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in the context of sensory systems, it has also been widely used in 
the context of higher brain regions (e.g., hippocampus – Barbieri 
et al., 2004; Eden et al., 2004), and may therefore be relevant across 
multiple physiological levels.

Given the well developed theory of Bayesian decoding, an 
intriguing follow-up question relates to the properties of optimal 
encoding methods, namely determining the properties of a neural 
population in the sensory layer that optimizes performance, subject 
to physiological constraints. Sensory neurons are often character-
ized by their tuning functions (sometimes referred to as “tuning 
curves” – e.g., Korte and Rauschecker, 1993; Anderson et al., 2000; 
Brenner et al., 2000; Dragoi et  al., 2000; Harper and McAlpine, 
2004), which quantify the relationship between an external stimulus 
and the evoked activities of each neuron, typically measured by the 
probability, or frequency, of emitting spikes. From an ecological 
point of view it is speculated that optimal tuning functions are not 
universal, but rather adapt themselves to the specific context and 
to the statistical nature of the environment. The neurophysiologi-
cal literature offers much experimental evidence for neurons in 
many areas, which respond to changes in the statistical attributes 
of stimuli by modulating their response properties (e.g., Pettet and 
Gilbert, 1992; Brenner et al., 2000; Dragoi et al., 2000; Dean et al., 
2005; Hosoya et al., 2005).

Theoretical studies of optimal tuning functions hinge on the 
notion of optimality, which requires the definition of an appro-
priate cost function. Arguably, a natural cost function is some 
measure of distance between the true and the estimated envi-
ronmental state. In this context a reasonable choice is the mean 
squared error (MSE), or the average Euclidean distance between 
the two signals. While other distance measures can be envisaged, 

Introduction
Behaving organisms often exhibit optimal, or nearly optimal per-
formance (e.g., Jacobs, 1999; Ernst and Banks, 2002; Jacobs et al., 
2009), despite physiological constraints and noise which is inher-
ent to both the environment and the neural activity. Experimental 
work performed over the past few years has suggested that one 
means by which such effective behavior is achieved is through 
adaptation to the environment occurring across multiple time 
scales (e.g., milliseconds – Wang et al., 2005; seconds – Dean et al., 
2008; minutes – Pettet and Gilbert, 1992). A major challenge per-
taining to such results relates to the construction of a coherent 
theoretical framework within which the efficacy of such adaptation 
processes can be motivated and assessed. We believe that a care-
fully articulated reverse engineering perspective (see Marom et al., 
2009), based on the utilization of well founded engineering prin-
ciples, can yield significant insight about these phenomena. More 
specifically, such approaches can explain how the environmental 
state may be effectively estimated from the neural spike trains 
and from prior knowledge through a process of neural decoding. 
Within this context, many psychophysical and neurophysiologi-
cal results can be explained by Bayesian models, suggesting that 
organisms may indeed be employing Bayesian calculations in their 
decision-making (Knill and Richards, 1996; Knill and Pouget, 2004; 
Rao, 2004; Ma et al., 2006). Optimal real-time decoding methods 
have been proposed over the past decade for static (Zemel et al., 
1998; Deneve et al., 2001; Pouget et al., 2002, 2003; Averbeck et al., 
2006; Ma et al., 2006; Beck et al., 2008) and dynamic (Twum-Danso 
and Brockett, 2001; Eden et al., 2004; Beck and Pouget, 2007; Huys 
et al., 2007; Pitkow et al., 2007; Deneve, 2008; Bobrowski et al., 
2009) environments. While much of this work has been performed 
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and should indeed be studied in appropriate contexts, there are 
many advantages to using this specific measure, not least of which 
is its relative analytic tractability. The optimality criterion then 
becomes minimal MSE (MMSE), where it is assumed that the 
spike trains generated by the sensory cells are later processed by 
an optimal decoder. Unfortunately, even in this relatively simple 
setting, analytical examination of the dependence of the MMSE 
on the tuning functions is infeasible in the general case, and many 
researchers draw conclusions about optimality of tuning functions 
from lower bounds on the MSE, especially those which make use 
of Fisher information (Seung and Sompolinsky, 1993; Pouget et al., 
1999; Zhang and Sejnowski, 1999; Eurich et al., 2000; Harper and 
McAlpine, 2004; Johnson and Ray, 2004; Seriès et al., 2004; Lánskỳ 
and Greenwood, 2005; Brown and Bäcker, 2006; Toyoizumi et al., 
2006). Unfortunately, in many cases reaching conclusions based 
on, often loose, bounds can lead to very misleading results, which 
stand in distinct opposition to predictions arising from analyz-
ing the MMSE itself (see Discussion). Along different lines, other 
researchers consider information theoretic quantities (Brunel and 
Nadal, 1998; Panzeri et al., 1999; McDonnell and Stocks, 2008; 
Geisler et al., 2009; Nikitin et al., 2009), attempting to determine 
conditions under which the maximal amount of information is 
conveyed, subject to various constraints. However, a direct relation 
(as opposed to bounds) between such quantities and the MSE has 
only been established in very specific situations (Duncan, 1970; 
Guo et al., 2005) and does not hold in general. As far as we aware, 
Brunel and Nadal (1998) were the first to obtain an optimal width 
in the MMSE sense, for triangular tuning functions in a special case 
where the entire population emits a single spike. Interestingly, they 
showed that the error based result differs from the one based on 
mutual information, although a qualitative similarity was noted. 
Other notable exceptions are the work of Bethge et al. (2002, 2003), 
who employed Monte Carlo simulations in order to assess the 
MMSE directly in specific scenarios, and the work of Bobrowski 
et al. (2009), who computed the MMSE analytically to find opti-
mal tuning functions in a concrete setting. We note that in the 
context of two-dimensional rate-based coding, MMSE-optimal 
receptive fields were investigated by Liu et al. (2009), who focused 
on the relationship between ganglion cell mosaics and receptive 
field shapes irregularities.

In this paper we directly address the issue of MMSE-optimal 
tuning functions, using well-justified approximations which lead 
to explicit analytic results. We examine various scenarios, includ-
ing some that were not previously treated, and make novel pre-
dictions that can be tested experimentally. We begin in Section 
“Fisher-Optimal Width” by analyzing optimality in terms of Fisher 
information and demonstrate why drawing qualitative and quan-
titative conclusions based on bounds can be misleading. In fact, 
bound-based predictions can sometimes be diametrically opposed 
to the predictions based on the true error. This notion is of great 
importance due to the very prevalent use of approximations and 
bounds on the true error. We then move in Section “MMSE-Based 
Optimal Width” to discuss the implications of directly minimizing 
the MMSE, focusing on the effects of noise and multimodality. The 
advantages of dynamic real-time modification of tuning function 
properties are analyzed in Section “Dynamic Optimal Width”, and 
concrete experimental predictions are made. In fact, some of these 

predictions have already been observed in existing experimental 
data. Specifically, we predict that neuronal tuning functions pos-
sess an optimal width, which increases with prior uncertainty 
and environmental noise, and decreases with the decoding time 
window. The results of the paper are summarized and discussed 
in Section “Discussion”, and the mathematical details appear in 
Section “Materials and Methods”.

Materials and Methods
We investigate the problem of neural encoding and decoding in 
a static environment. More formally, consider an environment 
described by a random variable X, taking values in some space χ, 
and characterized by a probability density function p(·) (in order 
to simplify notation, we refrain from indexing probability distri-
butions with the corresponding random variable, e.g., p

X
(·), as the 

random variable will be clear from the context). In general, X may 
represent a stochastic dynamic process (e.g., Bobrowski et al., 2009) 
but we limit ourselves in this study to the static case. In typical cases 
X may be a random vector, e.g., the spatial location of an object, the 
frequency and intensity of a sound and so on. More generally, in 
the case of neurons in associative cortical regions, X can represent 
more abstract quantities. Suppose that X is sensed by a population 
of M sensory neurons which emit spike trains corresponding to 
the counting processes Nt t t

MN N= …{ , , },1  where Nt
m  represents the 

number of spikes emitted by cell m up to time t. Denote by λ
m
(·) the 

tuning function of the m-th sensory cell. We further assume that, 
given the input, these spike trains are conditionally independent 
Poisson processes, namely

N X X t m Mt
m

m∼ ( )( ) = …Pois λ , ( , , ),1

implying that P N n X e X t nt
m X t

m
nm( ) ( ( ) ) / !( )= = −| λ λ  (in a more gen-

eral case of dynamic tuning functions {λ
m
(t, ·)}, with which we 

deal later, the parameter of the Poisson distribution is ∫0
t s X dsλm( , )  

– see Bobrowski et al., 2009). Following this encoding process, 
the goal of an optimal decoder is to find the best reconstruc-
tion of the input X, based on observations of the M spike trains 
N

t
. In this paper we focus on the converse problem, namely the 

selection of tuning functions for encoding, that facilitate optimal 
decoding of X.

We formulate our results within a Bayesian setting, where it is 
assumed that the input signal X is drawn from some prior prob-
ability density function (pdf) p(·), and the task is to estimate the 
true state X, based on the prior distribution and the spike trains N

t
 

observed up to time t. For any estimator X̂ we consider the mean 
squared error MSE(X̂) = E[(X - X̂)]2, where the expectation is 
taken over both the observations N

t
 and the state X. It is well known 

that X̂opt, the estimator minimizing the MSE, is given by the con-
ditional mean E[X | N

t
] (e.g., Van Trees, 1968), which depends on 

the parameters defining the tuning functions {λ
m
(x)}.

As a specific example, assuming that the tuning functions are 
Gaussians with centers c

1
, …, c

M
 and widths α

1
, …, α

M
, the estima-

tor X̂ and the corresponding MMSE, depend on  = (c
1
, …, c

M
, α

1
, 

…, α
M

). The optimal values of the parameters are then given by a 
further minimization process,

 


opt MMSE( )= arg min{ }.
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observations N
t
 and the state X, in contrast to the non-Bayesian 

case where the unknown state X is deterministic. Note that in the 
asymptotic limit, t → ∞, the prior term, I(p(x)), can be neglected 
with respect to the expected Fisher information, so that the asymp-
totic BCRB is 1/E[J(X)].

The second term in the denominator of Eq. 6 is independent 
of the tuning functions, and in the case of a univariate Gaussian 
prior is given by

I( ( )) .p x
x x

x x

=
−( )










=E

µ
σ σ

2

4 2

1

In our setting, the expected value of the population’s Fisher 
information is given by

E J ( )X

t
e

c

m m x

x x m

m x

m x

[ ]

=
+( ) (
−( )
+( )

λ
α α σ

σ σ +

−

max /

µ

α σ

α

2

2 22

2 2 2
2 2 2

5 )) + ( )



∑ αm m x

m

M

c2 2

1

−µ
=

	

(7)

(see Section “Expectation of Population Fisher Information” in 
Appendix).

In the multi-dimensional case the right hand side of Eq.  6 
is replaced by the inverse of the matrix J = E[J(X)] + I(p(x)), 
where

J

I

( ) =X N X N X

x X

E

E

( ln )( ln )

( ) ( ln )( ln

∇ ∇ 
∇

P P

p P

t t( | ) ( | ) ,

( ) ( )

T

= ∇ PP( )) ,X T 

and the left hand side is replaced by the error correlation matrix 
R X X X X= E[( ].− −ˆ ˆ)( )T  The interpretation of the resulting ine-
quality is twofold. First, the matrix R − J−1 is non-negative definite 
and second,

E X X Jk k kk k d−( )




≥ =ˆ ( ) , ( , , ),

2

1−1


	
(8)

where d is the dimension of X (Van Trees, 1968).
It is straightforward to show that in this case

I( ( )) ( )( ) .p x x x
T

x xx X X= ∑ ∑  = ∑E −1 −1 −1− − 

The expression for E[J(X)] is similar to Eq. 7 and is derived 
in Section “Expectation of Population Fisher Information” in 
Appendix, yielding

E J ( )X[ ] =
+ ∑

+ ∑( )

× ∑ + ∑ +

−

=

−
−∑λ ξ

max

( ) (

t e
A A

A
A

A A

m

m

M
m m

m x

m x

x m x m

1
2

1

1
2

cc cm x m x
T− −  )( ) ,

	
(9)

where ξ
m
 = (c

m
 − 

x
)T (A

m
 + Σ

x
)−1(c

m
 − 

x
).

Analytical derivation of the MMSE
We now proceed to establish closed form expressions for the MMSE. 
In order to maintain analytical tractability we analyze the simple 
case of equally spaced tuning functions (c

m+1
 − c

m
 ≡ ∆c) with uni-

form width (α
m
 ≡ α). When the width is of the order of ∆c or higher, 

In other words, opt represents the tuning function parameters 
which lead to minimal reconstruction error. In this paper we focus 
on fixed centers of the tuning functions, and study the optimal 
widths of the sensory tuning functions that minimize MMSE().

Optimal decoding of neural spike trains
As stated before, the optimal estimator minimizing the MSE is given 
by X̂opt(N

t
) = E[X | N

t
]. This estimator can be directly computed 

using the posterior distribution, obtained from Bayes’ theorem

p x
p x P x

P
Kp x e x tt

t

t

x t

m
N

m

Mm

m

M

t
m

( | )
( ) ( | )

( )
( ) ( ( ) )

( )

N
N

N
= =

∑−

=

=

λ

λ1

1
∏∏ ,

	
(1)

where K is a normalization constant. We comment that here, and in 
the sequel, we use the symbol K to denote a generic normalization 
constant. Since such constants will play no role in the analysis, we do 
not bother to distinguish between them. For analytical tractability 
we restrict ourselves to the family of Gaussian prior distributions 
X p x x ( ) ( , ),⋅ =N µ σ2  and consider Gaussian tuning functions

λ λ α
m

x c

x e m M
m

m( ) , ( , , )max

( )

= =
−

− 2

22 1 	 (2)

which in many cases set a fair approximation to biological tuning 
functions (e.g., Anderson et al., 2000; Pouget et al., 2000). From 
Eq. 1 we have

p
Nt

m

(x| )=Nt

x
x t

x c

Ke e e
x

x

m

m

M
m

mm

M

−
− − −

−

= =
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( )
( )

.
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σ

λ
α

2

2
1
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2
12 2

	 (3)

In the multi-dimensional case X ∼ N(
x
, Σ

x
) and the Gaussian 

tuning functions are of the form

λ λm

A
x e m M

m m m

( ) , ( , , ).max

( ) ( )
= =

− −1

2
1

1
x c x-cT−

 	 (4)

Bayesian Cramér–Rao bound
Since the MMSE is often difficult to compute, an alternative 
approach which has been widely used in the neural computation 
literature is based on minimizing a more tractable lower bound on 
the MSE, related to Fisher information of the population of sensory 
neurons. The Fisher information is defined by

J ( ) ln ( | ) .X
X

P Xt= ∂
∂



















E N
2

	

(5)

If X is deterministic, as in the classic (non-Bayesian) case, and 
B(X)  E[(X̂ - X)] is the estimation bias, then the error vari-
ance of any non-Bayesian estimator ˆ ( )X tN  is lower bounded by 
( ( )) ( ),1 2 1+ −d

dX B X XJ  which is the Cramér–Rao bound (Van Trees, 
1968). The extension to the Bayesian setting, where X is a random 
variable with probability density function p(·), often referred to as 
the Bayesian Cramér–Rao bound (BCRB), states that

E
E

X X
X p x

−( )




≥ˆ

( )
,

2 1

[ ( )]+ ( )J I 	
(6)

where I( ) =p x p Xd
dX( ) [( ln ( )) ]E 2  and the bounded quantity is the 

MSE of any estimator (section 1.1.2 in Van Trees and Bell, 2007). 
Note that the expectation in Eq. 6 is taken with respect to both the 
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where Y N tm t
m= Σ  Pois( )effα  as before. The MMSE is computed 

directly from the posterior variance:

MMSE = = 
+

E E[ ] 
1

2
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Note that when σ
w
 → ∞ the sensory information becomes irrel-

evant for estimating X, and indeed in such case MMSE→σx
2 .

Multisensory integration
Consider the case where the environmental state is estimated based 
on observations from two different sensory modalities (e.g., visual 
and auditory). The spike trains in each channel are generated in a 
similar manner to the unimodal case, but are then integrated to yield 
enhanced neural decoding. All quantities that are related to the first 
and second modalities will be indexed by v and a, respectively, although 
these modalities are not necessarily the visual and the auditory.

Each sensory modality detects a different noisy version of the 
environmental state: X X Wv v= +  in the “visual” pathway and 
X X Wa a= +  in the “auditory” pathway. The noise variables are 

Gaussian with zero-mean and variances σw v,
2  and σw a,

2 , respectively, 
and independent of each other as they emerge from different physi-
cal processes. The noisy versions of the environmental state are 
encoded by M

v
 + M

a
 sensory neurons with conditional Poisson 

statistics:
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where the tuning functions in each modality are Gaussian with 
uniform width,
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and M is large enough with respect to σ
x
, the mean firing rate of 

the entire population is practically uniform for any “reasonable” 
X. As shown in Section “Uniform Mean Firing Rate of Population” 
in Appendix, the sum Σ

m
 λ

m
(x) is well approximated in this case 

by λ α π α λ( ) ( ) .max= 2 c  Under these conditions the posterior 
(Eq. 3) takes the form
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implying that [X | N
t
] ∼ N ˆ , ˆ σ2( ), where
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Recalling that the spike trains are independent Poisson proc-
esses, namely Σ Σm t

m
m mN X X t| ~ Pois( ( ) ),λ  and in light of the above 

approximation, Y Nm t
m

 Σ  is independent of X and Y ∼ Pois(αt
eff

), 
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and thus we get an explicit expression for the normalized MMSE,
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In the multivariate case we assume that the centers of the tun-
ing functions form a dense multi-dimensional lattice with equal 
spacing ∆c along all axes, and Eq. 10 becomes
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namely [X | N
t
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In this case Y N A t t c tm t
m d d d

 Σ ~ ( / ) maxPois( ), eff eff 2π λ∆  
(see Section “Uniform Mean Firing Rate of Population” in 
Appendix), and
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Incorporation of noise
Suppose that due to environmental noise the value of X is not 
directly available to the sensory system, which must respond to 
a noisy version of the environmental state – X. For simplicity we 
assume additive Gaussian noise: X X W W w= + , ~ ( , ).N 0 2σ  For a 
dense layer of sensory neurons the joint posterior distribution of 
the environmental state and noise is
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although Fisher information is undefined when one of the width 
parameters is exactly 0. A similar result was suggested previously for 
non-Bayesian estimation schemes (Seung and Sompolinsky, 1993; 
Zhang and Sejnowski, 1999; Brown and Bäcker, 2006), but within 
the framework that was employed there the result was not valid, as 
we elucidate in Section “Discussion”. Why does Fisher information 
predict that “narrower is better”? As a tuning function narrows, 
the probability that the stimulus will appear within its effective 
receptive field and evoke any activity decreases, but more and more 
information could be extracted about the stimulus if the cell did 
emit a spike. Evidently, in the limit α

m
 → 0 the gain in informa-

tion dominates the low probability and BCRB → 0; however, this 
is precisely the regime where the bound vanishes and is therefore 
trivial. This result is in complete contrast with the MSE, which is 
minimal for non-zero values of α as we show below. More disturb-
ingly, as argued in Section “The Univariate Case”, the performance 
is in fact the worst possible when α → 0.

We note that Bethge et al. (2002) were the first to address the 
shortcomings of lower bounds on the MSE in a Bayesian setting. 
These authors stressed the fact that performance bounds are usu-
ally tight only in the limit of infinitely long time windows, and 
cannot be expected to reflect the behavior of the bounded quanti-
ties for finite decoding times. They observed that, for any X, the 
minimal conditional MSE asymptotically equals 1/J(X), and by 
taking expectations on both sides they obtained E[1/J(X)] as the 
asymptotic value of the MMSE, which they assessed using Monte 
Carlo simulations.

The multivariate case
In this case, using the d-dimensional Gaussian tuning func-
tions (Eq.  4) characterized by the matrices (A

m
), the problem 

becomes more complex as is clear from Eq. 9, because the tun-
ing functions may have different widths along different axes or 
even non-diagonal matrices. For simplicity we focus on the case 
where the matrices A

m
 are diagonal. By definition, the MSE of 

any estimator is the trace of its error correlation matrix, and in 
accordance with Eq.  8, Fisher-optimal tuning functions mini-
mize the trace of J−1, which equals the sum of its eigenvalues. 
If the widths in all dimensions are vanishingly small (A

m
  ≡  εI 

where ε =  1), A
m
 becomes negligible with respect to Σ

x
 and 

E[ ( )] J X t e A Am x m m
m≈ | | | |λ ξ

max
/ .Σ Σ− − −1

2 1 2 1
 In 3D and in higher 

dimensions the matrix | |A Am m
d d− − −= …1 2 1 2 1diag( , , )/ /ε ε  is close to  

the zero matrix, and consequently the eigenvalues of E[J(X)] are 
vanishingly small. If all widths are large (A

m
 ≡ (1/ε) I where ε = 1), 

A
m
 dominates Σ

x
 and E[ ( )]J X t e Am

m x m x≈ + −− −λ ξ
max [ ( )Σ Σ

1
2 2 c    

(c
m
 - m

x
)T], namely the eigenvalues of E[J(X)] are still vanish-

ingly small. This means that when the widths are too small or too 
large, the BCRB dictates poor estimation performance in high 
dimensional settings (specifically, the information gain no longer 
dominates the low probability in the limit of vanishing widths). 
Therefore, there exists an optimal set of finite positive widths that 
minimize the BCRB. As an exception, in 2D the eigenvalues of 
| |A Am m

−1 are finite when the widths approach 0, and E[J(X)] 
cannot be said to have infinitesimally small eigenvalues. In fact, 
numerical calculations for radial prior distribution reveal that in 
2D “narrower is still better”, as in the univariate case.

We assume that the tuning functions are dense enough, namely 
the widths are not significantly smaller than the spacing between 
the centers, and equally spaced ( , ).c c c c c cm

v
m
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The full expression for the MMSE in this case is
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where Y N tv m t
m v

v
v

 Σ , ~ Pois( )effα  and Y N ta m t
m a

a
a

 Σ , ~ Pois( )effα  
(the derivation appears in Section “MMSE for Multisensory 
Integration” in Appendix).

Results
As argued in Section “Materials and Methods”, obtaining optimal 
tuning function parameters (or simply optimal width, in the sim-
plified scenario presented in Section “Analytical Derivation of the 
MMSE”) requires computation of the MMSE for every given set 
of parameters, which is often not even numerically feasible. In the 
context of classical estimation, in order to maintain analytical trac-
tability, the Cramér–Rao bound has been traditionally analyzed in 
place of the MMSE. In this text we employ a theoretical framework 
of optimal Bayesian estimation, in an attempt to find the optimal 
tuning functions that facilitate optimal estimation of X from the 
observations (the neural spike trains). We start by analyzing optimal 
width as predicted from the BCRB and proceed to scrutinize the 
properties of optimal width derived directly from the MMSE.

Fisher-optimal width
In a Bayesian context, it is well known (Van Trees, 1968) that for any 
estimator ˆ ,X  the MSE is lower bounded by the Bayesian Cramér–Rao 
lower bound (BCRB) given in Eq. 6. An interesting question is the 
following: considering that the MSE of any estimator (and thus the 
MMSE itself) is lower bounded by the BCRB, do the optimal widths 
also minimize the BCRB? In other words, can the BCRB be used as 
a proxy to the MMSE in selecting optimal widths? If this were the 
case, we could analyze MMSE-optimality by searching for widths that 
maximize the expected value of the Fisher information defined in 
Eq. 5. This alternative analysis would be favorable, because in most 
cases analytical computation of E[J(X)] is much simpler than that 
of the MMSE, especially when the conditional likelihood is separa-
ble, in which case the population’s log likelihood reduces to a sum of 
individual log likelihood functions. Moreover, it remains analytically 
tractable under much broader conditions. Unfortunately, as we show 
below, the answer to the above question is negative. Despite the fact that 
for any encoding ensemble the BCRB bounds the MMSE from below, 
and may even approximate it in the asymptotic limit (if, for example, 
J(X) is independent of X), the behavior of the two (as a function of 
tuning function widths) is very different, as we demonstrate below.

In terms of the BCRB the existence of an optimal set of widths 
critically depends on the dimensionality of the environmental state. 
We consider first the univariate case, and then discuss the extension 
to multiple dimensions.

The univariate case
In the scalar case, using the tuning functions in Eq. 2, it follows 
from Eq. 7 that it is best to employ infinitesimally narrow tuning 
functions, since E[J(X)] → ∞ most rapidly when α

m
 → 0 for all m, 
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The existence of an optimal width is very intuitive, considering 
the tradeoff between multiplicity of spikes and informativeness of 
observations. When tuning functions are too wide, multiple spikes 
will be generated that loosely depend on the stimulus, and thus the 
observations carry little information. When tuning functions are too 
narrow, an observed spike will be informative about the stimulus 
but the generation of a spike is very unlikely. Thus, an intermediate 
optimal width emerges. To verify that the results were not affected by 
the approximation in Eq. 10, we compare in Figure 1B the theoreti-
cal MMSE with the MMSE obtained in simulations, which make no 
assumptions about uniform population firing rate. As can be seen in 
the figure, the two functions coincide, and in particular, the optimal 
widths are nearly identical. Recall that at each moment it is assumed 
that α is not significantly smaller than ∆c (this is required for the uni-
form population firing rate approximation). For the values obtained 
in Figure 1A this implies ∆c smaller than about 0.5. Obviously, the 
validity of Eq. 10 would break down for sufficiently long decoding 
time windows. For instance, when t c xeff > ∆ −− −9 1 715 1 1( . )σ  (i.e., when 
αopt < 0.583∆c) the relative ripple of the population firing rate rises 
above 0.5% (see Section “Uniform Mean Firing Rate of Population” 
in Appendix). Nevertheless, as can be observed in Figure 1B, the 
theoretical approximation for the MMSE in Eq. 11 holds even for 
vanishing width, despite the non-uniformity in population firing 
rate (this appears more clearly in Figure 8).

We now turn to analyze the effect of the two parameters, σ
x
 and t

eff
, in 

Eq. 11. The effective time is a measure for the number of spikes generated 
by the neural population, since it is proportional to λ

max
t (where λ

max
 is 

the maximal mean firing rate of a single neuron) and also to 1/∆c (which 
is proportional to the population size when the population is required to 
“cover” a certain fraction of the stimulus space). Longer effective times 
increase the likelihood of spikes under all circumstances, and therefore 
the drawback of narrow tuning functions is somewhat mitigated, leading 
to a reduction in optimal width (as illustrated in Figure 2A).

The prior standard deviation reflects the initial uncertainty in 
the environment: the larger it is – the less is known a priori about 
the identity of the stimulus. Confidence about stimulus identity 
(associated with small MMSE) may stem from either a determin-
istic environment or from numerous observations for which the 

An interesting observation concerning the BCRB based optimal 
widths is that they cannot depend on the available decoding time 
t, since E[J(X)] is simply proportional to t. As we will show, an 
important consequence of the present work is to show that the 
optimal tuning function widths, based on minimizing the MMSE, 
depend explicitly on time. In this sense, choosing optimal tun-
ing functions based on the BCRB leads to a qualitatively incorrect 
prediction. We return to this issue in Section “Discussion”, where 
further difficulties arising from the utilization of lower bounds 
are presented.

MMSE-based optimal width
Having discussed predictions about optimal widths based on 
BCRB minimization, we wish to test their reliability by finding 
optimal widths through direct MMSE minimization. As explained 
in Section “Materials and Methods”, in order to facilitate an analytic 
derivation of the MMSE, we examine here the case of dense equally 
spaced tuning functions with uniform widths. We consider first the 
univariate case and then proceed to the multivariate setting. As far 
as we are aware, Bethge et al. (2002) were the first to observe, using 
Monte Carlo simulations, that the MSE-optimal width of tuning 
functions may depend on decoding time.

The univariate case
Based on Eq. 11, we plot the normalized MMSE as a function of the 
width (Figure 1A) for different combinations of effective decoding 
time and prior standard deviation. The effective time, t

eff
, defined 

in Section “Analytical Derivation of the MMSE”, is proportional to 
the time over which spikes accumulate. The existence of an opti-
mal width, which is not only positive but also varies with σ

x
 and 

t
eff

 , is clearly exhibited. A similar result was first demonstrated by 
Bobrowski et al. (2009), but the dependence of optimal width on 
the two other parameters was not examined. Note that the deriva-
tion in Eq. 11 is not reliable in the vicinity of the y-axis, because the 
approximation of uniform population firing rate (see Analytical 
Derivation of the MMSE) is not valid when α → 0. Nevertheless, 
it can be proved that when α → 0, P(N

t
 = 0) → 1 and as a conse-

quence ˆ ( )X t x
opt N →  and indeed MMSE/ 2σx →1.

Figure 1 | (A) The normalized MMSE of a dense population of Gaussian tuning 
functions against tuning function width, for different values of effective decoding 
time (shortest – uppermost triplet, longest – lowermost triplet). In each triplet 
three values of prior standard deviation were examined – σx = 1 (solid), σx = 2 
(dashed), and σx = 3 (dotted), where the optimal width is indicated by squares, 

circles and diamonds, respectively. (B) The normalized MMSE for different 
values of effective decoding time (σx = 1), obtained theoretically (dashed lines, 
optimal width indicated by circles) and in simulation (solid lines, optimal width 
indicated by squares). Simulation parameters: N = 251, X ∈ [−4,4], 
P x x( ) ( , ),∝N 0 2σ  M = 250, ∆c = 0.034, λmax = 50.
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which for very short time windows converges to the optimal nor-
malized MMSE.

The multi-dimensional case
We consider multivariate normal distributions for both the prior 
and the tuning functions. We start by considering a radial prior 
distribution and radial tuning functions, namely Gaussians with 
covariance matrices Σ x x= σ2I and A

m
 = α2I, respectively, where I 

is the d × d identity matrix. In this simple scenario the posterior 
covariance matrix in Eq. 13 becomes

∑̂ +




−

= 1
σ αx

Y
2

,
2

1

I

where Y N t t cm t
m d d d= ∼ = ∆ −Σ Pois Pois( / )eff eff( ) ( ) .α α πα2 1  From 

Eq. 14 we see that
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As long as 2παopt /∆c >1 the parameter of the Poisson ran-
dom variable Y increases with the dimensionality d, in a manner 
that is equivalent to longer effective time (albeit width-dependent). 
Consequently, recalling (Eq. 18), the optimal width decreases with 
the dimensionality of the stimulus. Numerical calculations show that 
indeed this is the case in 2D and 3D for effective times which are 
not extremely long. This is in contrast with the predictions made by 
Zhang and Sejnowski (1999), where it was speculated that perform-
ance is indifferent to the width of the tuning functions in 2D, and 
improves with infinitely increasing width in higher dimensions.

When the prior covariance matrix and tuning functions shape 
matrix A are diagonal with, possibly different, elements { },σx k k

d2
1=  

and { } ,αk k
d2

1=  respectively, the MMSE is given by
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σ α,

,

where Y N tm t
m d

k
d

k= Σ ~ Pois( ).eff ∏ =1α  Since the random variable Y 
appears in every term in the sum, combined with different prior 
variances, the optimal width vector will adjust itself to the vector of 
prior variances, namely the optimal width will be largest (smallest) 
in the dimension where the prior variance is largest (smallest).

likelihood is very sharp. When the environment is less certain, many 
more observations are needed in order to obtain a narrow poste-
rior distribution leading to smaller MMSE, and thus the optimal 
width increases (as illustrated in Figure 2B). Consider the condi-
tion discussed above for the uniform rate approximation to hold 
with high accuracy, namely t c xeff ≤ ∆ −− −9 1 715 1 1( . ).σ  Assuming, for 
example, that σ

x
 ≥ ∆c, implies that t

eff
 ≤ 6/∆c suffices to guarantee 

the above condition. Under these conditions we obtain a simple 
empirical expression relating the optimal width to the effective 
time and prior uncertainty,

α α σ
σ

opt
eff

eff

9
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t
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Figure 2 demonstrates the quality of this relation.
Finally, an interesting limit to consider is that of short decoding 

times. In this case the tuning functions are broad and the uniform 
sum rate approximation is expected to hold accurately. More pre-
cisely, when t → 0 the Poisson random variable Y Nm t

m= Σ  converges 
in probability to a Bernoulli random variable with “success” prob-
ability αt

eff
, in which case the expression for the normalized MMSE 

(Eq. 11) greatly simplifies,
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Differentiating with respect to α and setting the result to 0 
yields

t x x xeff
opt

optσ α σ α σ
α α
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=

.

Note that by taking the appropriate limit in the empirical for-
mula (Eq. 18) we see that lim

t→0
αopt = σ

x
, consistently with the 

above exact derivation.
Interestingly, when the width equals the prior standard deviation, the 

normalized MMSE can be calculated exactly for any effective time,
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Figure 2 | Optimal tuning functions width as a function of (A) effective decoding time, and (B) prior standard deviation. All curves are well-fitted by the same 
function: ˆ ( , ) ( ) .α σ σt tx xeff eff= + − −1
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which is fixed in our model). A possible interpretation is that 
attending the random dot pattern outside the receptive field and 
observing its movement direction strengthens the belief that 
the movement direction inside the receptive field is the same, 
thereby narrowing the prior distribution of directions and thus 
requiring narrow tuning functions.

The effect of environmental noise
In Figure 2B we saw that the optimal width increases with σ

x
, the 

prior environmental uncertainty. Since external noise adds further 
uncertainty to the environment, we expect the optimal tuning func-
tions to broaden with increasing noise levels, but the exact effect 
of noise is difficult to predict because even in the case of additive 
Gaussian noise with standard deviation σ

w
 the expression for the 

MMSE (Eq. 16) becomes slightly more complex. The optimal width 
in this case is plotted against effective time (Figure 3A) and against 
prior standard deviation (Figure 3B) for different values of noise 
levels. All curves are very well-fitted empirically by the function

ˆ , , ,α σ σ
σ σ

opt
eff

eff

9
t

t
x w

x w

( ) = +
+





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−
1

2 2

1

where the average squared error of each fit is less than 1.3 × 10−3. 
This result implies that the effect of noise boils down to increasing 
the prior uncertainty. Since the noise is additive, and is independ-
ent of the stimulus, the term σ σx w

2 2+  is precisely the standard 
deviation of the noisy stimulus X X W= + , meaning that the opti-
mal width for estimating X is the same as for estimating X . This 
might not seem trivial by looking at Eq. 16, where the two standard 
deviations are not interchangeable, but is nonetheless very intui-
tive: seeing that all spikes depend only on X , it is the only quantity 
that can be estimated directly from the spike trains, whereas X is 
then estimated solely from the estimator of X . Therefore, optimal 
estimation of X necessitates first estimating X  optimally.

An indication for the symmetric role played by the prior and the 
noise, can be seen in Figure 3A, where the dashed red curve (σ

x
 = 2, 

σ
w
 = 1) merges with the solid green curve (σ

x
 = 1, σ

w
 = 2). Note also 

that the greatest effect of noise is observed when the prior standard 
deviation is small, whereas for large σ

x
 the relative contribution of 

noise becomes more and more negligible (Figure 3B).

Biological implications
An important feature of the theoretical results is the ability to pre-
dict the qualitative behavior that biological tuning functions should 
adopt, if they are to perform optimally. From Eq. 18 we see that if the 
environmental uncertainty (expressed by σ

x
) decreases, the tuning 

functions width is expected to reduce accordingly (this holds in 2D 
as well). This prediction provides a possible theoretical explanation 
for some results obtained in psychophysical experiments (Yeshurun 
and Carrasco, 1999). In these experiments human subjects were 
tested on spatial resolution tasks where targets appeared at random 
locations on a computer screen. In each trial the subjects were 
instructed to fixate on the screen center and the target was presented 
for a brief moment, with or without a preceding brief spatial cue 
marking the location of the target but being neutral with respect to 
the spatial resolution task. The authors found that the existence of 
the preceding cue improved both reaction times and success rates, 
concluding that spatial resolution was enhanced following the cue 
by reducing the size of neuronal receptive fields. Following their 
interpretation, we argue that the spatial cue reduces the uncertainty 
about the stimulus by bounding the region where the stimulus 
is likely to appear (i.e., σ

x
 is reduced). In light of our results, an 

optimal sensory system would then respond to the decrease in 
prior standard deviation by narrowing the tuning functions toward 
stimulus onset.

Our prediction may also relate to the neurophysiologi-
cal experiments of Martinez-Trujillo and Treue (2004), who 
recorded the activity of direction-sensitive MT neurons in awake 
macaque monkeys in response to random dot patterns. These 
patterns appeared in two distinct regions of the visual field, one 
inside the neuron’s receptive field and another on the opposite 
hemifield, but both were governed by the same general move-
ment direction. The direction-selective tuning function was 
measured when the animal’s attention was directed to a fixation 
point between these regions (“neutral”) and when its atten-
tion was directed to the other region with the same movement 
direction (“same”). In the “same” condition, neuronal response 
was enhanced near the tuning function center and suppressed 
away from the center with respect to the “neutral” condition, in 
a manner that is equivalent to a reduction in tuning function 
width (albeit followed by a modulation of maximal firing rate, 

Figure 3 | Optimal tuning functions width in the presence of noise, for different values of parameters: (A) σx = 1 (solid), σx = 2 (dashed), and σx = 3 (dotted); 
(B) teff = 0.1 (solid), teff = 1 (dashed), and teff = 10 (dotted).
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the expected number of observations, naturally resulting in a 
smaller optimal width (Figure 4B). When the overall number of 
tuning functions is maintained constant, splitting them into two 
populations of equal size in each modality is preferred in terms 
of MMSE (results not shown), because the bimodal setting also 
has the advantage of partial noise-cancellation. But what can be 
said about the optimizing width in each setting? In Figure 4B we 
observe that 2M optimal tuning functions in a single modality are 
narrower than M + M optimal tuning functions for two different 
modalities. What is more intriguing is the fact that single-modality 
optimal tuning functions are still narrower than their double-mo-
dality counterparts even when they are outnumbered, as long as 
the noise standard deviation is sufficiently large.

Biological implications
The latter prediction may be related to experimental results dealing 
with multisensory compensation. Neuronal tuning functions are 
observed not only in the sensory areas but also in associative areas 
in the cortex, where cortical maps are adaptable and not strictly 
defined for a single modality. Korte and Rauschecker (1993) found 
that tuning functions in the auditory cortex of cats with early blind-
ness are narrower than those in normal cats. We hypothesize that 
this phenomenon may subserve more accurate decoding of neu-
ral spike trains. Although optimal auditory tuning functions are 
wider in the absence of visual information (Figure 4B), our results 
predict that if the blindness is compensated by an increase in the 
number of auditory neurons (for instance, if some visual neurons 
are rewired to respond to auditory stimuli), the auditory tuning 
functions will in fact be narrower than in the case of bimodal sen-
sory integration. Indeed, neurobiological experiments verify that 
the specificity of cortical neurons can be modified under conditions 
of sensory deprivation: auditory neurons of deaf subjects react to 
visual stimuli (Finney et  al., 2001) and visual neurons of blind 
subjects react to sounds (Rauschecker and Harris, 1983; Weeks 
et al., 2000). We predict that even when the compensation is partial, 
namely when only a portion of the visual population transforms to 
sound-sensitive neurons, the optimal tuning functions in a noisy 
environment are still narrower than the “original” tuning functions 
in two functioning modalities (Figure 4B).

The effect of multimodality
Integration of sensory information from different modalities (e.g., 
visual, auditory, somatosensory) has the advantage of increasing 
estimation reliability and accuracy since each channel provides an 
independent sampling of the environment (we focus here on the 
simple case where tuning functions are bell-shaped in all modali-
ties). In the absence of noise, this improvement is merely reflected 
by an increased number of observations, but the main advantage 
manifests itself in the noisy case, where multimodal integration has 
the potential of noise reduction since the noise variables in the two 
modalities are independent. Considering two sensory modalities, 
denoted by v and a, and indexing the respective parameters of 
each modality by v and a, we provide a closed form expression for 
the MMSE in Eq. 17. When integrating the observations, the spike 
trains in each modality are weighted according to their reliability, 
reflected in the predictability of the stimulus based on the estimated 
input (related to σ

w,v
, σ

w,a
) and in the discriminability of the tuning 

functions (related to α
v
, α

a
). For instance, when “visual” noise has 

infinite variance or when “visual” tuning functions are flat, the spike 
trains in the “visual” pathway do not bear any information about 
the stimulus and are thus ignored by the optimal decoder. Indeed, 
when substituting σ

w,v
 = ∞ or α

v
 = ∞ in Eq. 17, it reduces to Eq. 16 

with α
a
, σ

w,a
 in place of α, σ

w
. Note that in the absence of noise the 

MMSE reduces to E[( ( )) ],σ αx v aY Y− − −+ +2 2 1  which is identical to 
the unimodal expression for the MMSE with twice the expected 
number of observations (Y

v
 + Y

a
 ∼ Pois(α2t

eff
)).

In a bimodal setting, the optimal width in each modality adapts 
itself to the standard deviation of the noise associated with that 
modality. To see that, we fix σ

w,v
 = 0.5, and plot the optimal widths 

against the ratio of noise standard deviations σ
w,a

/σ
w,v

 (Figure 4A). 
When the “visual” channel is noisier (σ

w,a
/σ

w,v
 < 1), the optimal 

“auditory” tuning functions are narrower than their counterparts, 
and when the “auditory” channel is noisier the situation is reversed. 
Interestingly, even when the “visual” noise variance is fixed, the 
optimal width in the “visual” modality is slightly affected by the 
“auditory” noise variance.

In the symmetric case we can easily compare the unimodal and 
bimodal settings. Assuming that the number of tuning functions 
in each modality is the same, integrating two modalities doubles 

Figure 4 | (A) Optimal tuning function widths in different sensory modalities as a function of the ratio between the noise standard deviations of the underlying 
physical phenomena (teff = 1, σx = 1, and σw,v = 0.5). (B) Optimal tuning function widths in symmetrical bimodal and in unimodal settings (teff = 1 and σx = 1). The 
numbers in parentheses denote sizes of populations.
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When “choosing” the optimal width for the second interval, the 
population can rely on the spikes observed so far to modify its width 
so as to minimize E[( + ) ],2 2σ α1 1

− − −1Y  where σ σ α1
2 2

0
2

0
− − −= +x Y . By 

recursion, at time t = i∆t the optimal width parameter α
i
 is deter-

mined by taking into account all spikes in the interval [0,(i − 1)∆t] 
and minimizing E[( + ) ],2 2σ αi iY− − −1  where

σ
σ αi

x

j

jj

i Y
2

2 2
0

1 1
1= +






=

− −

∑

reflects the effective uncertainty at time i∆t after integrating prior 
knowledge and information from observations. We see that the 
optimal width process is monotonically non-increasing (since the 
sequence { }σi

2  is non-increasing), and the rate of reduction in tuning 
functions width is affected by the rate of spike arrivals. Examples for 
both slow and fast spiking processes can be seen in Figure 5A, where 
the average optimal process (averaged over 1000 trials) is plotted as 
well. In general, an optimal width process is unlikely to drastically 
deviate from the average due to an internal “control” mechanism: 
if few spikes were obtained then the width is still relatively large, 
increasing the chances of future spikes, whereas multiplicity of 
spikes results in small width, limiting the probability of observing 
more spikes. In the limit ∆t → 0, the optimal width process starts 
exactly at σ

x
 and jumps to a value 2-times smaller than its previ-

ous value at the occurrence of each spike (see Section “Dynamics 
of the Optimal Width Process” in Appendix for proof).

When we examine the average optimal width process for dif-
ferent values of prior standard deviation (Figure 5B), we see that 
prior to the encoding onset it is always best to keep the tuning 
functions practically as wide as the probability density function of 
the stimulus (i.e., at t = 0, before any spikes are obtained, set αopt 
(t = 0) = σ

x
 for all realizations). The average rate of dynamic nar-

rowing is then related to the initial uncertainty, where the fastest 

Dynamic optimal width
Two important features of the decoding process pertain to the time 
available for decoding and to the prior information at hand. In 
principle, we may expect that different attributes are required of 
the optimal tuning functions under different conditions. We have 
seen in Figure 2 (see also Eq. 1) that the optimal width increases 
with the initial uncertainty and decreases with effective time. In this 
case the width is set in advance and the quantity being optimized 
is the decoding performance at the end of the time window. We 
conclude that tuning functions should be narrower when more 
knowledge about the stimulus is expected to be available at time 
t. However, in realistic situations the decoding time may depend 
on external circumstances which may not be known in advance. 
It is more natural to assume that since observations accumulate 
over time, the tuning functions should adapt in real time based 
on past information, in such a way that performance is optimal 
at any time instance, as opposed to some pre-specified time. To 
address this possibility, we now allow the width to be a function of 
time and seek an optimal width function. Moreover, it seems more 
functionally reasonable to set the MMSE process as an optimality 
criterion rather than the MMSE at an arbitrary time point. As a 
consequence, the optimal width function may depend on the ran-
dom accumulation of observations, namely it becomes an optimal 
width process.

We begin by analyzing the simple case of a piecewise-constant 
process of the form

α(t : i∆t ≤ t < (i + 1)∆t) = α
i
,    (i = 0, 1, …)

and search for optimal (possibly random) variables { } .αi i=
∞

1  At each 
moment, we assume that α(t) is large enough with respect to ∆c so 
that the mean firing rate of the population, Σ

m
 λ

m
(x,t), is independ-

ent of the stimulus. Therefore, the posterior distribution is now

p x K
x x c

tt
x

x

m

i mi m
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m
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m
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==
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where t
i(m)

 is the time of the i(m)-th spike generated by the m-th 
sensory cell. Summing over all spike-times in each ∆t-long interval, 
it is simple to show that at the end of the L-th interval the posterior 
density function is Gaussian with variance

Figure 5 | (A) Sample realizations of optimal width processes for fast (bottom) and slow (top) spiking processes. The average over 1000 trials is plotted in the middle 
(σx = 1 and ∆teff = 0.1). (B) Average optimal width processes for different values of prior standard deviation, all coinciding with the function ˆ ( , ) ( ( ) ) .α σ σt t tx x= + − −1

3
1 1

eff
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Biological implications
Our prediction that tuning functions should dynamically narrow 
during the course of encoding a stimulus, coincides with some 
reported experimental phenomena. Wang et al. (2005) recorded the 
activity of auditory cortical neurons in awake marmoset monkeys 
in response to a sound stimulus, which is the preferred stimulus 
of only one of the neurons. When comparing the activity profiles 
of the two neurons, they found that both fire intensively immedi-
ately following stimulus presentation, but only the neuron which is 
tuned to the stimulus maintained high activity throughout stimu-
lus duration. Such behavior is equivalent to (and can stem from) 
dynamic narrowing of receptive fields. Widespread onset responses 
(caused by initially large receptive fields) subserve fast detection 
of the occurrence of sounds, whereas sustained firing in specific 
neurons facilitates extraction of the exact features of the sound. 
Dynamic narrowing of receptive fields following stimulus applica-
tion was also observed in area 17 of anesthetized cats by Wörgötter 
et al. (1998). In the context of one-dimensional tuning functions, 
an illustrative example for dynamic narrowing was observed by 
Gutfreund et al. (2002) in the external nucleus of the inferior col-
liculus in anesthetized barn owls. The authors recorded from a 
population of neurons tuned to a short range of inter-aural time 
differences (ITD) in response to stimuli with different ITD val-
ues. While initial responses were intensive for all stimuli, intensive 
ongoing responses were restricted to stimuli within the ITD range 
preferred by the population, implying a dynamic reduction in tun-
ing function width. A similar phenomenon was also obtained for 
single neurons. Benucci et al. (2009) quantified the instantaneous 
tuning functions of direction-sensitive V1 neurons in anesthetized 
cats and observed a dynamic narrowing following stimulus applica-
tion, accompanied by a later recovery of the tuning function width, 
after the stimulus was changed or removed.

Discussion
In this paper we have studied optimal encoding of environmental 
signals by a population of spiking neurons, characterized by tun-
ing functions which quantify the firing probability as a function 
of the input. Within the framework of optimal Bayesian decod-
ing, based on the mean square reconstruction error criterion, we 
investigated the properties of optimal encoding. Based on the well 
known inequality, bounding the MMSE by the Bayesian Cramér–
Rao lower bound (Eq. 6), we tested the hypothesis that the tuning 
function width minimizing the MMSE can be recovered by mini-
mizing the lower bound. This hidden assumption was implied in 
previous studies dealing with classical, non-Bayesian, estimators 
based on neural decoding (Seung and Sompolinsky, 1993; Zhang 
and Sejnowski, 1999; Brown and Backer, 2006). Unfortunately, as 
argued in Section “Results”, the predictions were often incompatible 
with the assumptions required in the derivation of the bound, and 
thus could not be utilized to compare bound-based predictions with 
results based on direct minimization of the MMSE. It should be 
noted that in the non-Bayesian setting an optimal estimator does 
not necessarily exist, because the performance of each estimator 
depends on the stimulus, which is an unknown parameter. For 
instance, ˆ ( )X atN ≡  is the optimal estimator if and only if X = a. 
The above-mentioned studies overcame this problem by assuming 
that the tuning functions are dense enough so that the population’s 

narrowing occurs in the most uncertain environment. Note that 
under the conditions stated in Section “Analytical Derivation of 
the MMSE”, the mean population activity Σ

m
λ

m
(x) is proportional 

to the width parameter α. Thus, Figure 5B can be interpreted as 
reflecting a dynamic decrease in population activity as a function 
of time. Furthermore, there is an excellent empirical fit between 
the average optimal process to the simple function

ˆ ( ; )
( )

.α σ
σ

t
t t

x

x

= +



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−

eff

3

1
1

Implementation of an optimal width process seems biologically 
implausible, due to its discontinuity and its perfect synchroniza-
tion with the spikes. It is more likely for biological tuning func-
tions to adopt the average optimal width process strategy, namely 
to automatically commence a dynamic narrowing at the beginning 
of an encoding period, independently of the generated spikes. But is 
the average optimal width process still more efficient than constant 
width? To address this question, we simulated the dynamics of four 
populations: two with constant widths tuned for optimal perform-
ance at the middle and at the end of the decoding time window, 
respectively, one with a piecewise-optimal width process and another 
one with a width function corresponding to the average optimal 
width process. As expected, each of the constant-width populations 
outperforms the other at the time for which it is tuned (Figure 6). 
The dynamic-width populations significantly outperform them both 
for short times, where for later times the differences become neg-
ligible. Therefore, implementation of dynamic width offers a clear 
advantage over operation with constant width, especially since there 
is seldom a reference time of interest to which the tuning functions 
could be tuned in advance. Interestingly, the predetermined width 
function is as good as the optimal width process for short times and 
even outperforms it for longer times, meaning that the performance 
is not being compromised when a predetermined width function is 
employed in place of the optimal width process.

Figure 6 | The MMSE associated with four different populations, each 
one tuned to a different optimality criterion. The MMSE was assessed 
using Monte Carlo methods. Inset: Enlargement for late times.
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also showed that when the constant-width restriction is removed, 
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In summary, in this paper we examined optimal neuronal tun-
ing functions within a Bayesian setting based on the MMSE cri-
terion. Careful calculations were followed by theoretical results, 
based on a natural criterion of optimality which is commonly 
employed, but which has seldom been analyzed in the context of 
neural encoding. Our analysis yielded novel predictions about the 
context-dependence of optimal widths, stating that optimal tuning 
curves should adapt to the statistical properties of the environment 
– in accordance with ecological theories of sensory processing. 
Interestingly, the results predict at least two time scales of change. 
For example, when the statistical properties of the environment 
change (e.g., a change in the noise level or prior distribution) 
the optimal encoding should adapt on the environmental time 
scale in such a way that the tuning function widths increases with 
noise level. However, even in the context of a fixed stimulus, we 
predict that tuning functions should change on the fast time scale 
of stimulus presentation. Interestingly, recent results, summarized 
by Gollisch and Meister (2010), consider contrast adaptation in the 
retina taking place on a fast and slow time scale (see also Baccus 
and Meister, 2002). The fast time scale, related to “contrast gain 
control” occurs on time scales of tens of millisecond, while the slow 
time-scale, lasting many seconds, has been referred to as “contrast 
adaptation”. While our results do not directly relate to contrast 
adaptation, the prediction that optimal adaptation takes place on at 
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circuit mechanisms proposed in (Gollisch and Meister, 2010) may 
well subserve some of the computations related to tuning function 
narrowing. These results, and the above-mentioned experimen-
tally observed phenomena, suggest that biological sensory systems 
indeed adapt to changes in environmental statistics on multiple 
time scales. The theory provided in this paper offers a clear func-
tional explanation of these phenomena, based on the notion of 
optimal dynamic encoding.
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Fisher information can be approximated by an integral and thus 
becomes independent of the stimulus. They all concluded that in one 
dimension estimation performance improves with narrower tuning 
curves. However, the underlying assumption is valid only when the 
width is large enough with respect to ∆c, and obviously breaks down 
as α → 0. Therefore, values in the proximity of α = 0 are not part 
of the solution space, and limα→0

J(X) cannot be estimated using 
the suggested approximation. Moreover, realistic environments are 
dynamic and it seems more reasonable to model their features as 
random variables rather than unknown parameters. This means 
that optimal tuning curves may be more fruitfully examined within 
a Bayesian framework. Indeed, neurobiological evidence indicates 
that the nervous system can adapt to changes in the statistical nature 
of the environment and its random features at multiple time scales 
(e.g., Pettet and Gilbert, 1992; Brenner et al., 2000; Dragoi et al., 
2000; Dean et al., 2005; Hosoya et al., 2005).

Starting from the Bayesian Cramér–Rao lower bound (Eq. 6) we 
have studied predictions about tuning function properties based on 
this bound which, under appropriate conditions, is asymptotically 
tight. As we demonstrated, this bound-based approach has little 
value in predicting the true optimal tuning functions for finite 
decoding time. Even though the performance inequalities hold in 
all scenarios, optimizing the bound does not guarantee the same 
behavior for the bounded quantity. Moreover, an important, and 
often overlooked observation is the following. Performance bounds 
might be too model-dependent, and when the model is misspeci-
fied (as is often the case) they lose their operative meaning. For 
instance, when the model is incorrect, the error does not converge 
asymptotically to the BCRB, even though the estimator itself might 
converge to the true value of the state (White, 1982). Thus, given 
that models are often inaccurate, the danger of using bounds is 
apparent even in the asymptotic limit.

By deriving analytical expressions for the minimal attainable 
MSE under various scenarios we have obtained optimal widths 
directly by minimizing the MMSE, without relying on bounds. Our 
analysis uncovers the dependence of optimal width on decoding 
time window, prior standard deviation and environmental noise. 
The relation between optimal width and prior standard deviation 
may very well explain physiological responses induced by attention, 
as noted in Section “MMSE-Based Optimal Width”, where further 
experimental evidence supporting the predictions of this paper was 
discussed. In particular, the work of Korte and Rauschecker (1993) 
related to tuning functions in the auditory cortex of cats with early 
blindness was discussed, and specific predictions were made. We 
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Appendix
Expectation of population Fisher information
In this section we calculate the expected value of the Fisher 
information for a population of sensory neurons following Poisson 
spiking statistics, having Gaussian tuning functions of the form
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( ~ ( ) ).X p x x⋅ =N ( , )2µ σ  We start by calculating the population’s local 
Fisher information, taking into account the conditional independ-
ence of the Poisson processes:
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In the multi-dimensional case X ∼ N(μ
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By virtue of the linearity, we calculate the expected value of 
J(X) with respect to X by taking expectation over the expression 
in curly brackets:
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the symmetry of all matrices it is a simple mathematical exercise 
to show that

E J X( )  = + ∑
+ ∑( )

∑ + ∑( ) +

−

=

−
−∑λ ξ

maxt e
A A

A
A

A A

m

m

M
m m

m x

m x

x m x m

1
2

1

1
2

cc cm x m x

T−( ) −( ) µ µ

and ξ
m
 = (c

m
 − μ

x
)T(A

m
 + Σ

x
)−1(c

m
 − μ

x
).

Uniform mean firing rate of population
In this section we approximate the mean firing rate of the entire 
population of sensory cells for the case of equally spaced tuning 
functions with uniform width. First, consider the case M = ∞, for 
which the population’s mean firing rate is given by
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The conditions which make the approximation valid vary with 
the dimensionality of the problem – as the dimension increases the 
width-spacing ratio must be larger in order to maintain the same 
approximation accuracy. For instance, in two dimensions where 
A = αI (Figure 7B), the relative ripple falls down below 0.5% only 
for α > 1.446∆c.

As mentioned in Section “The Univariate Case”, even when the 
approximation in Eq. 10 fails (i.e., when the mean population firing 
rate is highly non-uniform) the relationship in Eq. 11 still holds, 
namely the MMSE can be accurately estimated using the deriva-
tion for uniform mean population firing rate. While the normalized 
MMSE can be shown analytically to converge to 1 in the limit α → 0 
(see The Univariate Case), Figure 8 verifies that the approximation for 
the normalized MMSE practically coincides with the simulated nor-
malized MMSE for finite values of α that do not satisfy α ? ∆c.

MMSE for multisensory integration
In this section we derive the MMSE for the case of decoding 
bimodal spike trains. Similarly to the unimodal noisy case, it is 
straightforward to show that the joint posterior distribution of the 
environmental state and noise variables is given by
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The function λ(x,α) is continuous with respect to x, and 
therefore when the spacing goes to 0, ∆c·λ(x,α) converges to the 
Riemann integral
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which is independent of x. This means that for any ε > 0 there exists 
δ > 0 such that if ∆c/α < δ then the relative ripple (digression from 
uniformity) in the total firing rate
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Now consider the case of finite M,
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Since the limit at M → ∞ exists, for every x and ε > 0 there exists 
Mε(x) > 0 such that for all M > Mε(x) the difference between the 
infinite sum to the finite sum is less than ε, and therefore λ(x, α; 
M) can be well approximated by
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To quantify the desired ratio between the width and the spacing 
we plot the relative ripple (Figure 7A). For α > 0.583∆c the rela-
tive ripple falls down below 0.5%, rendering the approximation 
λ(x, α;M) ≅ λ(α) quite accurate. Note that the approximation fails 
near the most extreme tuning functions, but for a sufficiently large 
population this would not have any effect on the results, because 
the probability of X falling into these regions would be vanishingly 
small for any rapidly decaying prior.

The proof for the multi-dimensional case is similar, where the 
population’s mean firing rate is approximated by
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Figure 7 | The relative ripple in the mean firing rate of a population of neurons with Gaussian tuning functions: (A) in single dimension, (B) in two 
dimensions.
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which can be shown to be Gaussian with variance
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Dynamics of the optimal width process
In this section we prove that for the optimal piecewise-constant 
width process defined in Section “Dynamic Optimal Width”,
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The MMSE is minimized when α α σ0
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2 2− − −+( )x  is maximized, 

and thus α σ0
opt = x . Given the spikes history at t = ∆t, if Y∆t

 = 0 then 
the MMSE expression for the next interval remains unchanged, 
whereas if Y∆t

 = 1 then the MMSE at the end of the next interval 
is given by
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where σ σ1 2= x  is the effective uncertainty after observing 
a single spike, and Y
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 −  1 is a Bernoulli random variable with 

success probability α
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. Applying the same analysis as before, 
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 Integration over w
v
 gives the 

marginal distribution of the state:
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Figure 8 | Normalized MMSE of a sparse population of Gaussian tuning 
functions against tuning function width, for different values of effective 
decoding time, obtained theoretically (dashed lines) and in simulation 
(solid lines). Simulation parameters: N = 251, X ∈ [−4,4], P(x)∝N(0,1), 
M = 250, ∆c = 0.034, λmax = 50.


