AUTHOR=Gerwinn Sebastian , Macke Jakob H., Bethge Matthias TITLE=Bayesian inference for generalized linear models for spiking neurons JOURNAL=Frontiers in Computational Neuroscience VOLUME=4 YEAR=2010 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2010.00012 DOI=10.3389/fncom.2010.00012 ISSN=1662-5188 ABSTRACT=
Generalized Linear Models (GLMs) are commonly used statistical methods for modelling the relationship between neural population activity and presented stimuli. When the dimension of the parameter space is large, strong regularization has to be used in order to fit GLMs to datasets of realistic size without overfitting. By imposing properly chosen priors over parameters, Bayesian inference provides an effective and principled approach for achieving regularization. Here we show how the posterior distribution over model parameters of GLMs can be approximated by a Gaussian using the Expectation Propagation algorithm. In this way, we obtain an estimate of the posterior mean and posterior covariance, allowing us to calculate Bayesian confidence intervals that characterize the uncertainty about the optimal solution. From the posterior we also obtain a different point estimate, namely the posterior mean as opposed to the commonly used maximum