 K cores of the

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

BG/P. As 512 MB memory is available for each core and NEURON
has heavy weight network connections, not all combinations of N,
C, and number of cores could be used.

RESULTS
Figure 3 illustrates the spiking behavior of the model (with 256
cells) as a raster plot. Notice that because a cell certainly fires from
20 to 30 ms after its previous firing, there is an initial interval of
20 ms with no spikes followed by a subsequent 20 ms in which all
cells fire. The average frequency of the whole network oscillates
for a few intervals before settling to a constant rate.

Figure 4 shows how run-time varies with number of proces-
sors for the Allgather, two-phase two-sub-interval MPI_Isend,
two-phase two-sub-interval DCMF_Multicast, and one-phase
one-sub-interval Record-Replay methods. For each Multisend
method, the choice of one or two sub-intervals and one or two-
phases was determined by which gave the best performance. In
general, use of the DCMF_Multicast methods result in a three-
fold faster run-time than the MPI_Isend method. This can be
attributed to the relatively high overhead for short messages since
incoming sends need to be matched with posted receives as well
as the extra overhead of a large number of independent send and
receive calls. As expected, the Allgather method compares favor-
ably with the point-to-point methods when most machines need
most spikes. Thus, with 10 k connections per cell and 1 M cells,
the Allgather method is still best with this model at 32 K proces-
sors. With this size model and number of processors there is a cell
on rank 0 that needs to send spikes to 8791 other processors and
there is a cell that needs to send spikes to 8999 other processors.
For 1 k connections per cell both strong and weak scaling is close
to ideal over the range of processors explored for the multisend
methods.

Tables 1 and 2 present the run-time values plotted in Figure 4
along with the time that can be attributed to computation by

0 50 100 150 200

0

50

100

150

200

250

t (ms)

Cell ID

FIGURE 3 | Raster plot shows the spike time as short vertical lines

for each of 256 cells (Cell ID integers range from 0 to 255) for a

200 ms simulation. Cells spike randomly with a uniform distribution from
20 to 40 ms.

processor rank 0. Computation time is measured as the time
used from the beginning to the end of integration intervals. For
Multisend methods, spike communication overlaps with inte-
gration and all spike handling within the interval is charged to
computation time. That is, when an incoming spike arrives dur-
ing an integration interval, the computation time consists of the
time to: 1) determine the correct source object from the arriv-
ing integer global identifier, 2) enter it onto the priority queue
for delivery at the spike generation time plus minimum target
cell connection delay, 3) deliver the spike to the targets when the
delivery time matches the simulation time, 4) compute the change
in state of the artificial cell (evaluation of an exponential func-
tion), and 5) move the next firing time of the cell to a new value
(evaluation of a logarithm). Cell state dependent additions to the
computation time include the issuing of a new spike event if the
state is greater than 1. That is, the time required for the initia-
tion of non-blocking interprocessor communication which, for
the MPI_Isend method, involves iteration over the target proces-
sor list of the spiking cell. For the Allgather method, computation
time does not include the finding of the correct source object
or enqueuing that object; issuing a spike event merely adds the
spike information to a send buffer. The difference between run-
time and the computation time of rank 0 is the wait time for
global processor synchronization (measured by the time it takes
for an MPI_Barrier call to return), along with either the Allgather
exchange time or, for Multisend methods, the time it takes to ver-
ify that the number of spikes sent is equal to the number of spikes
received. Note that the handling of spikes arriving during the con-
servation step or Allgather (finding and enqueuing the source
object) is charged to exchange time instead of computation time.

To understand the difference between run-time and computa-
tion time it is useful to plot both for each integration interval (or
sub-interval). We first consider the Allgather method.

Figure 5 shows the number of processor clock ticks on rank
0 for each integration interval during a 200 ms simulation (One
million clock ticks is 1.17647 ms). Three different compressed
spike buffer sizes for the MPI_Allgather communication phase
on 16 K processors were used and are indicated in each panel. The
overall shape of the three simulations is governed by the 20–40 ms
uniform random interval for cell spiking. That is, no spikes for the
first 20 ms, followed by all cells spiking in the next 20 ms. Just after
40 ms, there is very little spiking since all cells are in their inter-
spike interval and so there are no input spikes to the cells. After
a few 20 ms cycles the whole network spiking frequency becomes
constant. A single spike requires two bytes of information: one
byte to specify the local identifier (there are 256 or fewer cells per
processor) and one byte to specify the dt step within the interval.
For these simulations, dt = 25 μs and the maximum integration
interval is 1 ms, so there are 40 dt steps per interval. Of course,
the computation time is independent of the MPI_Allgather send
buffer size and even the noise details are identical in the three pan-
els. There is very little noise at the adjacent interval level in the
computation time. Also, notice that there is a similar degree of
noise for total time per interval when the 40 spike send buffer is
large enough so that an MPI_Allgatherv communication phase to
send overflow spikes is never needed. Finally, notice that for the
40 spike send buffer, the difference between total time per interval

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

Strong scaling

1

2

4

8

16

32

0.5

1

2

4

8

16

32

0.5

K processors

1 k Conn/cell

2 M Cells

R
un

-t
im

e
(s

ec
)

Weak scaling

10 k Conn/cell

1/4 M cells

K processors

4 M cells

8 16 32 64 1288 16 32 64 128

8 16 32 64 128 8 16 32 64 128

R
un

-t
im

e
(s

ec
)

1 k Conn/cell

2 M cells 32 M cells

K processors

0

10

20

30

0

10

20

30

R
un

-t
im

e
(s

ec
)

10 k Conn/cell

1/4 M Cells

K processors

R
un

-t
im

e
(s

ec
)

Allgather

Record−Replay − One Sub-interval

MPI_ISend − Two-phase, Two sub-interval

DCMF_Multicast − Two-phase, Two sub-interval

FIGURE 4 | Strong and weak scaling performance for 1 k connections per

cell (left) and 10 k connections per cell (right). For strong scaling 2 M and
1/4 M cells were simulated, respectively. For weak scaling, the number of
cells was proportional to the number of processors used and ranged from 2 M
to 32 M cells and 1/4 M to 4 M cells, respectively. The number of processors
used ranged from 8 K to 128 K. Filled triangles show the performance (real

time seconds for a 200 ms simulation) for the Allgather method (one
sub-interval). Open triangles are for the MPI_Isend two sub-interval,
two-phase method. Filled circles are for the DCMF_Multicast two sub-interval,
two-phase method. Open circles are for the Record-Replay DCMF_Multicast
method with one sub-interval and one-phase. Note the log-log scale for strong
scaling with a dashed line indicating the ideal scaling slope of −1.

and computation time per interval is apparently constant for the
duration of the simulation. This is consistent with the observation
that the variation in number of input spikes handled by differ-
ent processors is fairly small. During the initial 20 ms, it is clear
that MPI_Allgather time doubles as the send buffer size doubles.
On the other hand, the smaller the send buffer, the more often
it is necessary to use MPI_Allgatherv to send overflow spikes.
Regardless, load balance among the processors is excellent with
the Allgather method.

In contrast, load imbalance within the DCMF_Multicast
method significantly increases the run-time as can be seen in
Figure 6 for 4 M cells with 1 k connections per cell on 16 K

processors and Figure 7 for 2 M cells with 10 k connections per
cell on 64 K processors. The thin black line in each figure panel
is the rank 0 computation time. The thick black line is the
average computation time for all processors. The dashed black
line is the maximum computation time for all processors and
in most of the panels is not visible due to its being hidden by
the red total interval time. The dashed line is visible only in
the two-phase, one-sub-interval panels. This processor computa-
tion load imbalance is largest for the one-phase, two-sub-interval
simulations where there is the largest variation in spikes gener-
ated per interval. That is, when a spike is generated, significant
time is needed to initialize a multisend. The number of spikes

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

Table 1 | Strong scaling performance of NEURON (seconds) on BG/P in Virtual Node mode for simulation runs lasting 200 ms.

Cores Cells Conn. MPI_Allgather MPI_ISend DCMF_Multicast Record-Replay

Comp Run Comp Run Comp Run Comp Run

8 K 2 M 1 k 6.76 7.84 22.3 24.9 7.30 7.74 6.30 6.99

16 K 2 M 1 k 4.01 5.44 11.5 13.5 3.67 4.00 3.17 3.62

32 K 2 M 1 k 3.00 4.69 5.90 7.40 1.84 2.07 1.58 1.91

64 K 2 M 1 k 2.98 5.05 2.87 4.20 0.957 1.25 0.808 1.03

128 K 2 M 1 k — — — — 0.497 0.64 0.417 0.608

8 K 1/4 M 10 k 5.23 5.64 18.5 21.5 6.50 6.90 5.81 6.58

16 K 1/4 M 10 k 3.16 3.78 11.1 14.6 3.76 4.18 3.35 4.07

32 K 1/4 M 10 k 2.04 3.11 6.37 9.37 2.04 2.39 1.79 2.64

64 K 1/4 M 10 k 1.58 3.47 6.19 6.99 1.36 1.42 0.948 1.77

128 K 1/4 M 10 k — — — — 0.573 0.799 0.494 1.39

Comp and Run columns are in seconds. The Conn column refers to the average number of connections per cell. The MPI_Allgather method used a buffer size of 10
compressed spikes. The MPI_Isend and DCMF_Multicast methods utilize the two-phase and two sub-interval variants. The Record-Replay method utilizes the one
sub-interval variant.

Table 2 | Weak scaling performance of NEURON (seconds) on BG/P in Virtual Node mode.

Cores Cells Conn. MPI_Allgather MPI_ISend DCMF_Multicast Record-Replay

Comp Run Comp Run Comp Run Comp Run

8 K 2 M 1 k 6.76 7.84 22.3 24.9 7.30 7.74 6.30 6.99

16 K 4 M 1 k 7.99 9.95 22.8 25.7 7.42 7.89 6.33 7.27

32 K 8 M 1 k 10.3 14.2 23.2 26.2 7.41 7.95 6.36 7.25

64 K 16 M 1 k 15.1 23.8 23.5 26.5 7.50 8.00 6.44 7.34

128 K 32 M 1 k — — 23.4 26.7 7.51 8.12 6.41 7.38

8 K 1/4 M 10 k 5.23 5.64 18.5 21.5 6.50 6.90 5.81 6.58

16 K 1/2 M 10 k 6.14 6.83 22.4 27.1 7.50 8.10 6.72 7.83

32 K 1 M 10 k 7.00 8.29 25.2 30.6 8.06 8.93 7.21 8.35

64 K 2 M 10 k 8.33 10.5 29.8 32.9 8.76 9.21 7.45 8.94

128 K 4 M 10 k 10.7 14.9 27.4 35.4 8.54 9.38 7.52 9.51

Meaning of the columns is the same as in Table 1.

per interval generated on the 256 cells of rank 0 over the last
50 ms of simulation ranges from 1 to 8 spikes per interval with
a consequent sending of 919–7799 spikes per interval to other
processors. This is in contrast to receiving 3954–4400 spikes per
interval, i.e., much smaller variance. Note that a single cell on
rank 0 sends spikes to at most 1049 processors and there is a
cell on some rank that sends spikes to 1129 distinct processors.
This may seem puzzling at first since no cell can receive spikes
from more than 1050 source cells but there is no constraint on
how many targets a single source cell can have. In this sim-
ulation, communication entirely overlapped with computation
and there was no interval in which the conservation test using
MPI_Allreduce did not succeed on the first iteration. An obvi-
ous strategy to reduce the spike output variance is to eliminate
the two sub-intervals in favor of a single interval, i.e., all spikes
generated in an interval must be received before the beginning
of the next interval. In this case the statistics for the last 50 ms
(50 intervals) of simulation are 3–16 spikes per interval gener-
ated, 2798–15,619 spikes per interval sent, and 8033–8719 spike

per interval received. Surprisingly, conservation again succeeded
always on the first iteration. The variance in number of cells that
fire cannot be reduced. However, the two-phase spike propaga-
tion method can be used to more evenly distribute the number
of spikes sent from each processor. In this case, since a gener-
ated spike is sent to about 30 other target processors and then
each receiving processor passes it along to about 30 other target
processors, there is a significant number of conservation itera-
tions needed for all the spikes in an interval to arrive before the
beginning of the next interval. That is indicated by the difference
between the dashed line and the red line in the two-phase, one-
sub-interval panels. In fact, two iterations are needed for a total of
three MPI_Allreduce calls per interval. Since the Multisend time
variation is now minimal with the two-phase method, the two-
sub-interval method can be used so that conservation succeeds
on the first MPI_Allreduce and that combination gives minimal
run-time.

The forgoing discussion of Figure 6 also applies to Figure 7
with 32 cells per processor, 64 K processors, and at most 10,050

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 8

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

Interval
duration
(MTick)

Interval
duration
(MTick)

Interval
duration
(MTick)

0 50 100 150 200
0

20

40

60

7.84 sec
6.76 sec

0 50 100 150 200
0

20

40

60

6.76 sec
7.57 sec

0 50 100 150 200
0

20

40

60

7.73 sec
6.78 sec

Interval number

Interval number

Interval number

Allgather method
2 M Cells 1 k conn/cell 8 K cores

10 spike buffer size

20 spike buffer size

40 spike buffer size

FIGURE 5 | Per interval performance for the Allgather method for three

different compressed spike buffer sizes which allow 10, 20, or 40 spikes

to be sent by MPI_Allgather before requiring the use of an

MPI_Allgatherv for sending the remaining overflow spikes. The spike
buffer sizes are indicated in the panels. Each simulation is for 2 M cells
with 1 k ±50 connections per cell on 8 K processors. Simulation time is
200 ms and each connection has a spike delay of 1 ms, i.e., 200 integration
intervals. The ordinate is millions of processor clock ticks with 1 tick =

1.17647 ns. Black lines are computation time per interval and includes
finding and enqueuing the Network Connection source object using the
received spike information. Red lines are total time per interval. The
difference is a measure of load imbalance and spike communication time.
Noise in the red line mostly reflects the extra time taken by overflow spike
communication using MPI_Allgatherv. Total computation and simulation time,
sum of the times for each interval, is indicated just to the right of
each line.

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 9

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

Interval
duration
(MTick)

Interval
duration
(MTick)

Interval
duration
(MTick)

Interval
duration
(MTick)

0 100 200 300 400
0

10

20

30

9.14 sec

7.05 sec

Interval number
0 50 100 150 200

0

20

40

60

8.86 sec

7.14 sec

Interval number

0 50 100 150 200
0

20

40

60

8.25 sec

7.07 sec

Interval number
0 100 200 300 400

0

10

20

30

7.84 sec
7.37 sec

Interval number

One sub-interval
One-phase

One sub-interval
Two-phase

Two sub-interval
Two-phase

Two sub-interval
One-phase

DCMF_Multicast method
4 M Cells 1 k conn/cell 16 K cores

FIGURE 6 | Comparison of per interval performance of the

DCMF_Multicast method using one (top) and two (bottom) phase

spike exchange, and one (left) and two (right) sub-intervals for

each maximum integration interval. For one sub-interval the number of
intervals for a 200 ms simulation is 200 and for two sub-intervals the
number is 400. Note that the ordinate scale is half for the two sub-interval
simulations and reflects the roughly half amount of time required needed
by each (sub)interval. Each simulation is for 4 M cells with 1 k ±50
connections per cell on 16 K processors. The red lines are the total time per
interval. The thin black lines are the computation time per interval for the

rank 0 processor. The thick black lines are the average computation
time for all ranks. The dashed black lines, visible only in the one interval,
two-phase simulation is the maximum computation time for all ranks.
Dashed black lines in the other three simulations are overlaid by the red
lines. Black lines include all spike handling time during an interval. The
difference between red and black lines is the MPI_Barrier time for
synchronization of all ranks along with the conservation loop involving
MPI_Allreduce and residual spike handling. Total computation and
simulation time for rank 0 is indicated just to the right of each red and thin
black line.

source connections per target cell. However, in Figure 7 the
corresponding statistics are: The cell on rank 0 that has the most
target processors sends spikes to 9476 processors; the greatest
fanout for any cell is 9787 processors; In the last 100 intervals
of the two-sub-interval one-phase simulation, 0–4 cells fire per
interval on rank 0, 0–37,175 spikes are sent, and 4703–5271 spikes
are received. In the last 50 intervals of the one-sub-interval one-
phase simulation, 0–5 cells fire per interval on rank 0, 0–46,489
spikes are sent, and 9577–10,386 spikes are received. In both sim-
ulations, no conservation iterations are needed. Just as in the cor-
responding simulation for 1 k connections per cell, the two-phase,
one-sub-interval method requires two conservation iterations per
interval. Again, the two-phase, two-sub-interval method is best
with its maximization of load balance and minimization of con-
servation iterations. We have no definitive explanation for the
occasional very long computation times for a single interval on
some processor (the dashed black line is hidden by the red line on
the plots). However, those outliers do not significantly affect the
total run-time.

Load-imbalance due to the variance of cell firing can also
be reduced by avoiding DCMF_Multicast initiation overhead
through the use of the Record-Replay feature for DCMF_Multicast.
When a cell fires for the first time, the Record operation copies the
list of target ranks to a message descriptor and stores each message
descriptor in a separate buffer. Subsequent firing of that cell uses
the Replay operation to merely set the head and tail pointers in the
DMA descriptor to that buffer, avoiding the overhead of copying
the list of target ranks.

Figure 8 uses the Record-Replay feature to show time per
interval results for one- and two-sub-interval simulations cor-
responding to the one-phase simulations of Figures 6 and 7.
Notice that for the first 40 ms, noise is very similar to the nor-
mal DCMF_Multicast method since all cells fire for the first
time and so are using the Record operation which copies the
target rank list. For subsequent firing, the DCMF_Multicast
Replay initialization is negligible and load balance of all pro-
cessors within each interval is excellent, i.e., compare the
average computation time per interval (thick black line) to

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

Interval
duration
(MTick)

Interval
duration
(MTick)

One sub-interval
One-phase

0 100 200 300 400
0

10

20

30

8.76 sec
9.21 sec

Interval number

Interval
duration
(MTick)

Interval
duration
(MTick)

0 100 200 300 400
0

10

20

30

40

50

17.89 sec

8.16 sec

Interval number

128

0 50 100 150 200
0

20

40

60

80

100

14.90 sec

8.18 sec

Interval number

181

0 50 100 150 200
0

20

40

60

9.77 sec
8.64 sec

Interval number

One sub-interval
Two-phase

Two sub-interval
Two-phase

Two sub-interval
One-phase

DCMF_Multicast method
2 M Cells 10 k conn/cell 64 K cores

FIGURE 7 | Like Figure 6, but for 10 k ±50 connections per cell, 2 M cells and 64 K processors. The two large intervals in the one-phase simulation that do
not fit on the graph are labeled with their interval times in MTicks.

the maximum computation time per interval for all ranks
(thin dashed black line). For the one-sub-interval simulations,
the conservation iterations are 0–14 and 2–231 for 1 k and
10 k connections per cell, respectively. In contrast, the con-
servation iterations for the two-sub-interval simulations are
0–554 and 0–1025, respectively. In tests of the Record-Replay
method we have found it important to frequently poll for
incoming messages with calls to DCMF_Messager_advance and
presently do that every time step, every 50th synaptic event,
and each conservation iteration. It is also done in a loop
while a message descriptor is in use but, since there is a sep-
arate descriptor for each cell with this method, that is irrele-
vant. The excessive number of conservation iterations for the
two-sub-interval simulations—which should be fewer than for
the one-sub-interval simulations given, the guarantee of an
entire sub-interval of computation between initiation of a mes-
sage and its receive completion, seems to suggest a poten-
tially fixable problem either in our use of Record-Replay or
its internal implementation. Nevertheless, the one-sub-interval
Record-Replay method has slightly better performance than the
two-sub-interval two-phase DCMF_Multicast method for this
model. Also, Record-Replay would be slightly more advanta-
geous when the Record operation is amortized over a longer
simulation time.

It is clear from the simulations presented so far that optimum
performance requires that the number of synaptic input events
within an integration interval be similar for all ranks. In practice,
load balance may be impossible to achieve when small subsets
of cells dynamically undergo increased activity and their target
cells consist of a small fraction of the total number of cells. In
order to examine the effect on load balance of increased burst
activity within subnets, the network was divided into Ng groups
of N/Ng cells with contiguous GIDs within each group succes-
sively exhibiting increased firing rate. Figure 9 illustrates this with
a raster plot for a network with Ng = 8, N= 256 cells, and there-
fore, a group size of 32 cells. Each group successively has a five
fold increase in firing rate over an interval of 50 ms.

Table 3 shows the computation and run-time for Ng = 8
simulations of 4 M cells with 1 k connections per cell on 16 K
processors with and without five-fold increase in burst firing rate
within successive groups. The table allows comparison between
three distributions of GIDs on the processors and two connection
topologies. The “random” connection topology is that used in
the previous figures. The “adjacent” connection topology means
that each target cell is connected to its 1000 nearest neighbor cells
(in terms of GID values). The “round robin” distribution is that
used in the previous figures. The “random shuffle” distribution
means that cells are randomly distributed among the ranks with

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

Interval
duration

Interval
duration

0 100 200 300 400
0

10

20

30

40

50

10.85 sec

7.36 sec

Interval number

0 50 100 150 200
0

20

40

60

7.34 sec
6.44 sec

Interval number

141

Interval
duration
(MTick)

Interval
duration
(MTick)

0 100 200 300 400
0

10

20

30

6.42 sec

8.48 sec

Interval number

127

0 50 100 150 200
0

20

40

60

80

100

8.94 sec
7.45 sec

Interval number

182

One sub-interval

One sub-interval Two sub-interval

Two sub-interval

(MTick) (MTick)

Record−Replay method
64 K cores

16 M Cells
1 k conn/cell

16 M Cells
1 k conn/cell

2 M Cells
10 k conn/cell

2 M Cells
10 k conn/cell

FIGURE 8 | Record-Replay per interval performance for 1 k (top) and 10 k

(bottom) connections per cell on 64 K processors (16 M and 2 M cells on

top and bottom, respectively). The style for the top and bottom are the

same as the one-phase simulations (top) of Figures 6 and 7, respectively.
The three large intervals that do not fit on the graph are labeled with their
interval times in MTicks.

each rank having the same number of cells. The “consecutive” dis-
tribution means that cells with GID 0–255 are on rank 0, cells
with GID 256–511 are on rank 1, etc. Note that with the con-
secutive distribution and adjacent connections, cell firing needs
to be communicated to only five other ranks. Furthermore, since
all delays are the same, then, when the source object on the target
machine reaches the head of the queue, delivery of the event to the
256 target cells on a host takes place with no need for further delay
on the queue. This is the reason for the much smaller computa-
tion and run-times in the absence of bursting. Here, the number
of arriving events per interval for each rank is just five times
greater than the average number of output events per rank and
so the time for finding the source object and managing the source
events on the priority queue has become negligible compared to
the computation time involved in the over 200-fold greater num-
ber of synaptic events. On the other hand, bursting ruins the load
balance since successive groups of ∼2 K ranks are receiving five
times the number of spikes than each of the remaining ranks
in the 16 K set. For this simulation, the consequence is that the
run-time performance is similar to the other GID distribution
methods.

DISCUSSION
All the Multisend methods we tested exhibit complete over-
lap of communication within the computation interval except
for Record-Replay with 10 k connections per cell. In particu-
lar, the MPI_Isend implementation of multisend also exhibits
complete overlap. The difference between computation time and
total time is almost entirely due to load imbalance with respect
to the number of incoming messages per processor within inte-
gration intervals. Load imbalance due to high variance of cell
firing within an interval is greatly alleviated, either through the
use of Record-Replay operations of DCMF_Multicast, or with a
two-phase message propagation strategy which uses ∼ √Nt pro-
cessors to send∼ √Nt messages to the Nt target processors of the
spiking cell.

The fact that overlap is complete, even for one-sub-interval
Multisend methods with the largest number of processors used,
seems a particularly impressive property of the BG/P communi-
cation system. That is, a message sent during a single time step
to 1000 processors distributed randomly over the machine topol-
ogy, reaches all its destinations before the beginning of the next
time step. On even the largest partition sizes used, there is no

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

0 50 100 150 200
t (ms)

0

50

100

150

200

250

Cell ID

FIGURE 9 | Raster plot of 256 cells with 32 contiguous cell group size.

Cells normally spike randomly with the uniform distribution from 20 to
40 ms. However, each group successively increases its spiking rate by a
factor of 5 for 50 ms. Note that the seeming group dead time when the
group returns to its normal firing rate where each cell has minimum interval
of 20 ms since its last firing. cf. Figure 3.

reason yet to consider more sophisticated distribution schemes
that would attempt to minimize the total message propagation
distance.

Although MPI_Allgather is a blocking collective, overlap
between computation and spike exchange may be possible

through the use of threads. With two sub-intervals for each
minimum network connection delay interval, a high priority
spike exchange thread would initiate MPI_Allgather at the end
of one sub-interval. While the spike exchange thread was waiting
for completion of the MPI_Allgather, a low priority compu-
tation thread could continue until the end of the other sub-
interval. During computation, completion of the MPI_Allgather
would occasionally initiate an MPI_Allgatherv asynchronously
in the spike exchange thread within that other sub-interval.
Finally, the computation thread would also wait for comple-
tion of the MPI_Allgather(v) at which point, spike exchange
would be initiated for the spikes generated during the other
sub-interval. Unfortunately, this strategy cannot be tested on the
BG/P since only one thread per core is allowed. For machines
without the single thread per core limitation, it would be an
experimental question whether, during MPI_Allgather process-
ing/communication, the CPU is actually available for com-
putation and whether the savings would be greater than the
cost of thread switching. In any case, the rate of increase
in MPI_Allgather time as the number of processors increases,
means that MPI_Allgather time will eventually dominate
computation time.

An alternative to repeated use of MPI_Allreduce within a
conservation loop is to explicitly receive the count of spikes
that should arrive at each individual target processor by using
MPI_Reduce_scatter (Ananthanarayanan and Modha, 2007) and
then calling MPI_Recv that many times to receive all the messages
destined for that target processor (or, for the DCMF_Multicast

Table 3 | Uniform and burst firing performance for random and adjacent connectivity, three cell distribution algorithms, and three spike

exchange methods.

Method Random Adjacent

Noburst Burst Noburst Burst

Comp Run Comp Run Comp Run Comp Run

ROUND-ROBIN

Multisend 7.05 9.14 10.18 12.74 7.96 10.08 11.61 14.21

two-phase 7.37 7.84 10.56 11.16 8.27 8.74 12.01 12.62

replay 6.41 7.04 9.06 9.72 7.18 8.01 10.32 11.31

CONSECUTIVE

Multisend 7.16 9.61 11.05 20.75 1.95 3.91 3.32 12.11

two-phase 7.39 7.86 10.61 11.29 1.95 3.90 3.31 12.10

replay 6.46 7.55 8.57 14.65 1.93 3.23 3.27 10.98

RANDOM SHUFFLE

Multisend 7.08 9.19 10.18 12.75 7.14 9.20 9.74 13.42

two-phase 7.36 7.84 10.55 11.16 7.37 7.83 10.06 12.07

replay 6.23 7.27 8.98 9.75 6.36 7.26 8.38 11.36

All simulations used 4 M cells, 1 k ±50 connections per cell, and 16 K processors. Burst group size is 1/2 M cells with contiguous GIDs. “Noburst” columns
mean that all cells fire with a uniform random distribution from 20 to 40 ms. “Burst” columns mean that groups of 1/2 M cells with contiguous GID’s
successively fire at five times their normal rate in 50 ms periods (see Figure 9). “Random” columns mean that each cell receives input from a 1 k random
source GIDs. “Adjacent” columns mean that each cell i , receives input from cells with GID’s from i−500 to i+500 (but not cell i). The “round-robin”
rows mean that the cell i is located on rank i modulo nhost. The “consecutive” rows mean that cell i is located on rank integer(i /nhost). The “random
shuffle” rows mean that the cells are distributed randomly on the ranks but with each rank having the same number of cells. The “Multisend” method
refers to DCMF_Multicast with one-phase and two sub-intervals. The “two-phase” method refers to DCMF_Multicast with two sub-intervals and the two-
phase variant. The “replay” method refers to the Record-Replay one sub-interval variant of the DCMF_Multicast method. Computation and run-times are in
seconds.

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 13

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

method, entering a DCMF_Messager_advance loop until that
many messages arrive). Since conservation loop timing results
show that the time charged to the MPI_Allreduce portion,
and indeed, usually the entire conservation loop itself, is neg-
ligible on up to 128 K processors, we have not compared
MPI_Reduce_scatter to MPI_Allreduce performance. Note that
the use of MPI_Reduce_scatter would vitiate some of the load
balance benefits we saw with the Record-Replay method. That is,
a spike generated on the source processor would require an iter-
ation over the processor target list of the source cell in order to
increment the count of sent spikes to those processors and thus
increase dynamic load imbalance.

The excessive number of conservation iterations for Record-
Replay with 10 k connections per cell is most likely attributable to
the fact that the current implementation of Record-Replay only
permits messages for one cell’s spikes to be sent out at a time.
A call to DCMF_Messager_advance after the current cell’s spikes
have been sent out is needed to trigger the data transfer for the
next cell. In the future, we plan to explore techniques that can
accommodate cell spike data transfer in the same way as the stan-
dard DCMF_Multicast implementation, and that should further
improve the performance of the Record-Replay technique.

Our first weak scaling run attempted on 128 K processors
(32 K nodes) did not succeed because 184 of the processes raised
a “can’t open File” error on the Hoc file specified at launch.
Since the expected boot time of that size partition is 12 min-
utes, a minimal test run which exits immediately uses at least
26,000 CPU hours. In fact, the job waited until it timed out
after an hour thus wasting almost 140 k CPU hours. To scale-
up to larger processor numbers it was necessary to avoid the
huge numbers of replicated reads by having rank 0 read the Hoc
file and broadcast it to all ranks, which then execute the buffer
contents.

There exists a DCMF_Multicast operation which can send dif-
ferent data to its list of targets. This would allow very significant
reduction in the lookup time on the destination processor for
lookup of the source object associated with the source GID. That
is, instead of a hash table lookup, the index into a list of source
objects on the destination processor would be sufficient. Prior to a
simulation run, the proper destination list indices would be stored
along with each cell’s list of destination processors. This optimiza-
tion is used, for example, by MUSIC (Djurfeldt et al., 2010) in
its spike exchange algorithm. However, this optimization may be
vitiated by the loss of an existing optimization that we use where
the user portion of the message is empty and the (i, ts) informa-
tion is encoded in the header so only a single packet arrives—thus,
software overhead of waiting for and assembling the packets is
avoided.

The Table 1 strong scaling results on 8–32 K processors for the
1/4 M cell, 10 k connections per cell simulations are from two to
three times faster than the results shown in Table 2 of Kumar et al.
(2010). The largest part of the improvement for DCMF_Multicast
comes from the use of two-phase method, and for Record-Replay,
the use of DCMF_Messager_advance for each time step.

The size of networks used in this study has been limited due to
the memory needed by NEURON’s network connection objects.

These objects use reciprocal pointers to their source and target
objects as well as to wrapper objects at the interpreter level. Those
pointers are required only for purposes of maintaining consis-
tency when the user modifies a cell or eliminates a connection
and the wrapper objects themselves are only needed transiently
during setup time. NEURON’s use of double precision delay and
weights for each connection is another place where the mem-
ory needed by connections can be reduced. There exist artificial
spiking cell simulators such as NEST whose network connection
memory footprint has been minimized (Kunkel et al., 2009). In
those simulators, networks with many more cells on the same
number of processors could be simulated and it would be inter-
esting to see if the Multisend method’s complete overlap we see
between computation and spike communication would be main-
tained in those environments. That would be expected on the
grounds of the almost linear relation between computation time
and number of cells. And with more cells, spike input balance is
even less of a problem.

Record-Replay and the two-phase Multisend method solve the
load balance problems due to high processor variance in cell
firing within an interval. However, it is clear that load balance
in terms of spike input to the sets of cells on processors will
become a much more vexing issue with more realistic neural
networks where populations of cells having a large dynamic spik-
ing range have multiple projections to other populations. That
is, input activity is generally also correlated in time and space.
For example, Ananthanarayanan et al. (2009) report that for their
extremely large-scale simulations (0.9·109 cells, 0.9·1013 synapses,
144 K cores, and using MPI_Isend) 60–90% of the time was con-
sumed in an MPI_Barrier due to the variability in firing rate.
Our results supply strong evidence that one should neglect efforts
to minimize spike exchange time through any kind of match-
ing of populations to subsets of nearby processors in favor of
promoting load balance by distributing these populations over
as wide a number of processors as possible. Thus, networks in
which connections are to nearest neighbor cells and all cells fire
uniformly, give only a two-fold performance improvement when
this connection topology is exploited through the use of plac-
ing neighbor cell sets on the minimal set of adjacent processors.
But this performance improvement disappears as soon as cell
groups begin to burst. Thus, in the same way that the very sim-
ple Allgather method provides a baseline for comparison with
alternative spike exchange methods, the simple random distri-
bution of cells evenly on all processors provides a performance
baseline for comparison with more sophisticated distribution
algorithms.

ACKNOWLEDGMENTS
Research supported by NINDS grant NS11613 and The Blue
Brain Project. Philip Heidelberger, Dong Chen, and Gabor Dozsa
of IBM, Yorktown, gave us invaluable advice on the use of
DCMF_Multicast. The research presented in this paper used
resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory, which is supported by the Office
of Science of the US Department of Energy under contract
DE-AC02-06CH11357.

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 14

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

Hines et al. Neuronal spike exchange

REFERENCES
Ananthanarayanan, R., Esser, S. K.,

Simon, H. D., and Modha, D. S.
(2009). “The cat is out of the bag: co-
rtical simulations with 109 neurons
and 1013 synapses”, in Supercomput-
ing 09: Proceedings of the ACM/ IEEE
SC2009 Conference on High Perfor-
mance Networking and Computing,
Portland, OR.

Ananthanarayanan, R., and Modha,
D. S. (2007). “Anatomy of a cor-
tical simulator”, in Supercomputing
07: Proceedings of the ACM/IEEE
SC2007 Conference on High Perfor-
mance Networking and Computing,
Reno, NV.

Djurfeldt, M., Hjorth, J., Eppler, J. M.,
Dudani, N., Helias, M., Potjans,
T. C., Bhalla, U. S., Diesmann, M.,
Kotaleski, J. H., and Ekeberg, O.
(2010). Run-time interoperability
between neuronal network simula-
torsbasedontheMUSICframework.
Neuroinformatics 8, 43–60.

Djurfeldt, M., Johansson, C., Ekeberg,
C., Rehn, M., Lundqvist, M., and
Lansner, A. (2005). Massively par-
allel simulation of brain-scale neu-
ronal network models. Technical
Report TRITA-NA-P0513. Stock-

holm: School of Computer Science
and Communication.

Eppler, J. M., Plesser, H. E., Morrison,
A., Diesmann, M., and Gewaltig,
M.-O. (2007). Multithreaded and
distributed simulation of large bio-
logical neuronal networks. Proceed-
ings of European PVM/MPI 2007,
Springer LNCS 4757, 391–392.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (Neural Simulation
Tool). Scholarpedia 2, 1430.

Hereld, M., Stevens, R. L., Teller, J., and
van Drongelen, W. (2005). Large
neural simulations on large parallel
computers. IJBEM 7, 44–46.

Hines, M. L., and Carnevale, N. T.
(1997). The NEURON simulation
environment. Neural Comput. 9,
1179–1209.

Kumar, S., Heidelberger, P., Chen, D.,
and Hines, M. (2010). “Optimization
of applications with non-blocking
neighborhood collectives via mul-
tisends on the Blue Gene/P super-
computer”, in 24th IEEE Interna-
tional Symposium on Parallel and
Distributed Processing. doi: 10.1109/
IPDPS.2010.5470407.

Kumar, S., et al. (2008). “The deep
computing messaging framework:

generalized scalable message
passing on the Blue Gene/P Super-
computer”, in The 22nd ACM
International Conference on
Supercomputing (ICS), Island of
Kos, Greece.

Kunkel, S., Potjans, T. C., Morrison,
A., and Diesmann, M. (2009).
Simulating macroscale brain cir-
cuits with microscale resolution.
Frontiers in Neuroinformatics. Con-
ference Abstract: 2nd INCF Congress
of Neuroinformatics. doi: 10.3389/
conf.neuro.11.2009.08.044.

Markram, H. (2006). The blue brain
project. Nat. Rev. Neurosci. 7,
153–160.

Migliore, M., Cannia, C., Lytton, W. W.,
Markram, H., and Hines, M. L.
(2006). Parallel network simula-
tions with NEURON. J. Comput.
Neurosci. 21, 119–129.

Tam, A., and Wang, C. (2000). “Efficient
scheduling of complete exchange
on clusters”, in 13th International
Conference on Parallel and Distri-
buted Computing Systems (PDCS
2000), Las Vegas (August, 2000).

Wilson, E. C., Goodman, P. H., and
Harris,F.C.(2001).“Implementation
of a biologically realistic parallel

neocortical-neural network simula-
tor”, in Proceedings of the Tenth SIAM
Conference on Parallel Processing for
Scientific Computing, March 12–14,
2001 Portsmouth, Virginia.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
can be construed as a potential conflict
of interest.

Received: 19 May 2011; accepted: 27
October 2011; published online: 18
November 2011.
Citation: Hines M, Kumar S and
Schürmann F (2011) Comparison
of neuronal spike exchange methods
on a Blue Gene/P supercomputer. Front.
Comput. Neurosci. 5:49. doi: 10.3389/
fncom.2011.00049
Copyright © 2011 Hines, Kumar and
Schürmann. This is an open-access arti-
cle subject to a non-exclusive license
between the authors and Frontiers Media
SA, which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and other Frontiers conditions are
complied with.

Frontiers in Computational Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 49 | 15

http://dx.doi.org/10.3389/fncom.2011.00049
http://dx.doi.org/10.3389/fncom.2011.00049
http://dx.doi.org/10.3389/fncom.2011.00049
http://dx.doi.org/10.3389/fncom.2011.00049
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive

	Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer
	Introduction
	Methods
	Allgather
	Multisend
	MPI point-to-point
	Multisend method variations
	Test model

	Results
	Discussion
	Acknowledgments
	References

