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The application of Neural Networks to river hydraulics and flood mapping is
fledgling, despite the field suffering from data scarcity, a challenge for machine
learning techniques. Consequently, many purely data-driven Neural Networks
have shown limited capabilities when taskedwith predicting new scenarios. In this
work, we propose introducing physical information into the training phase in the
form of a regularization term. Whereas this idea is formally borrowed from
Physics-Informed Neural Networks, the proposed methodology does not
necessarily resort to PDEs, making it suitable for scenarios with significant
epistemic uncertainties, such as river hydraulics. The method enriches the
information content of the dataset and appears highly versatile. It shows
improved predictive capabilities for a highly controllable, synthetic hydraulic
problem, even when extrapolating beyond the boundaries of the training
dataset and in data-scarce scenarios. Therefore, our study lays the
groundwork for future employment on real datasets from complex applications.
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1 Introduction

The ongoing demand for reliable floodmaps of ungauged basins is increasingly pressing
(Cole et al., 2006; Blöschl, 2013; Hrachowitz et al., 2013), the latter ranging from small
catchments to scarcely populated large regions in developing countries. In addition,
mapping vast flood-prone areas by means of physically based models requires a
considerable computational burden, even assuming drastic conceptual simplifications
(Prestininzi et al., 2011). Classical modeling approaches (Kumar et al., 2023) may thus
become unfeasible in such cases, and resorting to the exploitation of similarities with other
basins has been envisaged. Indeed, data-driven modeling has been proposed (Dasgupta
et al., 2024) as a fruitful way to overcome the above problems, with Neural Networks (NNs)
specifically employed in the context of environmental hydraulics (Kratzert et al., 2019). A
comprehensive review has been developed by Bentivoglio et al. (2022).

However, if classical hydraulic models already face challenges due to the lack of high
quality and/or sparse measurements, which do not allow for proper calibration of numerical
models, data-driven models are even more affected (Guo et al., 2021). Initial attempts in the
field of flood simulations indicate that Machine Learning (ML) applications and NNs
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struggle with substantial difficulties in generalizing effectively (do
Lago et al., 2023), meaning they struggle to provide reasonable
predictions for scenarios that differ from the training data (Nguyen
et al., 2023), such as different catchments (Guo et al., 2022). This
problem stems primarily from the lack of sufficiently large and
informative training datasets (Cache et al., 2024), resulting in
overfitted models. An effect closely related to overfitting and, as
such, attributable to the scarcity of calibration data, is the frequent
violation of conservation laws (Berkhahn et al., 2019), leading to
marked non-physical results. Compounding this challenge, river
flood mapping necessitates models able to explore scenarios not
comprised within the training boundaries, i.e., featuring predictive/
generalization capabilities. Any ML endeavor aimed at constructing
a predictive tool for river flood mapping needs to address such
requirement. For instance, Löwe et al. (2021) demonstrated
promising accuracy in predicting water depth on raster samples
of the same city not used in the training data, but the model
struggled to predict flooding outside depressions. Predicting
water levels in unseen terrain remains a challenge (do Lago et al.,
2023) and the inability to generalize often necessitates retraining the
model for new areas or boundary conditions. Recent research has
been increasingly focused on developing deep learning models for
flood prediction that can generalize effectively to unseen case studies
(Bentivoglio et al., 2023).

A recent paradigm shift is represented by Physics-Informed
Machine Learning (PIML) (Karniadakis et al., 2021). PIML
enhances existing models by introducing physically-based
constraints, theoretically reducing learning time, increasing
generalization capabilities (Jamali et al., 2021), and trying to
satisfy conservation equations (Jagtap et al., 2020). An early and
influential example of PIML is Physics-Informed Neural Networks
(PINNs), introduced by Raissi et al. (2019), which serve as neural
solvers for differential problems (Hao et al., 2022). These networks
are specifically designed to find solutions to forward and inverse
problems governed by partial differential equations (PDEs),
modifying the loss function with a PDE residual term computed
via Automatic Differentiation (Baydin et al., 2018) and optional
additional terms for initial and boundary conditions (Lu et al., 2021).
PINNs have been applied to benchmark problems in fluid
mechanics, particularly for Navier-Stokes equations (Jin et al.,
2021). They have demonstrated potential advantages over
classical techniques by integrating empirical data and handling
ill-posed problems (Cai et al., 2021; Cuomo et al., 2022).
Additionally, PINNs enable tackling problems of extremely high
dimensionality, where traditional solvers would face prohibitive
computational costs. In river hydraulics, PINNs have been
applied for spatial and temporal forecasting in one-dimensional
channels (Mahesh et al., 2022; Xu et al., 2024), for downscaling
Large-Scale River Models by assimilating available observations
(Feng et al., 2023), and for approximating solutions to the
Shallow Water Equations (SWEs) during flood events in a
specific river reach, achieving prediction accuracies comparable
to Finite-Volume solvers while significantly reducing
computational costs (Qi et al., 2024).

However, epistemic uncertainties, such as the incomplete and/or
imprecise comprehension of physical processes, plague the field of
hydrology, so that the computation of PDE residuals can encounter
challenges similar to those faced by classical numerical methods. In

this work, we propose to incorporate a priori physical information,
i.e., relying on user expertise, into data-driven models in the form of
regularization terms. The novelty of our approach lies in deriving
physical knowledge from both the inputs and outputs, without relying
on the residual of a differential equation. This feature can be a
significant advantage in applications where the conceptual model of
the phenomenon is partially or entirely unknown (Qian et al., 2019),
thus bypassing the limitations and difficulties associated with epistemic
uncertainty. Indeed, it is well known that the classical employedmodels,
i.e., numerical solutions of SWEs, are often used in an equifinality
framework,meaning that an effective parameterization compensates for
the absence of explicit modeling of specific phenomena (Beven, 2006).
Neural solvers are prone to suffer the same limitations within the
context of river hydraulics. Furthermore, it is widely reported in the
literature that the inclusion of physical information into ML models is
beneficial, especially in conditions of small data regimes (Zhu et al.,
2019; Karniadakis et al., 2021; Eichelsdörfer et al., 2021).

The aim of this work is to demonstrate that a novel way of
incorporating physical concepts into existing data-driven (DD)
models, unrelated to PDEs, can be beneficial. Our strategy is targeted
at scenarios where the underlying mathematical formulation is not fully
known, but expert knowledge allows the introduction of physics into the
loss function. The present method does not aim to either replace
numerical solvers or serve as an alternative numerical model. We
investigate how physically-trained NNs can generalize better
compared to purely DD ones in a controlled experiment in
environmental hydraulics. Analogous to what has been done in
Cedillo et al. (2022), we employ a simple yet non-trivial physical
problem—namely, the reconstruction of a steady-state, one-
dimensional water surface profile in a rectangular channel—to isolate
the effects of the physically-aided training. The highly informative content
of the analyzed problem comesmainly from the hidden complexity of the
underlying physics, associated to the possible occurrence of a hydraulic
jump, which is not a solution of the differential equation used to
determine the water profile (i.e., specific energy equation) (Cengel and
Cimbala, 2013). The simulations encompass a wide range of input
variations, testing the efficacy of physical training strategies even in
data scarce scenarios. As seldom done in ML applications, we tested
the new approaches even in extrapolation, paralleling challenges often
encountered in floodmapping applications. Although not proposing here
a new ML flood model, the method allows for promising improvements
of existing ML flood models, underscoring its potential value for tackling
future complex applications.

The paper is structured as follows: section 2 outlines the overall
approach adopted in this work; section 3 describes how the
methodology is employed in the physical problem; then results
are discussed in section 4; in section 5 conclusions are then drawn
and perspectives are advanced.

2 Methods

2.1 Data-driven and physics-informed
neural networks

Neural Networks aim to approximate complex mappings
between inputs x and outputs ŷ, described by an unknown non-
linear function G*
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G* x( ) � ŷ. (1)
By tuning the values of the parameter vector θ, the NN learns to
mimic G* through the approximate function G

G x; θ( ) � y (2)
where y are the predicted values.

Neural Networks were inspired by the architecture of biological
nerve cells. A single element of the network, called neuron, receives a
series of I inputs ai, calculates a weighted sum of these inputs (which
may include a bias value c), and then applies an activation function σ
to produce the neuron’s output z

z � σ ∑I
i�1

wiai + c⎛⎝ ⎞⎠. (3)

Among the most commonly used activation functions are the
Sigmoid, Hyperbolic Tangent, Rectified Linear Unit (ReLU), and
Leaky ReLU (Apicella et al., 2021). The choice of the activation
function affects the model outcome. Neurons are organized into
layers, and stacking multiple layers forms a deep neural network.

NNs discover intricate patterns in large data sets LeCun et al.
(2015) using the Backpropagation algorithm Rumelhart et al. (1986).
The NN parameters θ are learned from data by leveraging
information derived from the training set, namely, the couples
(x, ŷ). In a purely DD training process, the network calibrates its
parameters by minimizing a loss function L between y and ŷ

arg minθL y, ŷ( ). (4)
A common choice for the loss function in a DD model for a
regression problem (the output variables are real unbounded
numbers) is the Mean Squared Error (MSE)

MSE �
∑N
i�1

yi − ŷi( )2
N

(5)

but other metrics can be used depending on the nature of the data
and the goals of the model.

Feed-Forward Neural Networks (FFNN) are among the simplest
NN architectures, consisting of an input layer, a series of H hidden
layers, and an output layer. All networks employed in this work are
FFNNs. The function G represented by a FFNN can then be seen as
the composition of several functions f, each corresponding to a
hidden layer:

G � fH◦fH−1◦ . . .◦f1. (6)

A FFNN with sufficient layers and neurons can theoretically
approximate any continuous or even discontinuous function to
arbitrary precision.

PINNs are a new paradigm of ML models that combine
principles from physics-based modeling with the flexibility of
NNs. They have been used as neural solvers for physical systems
governed by a known set of Partial Differential Equations (PDEs),
addressing both forward problems (solving the equation) and
inverse problems (determining unknown parameters).

The key strategy pursued by PINNs lies in building the loss
function as follows:

L � λ · LDD y, ŷ( ) + 1 − λ( ) · LPDE G x; θ( )[ ] (7)

where LDD is a metric which measures the distance between
predicted y and observed data ŷ [e.g., MSE (5)]. LPDE is the PDE
residual, calculated using residual points, also known as Collocation
Points, in the spatio-temporal domain of the PDE. The PDE residual
becomes an additional term in the loss function, weighted by an
hyper-parameter λ, which balances the data and physical
contributions, ranging between 0 and 1. The term G(x; θ) is the
function approximating G*, as described in Equation 2. Further
terms can be included to address initial and boundary conditions
(Raissi et al., 2019).

2.2 Proposed methodology

Physical information integration is here accomplished by
including an additional term in the guise of a regularization term
in the loss function, only formally analogue to that used in PINNs as
in Equation 7

L � λ · LDD y, ŷ( ) + 1 − λ( ) · LP x, y, ŷ( ). (8)

In ML, the regularization technique limits the growth of weights
during the training phase, thus mitigating possible overfitting effects
(Ng, 2004). Whereas the term LDD still depends solely on the
predicted outputs y and the true outputs ŷ, the physical term LP

is now a metric that can also involve physical inputs x. Various
physical principles can be thus encoded into this term, enabling the
model to capture a broader spectrum of physical behaviors and
relationships hidden in the data.

Moreover, in a broader context, the methodology shares
similarities with data augmentation techniques (Shorten and
Khoshgoftaar, 2019; Maharana et al., 2022; Dhanushree et al.,
2023; Baydaroğlu and Demir, 2024). Data augmentation involves
artificially expanding the training dataset by applying various
transformations to the input data. The objective is to improve
the model’s performance by exposing it to a more diverse set of
examples, thereby enhancing generalization and robustness.
Analogously, our approach allows for an enrichment of the
informational content of the dataset by combining both input
data x and the predicted outputs y to formulate new physically-
based quantities. From this perspective, this approach can be
considered as a kind of physically-based data augmentation and
it allows for enriching the informational capacity of the data.

2.3 Synthetic case definition

We construct a specific synthetic case study to test and show the
proposed methodology. The problem at hand deals with the
reconstruction of the water surface profile along a 1D channel
induced by the presence of a weir placed at the outlet cross
section. Such problem mimics a commonly occurring scenario of
determining the area affected by the presence of a dam in a river.
Additionally, if a supercritical flow regime develops in the upstream
part of the channel, a hydraulic jump occurs (Figure 1). A
comprehensive description of the problem is reported in

Frontiers in Complex Systems frontiersin.org03

Guglielmo et al. 10.3389/fcpxs.2024.1508091

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2024.1508091


Cengel and Cimbala (2013) and briefly recalled in Appendix A for
the reader’s convenience.

The solution of the physical problem, assuming a prismatic
rectangular channel and steady flow conditions, is a function F*:

ĥ � F* x; s, b, n, zd, Q( ) (9)
with ĥ representing the true flow depth; x, the distance from the
dam; s, the channel slope; b, the channel width; n, the Manning
coefficient (related to the channel’s roughness); zd, the height of the
dam; and Q, the water discharge.

The differential Equation A1 generating the gradually-varied
water profile is not valid at the location of the hydraulic
jump. Indeed, the hydraulic jump represents an internal
boundary whose location (and strength of the local discontinuity)
needs to be solved for through additional information (see
Appendix A).

3 Simulations setup

3.1 Generation of the dataset

A synthetic dataset of water profiles was generated by uniformly
varying s, b, n, zd, and Q, spanning broad ranges of input variations

(e.g., 100% for inputs n and zd, 400% forQ, 500% for b, and 900% for
s) using a Finite-Difference scheme (see Appendix A for details).
The profiles are sampled with a fixed spatial discretization of Δx set
to 10 m, covering a total length of 5,000 m resulting in profiles of
N � 501 points. This generation method results in a uniform
sampling of the 6-dimensional domain of the F* function in
Equation 9. (see Figure 2).

The obtained profiles were randomly divided, with 70%
allocated to the training set and the remaining 30% split between
the validation and test sets. As is common in the ML framework,
model generalization is analyzed by evaluating performance on
the test set.

The input data to the various models are always normalized
using the Standard Scaler, which is a commonly used data pre-
processing technique to scale the features to have a mean of zero and
a standard deviation of one. This is necessary to prevent troublesome
problems during training due to differences in the numerical values
of the features (Ali et al., 2014).

3.2 Employed neural network architectures

To show the versatility of the approach, three FFNN
architectures were examined, referred to as the Single-Point

FIGURE 1
Sketch of the analyzed physical problem, i.e., the steady state water profile in a rectangular prismatic channel. (A) describes the subcritical case; (B)
depicts the mixed regime case. For the meaning of the symbols, the reader is referred to the text.
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(SP), the INTegrator (INT), and the Vector-To-Sequence (VTS).
It is here important to state that the aim of this work is not to
select the best architecture for solving the problem at hand, but to

evaluate the effects of the proposed methodology. Hence, there
might exist more effective deep learning approaches for solving
the problem.

FIGURE 2
The plot shows water surface profiles from two subsets of the whole synthetic dataset. The simultaneous effects of dam height (zd, red pillars) and
channel slope (s) are illustrated in the upper and lower panel respectively, whereas fixing the remaining parameters to the values reported in the boxes. In
both panels, the water surface height (H) is plotted against the distance from the dam (x); grey lines represent the bottom of the channel. Subcritical
(Froude number Fr < 1) and supercritical (Fr > 1) flow regimes are depicted in cyan and blue markers, respectively. The discontinuous transitions
between the two flow regimes represent hydraulic jumps.
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A sketch of the operating principles of SP, INT, and VTS
architectures is illustrated in Figure 3 and the corresponding
network topologies are depicted in Figure 4. Further details are in order.

3.2.1 Single-Point
A verbatim translation of the problem formulated in Equation 9

is to employ the NN to approximate the function F* with SP

h � SP x, s, b, n, zd, Q; θ( ). (10)
In this approach, the FFNN takes the six quantities governing

the phenomenon as inputs and predicts a single value for the water
depth h at the stationing x as an output.

To reconstruct the whole profile h, a SP model needs to be run
with all the desired stationing values.

3.2.2 Integrator
In this method, a NN is utilized in the guise of a numerical

integrator, that is aimed at determining the local water depth based
on its value at the adjacent stationing. An eigenanalysis of the
differential problem underpinning a steady-state 1D free surface
flow like the one chosen in this study, would require to adopt either a
downstream or upstream oriented solution direction based on the
local flow regime, namely, super or subcritical, respectively.
However, in the context of surrogate models like the one based
on ML, due to the lack of any physical support, such requirement

A

B

C

FIGURE 3
Profile reconstruction using the three different approaches; inputs and outputs are depicted as blue and orange circles, respectively; Single-Point (A)
outputs the flow depth at a specific stationing; Integrator (B) requires the neighboring downstream value, regardless of the stationing; Vector-To-
Sequence (C) outputs the entire vector of flow depth (i.e., the whole water profile) at once.

Frontiers in Complex Systems frontiersin.org06

Guglielmo et al. 10.3389/fcpxs.2024.1508091

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2024.1508091


can be overlooked. In the following, an upstream moving algorithm
has been chosen. This methodology requires a rearrangement of the
dataset into the pairs ([ĥi, s, b, n, zd, Q], ĥi+1), where ĥi and ĥi+1 must
be uniformly spaced by Δx and i spans all stationing points of
all profiles.

Due to the above structure, the INT approach misses any
information regarding the distance from the dam. As a result,
unlike the SP, it cannot predict the height at any distance from
the dam but only at multiples of the fixed Δx set by the dataset

hi+1 � INT hi, s, b, n, zd, Q; θ( ). (11)

Starting from a known downstream boundary condition (h1),
the integrator INT can be applied recursively. At each stationing,
the output from the downstream one serves as input, eventually
leading to the reconstruction of the whole profile

hi � INT hi−1, . . .( )◦ . . .◦INT h1, s, b, n, zd, Q; θ( ). (12)

It is essential to note that any classical numerical integrator
would require a repeated check for the occurrence of a
hydraulic jump, as well as an ad hoc procedure for its
solution. Instead, this model can be applied flawlessly across
such discontinuity.

Two further specific features of the Integrator approach are in
order. Firstly, at each location, due to its recursive application, INT
outputs a depth value whose error depends on the accuracy of the
previous applications. As a consequence, the model’s accuracy is
expected to decrease in the marching direction of the algorithm. A
side advantage of such upstream marching algorithm lies in the
possibility to incorporate physical conservation balances between
the current and previous location. Secondly, the recursive
application of INT introduces a subtle advantage over the other
purely DD approaches: indeed its initialization (occurring at the
most downstream stationing in our case) represents an implicit
imposition of a physical constraint.

3.2.3 Vector-to-sequence
The Vector-To-Sequence employs a FFNN that receives as input

the five parameters determining the profile solution and predicts as
output the entire vector h

h � VTS s, b, n, zd, Q; θ( ). (13)
The dataset must be rearranged in pairs ([s, b, n, zd, Q], ĥ). Just

like for the INT approach, the input does not include stationing data,
thus implying that the spacing of the output matches the one of the
training dataset.

An advantage of this architecture is that it allows for the
implementation of physical loss terms whose formulation
requires the knowledge of the whole profile, e.g., the volume of
water of the profile. Recurrent Neural Networks (Hochreiter and
Schmidhuber, 1997; Chung et al., 2014) are a natural evolution of
this architecture, but they are outside the scope of this work.

3.3 Physical training strategies

Each of the three NN architectures has undergone both purely
DD and physical training strategies, the latter consisting in
exploiting the local values of the:

• Specific energy, as in Equation A2, EN strategy in
the following;

• Froude number, as in Equation A5, FR strategy in
the following.

Utilizing both the specific energy and the Froude number as
conveyors of physical information exemplifies expert, a priori
knowledge inputs in the training procedure.

The loss function for the purely DD training strategy is
formulated in terms of MSE between real and predicted water

FIGURE 4
The employed FFNN architectures. Left to right: Single-Point, Integrator, Vector-To-Sequence.
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depth. For the physics-informed training strategies, this function is
augmented with an additional loss term, as shown in Equation 8.

The physical loss terms adopted for SP and INT read

LEN
P � 1

K
∑K
k�1

E hk, Qk, bk( ) − E ĥk, Qk, bk( )( )2 (14)

LFR
P � 1

K
∑K
k�1

Fr hk, Qk, bk( ) − Fr ĥk, Qk, bk( )( )2 (15)

where K is the batch size, that is the number of training samples
utilized at each training iteration (Abadi et al., 2015). The specific
energy value, E, and the Froude number value, Fr, depend on both
the output h and the inputs Q and b, as in Equations A2, A5.

The loss function for the VTS, the latter outputting theN-length
profile, needs to be averaged over space as well, that is

LEN
P � 1

K
∑K
k�1

1
N

∑N
i�1

E hi, Qi, bi( ) − E(ĥi, Qi, bi)( )2⎡⎣ ⎤⎦
k

(16)

LFR
P � 1

K
∑K
k�1

1
N

∑N
i�1

Fr hi, Qi, bi( ) − Fr(ĥi, Qi, bi)( )2⎡⎣ ⎤⎦
k

. (17)

Since the VTS approach outputs the entire profile at once, it is
also possible to test two additional training strategies using:

• The volume of water flowing in the river (namely, the area
under the water profile), VOL strategy in the following;

• The downstream boundary condition, BC strategy in
the following;

The corresponding loss terms read

LVOL
P � 1

KN
∑K
k�1

∑N
i�1

hi −∑N
i�1

ĥi⎛⎝ ⎞⎠
k

(18)

LBC
P � 1

K
∑K
k�1

h1 − ĥ1( )2
k
. (19)

Whereas the rationale behind the VOL condition stems an integral
equivalence between predicted and true profiles, the BC condition
leverages on the physical dependence of the backwater subcritical
profile on the weir height.

As introduced in Section 2.2, it is now clear from their
formulations why the LP terms act as regularization terms, and
the physical training strategies can be also interpreted as a form of
physical data augmentation.

Hereinafter, the term “model” refers to the combination of an
architecture and a training strategy.

3.4 Hyperparameters

Hyperparameters are values to be set before the training
process and not updated during the training phase. They
encompass crucial features such as the number of hidden
layers and neurons, the optimization algorithm along with its
learning rate, and parameters related to early stopping (Chollet
et al., 2015). Despite the study not aiming to compare the three
employed architectures, the implemented network topologies

reflect the output complexities (e.g., local depth versus whole
profile): indeed, for both SP and INT we assumed 3 layers with
30 neurons each, whereas for the VTS, we opted for 3 layers with
40 neurons each.

The ReLU activation function (Nair and Hinton, 2010) is here
employed, which is defined as

ReLU t( ) � max 0, t( ). (20)

ReLU has been chosen for its simplicity and widespread
utilization in deep learning applications; however, its selection is
not expected to impact the broader objectives of this study, and
other activation functions could also be used. The number of layers
is fixed for all NNs, and the analysis of its influence is beyond the
scope of this work.

The weights optimization phase (training) of NNs exploits a
gradient descent optimizer, such as the Adam algorithm (Kingma
and Ba, 2014), to iteratively find the minimum of the loss function.
The learning rate is another hyperparameter, which determines the
step size taken during each iteration of the optimization process and
plays a crucial role to ensure convergence.

We employ a learning rate reduction technique, specifically
ReduceLROnPlateau, within the Adam (Kingma and Ba, 2014)
optimization algorithm. The initial learning rate is set to
0.001 and is progressively reduced when approaching a
minimum of the loss function. We also employ an early stopping
criterion during the training phase, based on the MSE calculated on
the validation set.

The focus of this work is not to evaluate the best model to solve
the problem at hand, but rather to assess the effects of the a priori
physical information.

The hyperparameter λ in Equation 7, which weighs the
contribution of the physical information, has been chosen
individually for each model as the one yielding the best
performance in a discrete set of values comprised in the interval
[0,1], so to not introduce any biases in the results.

All the above hyperparameters were fixed within each model to
achieve consistent results.

We implemented all neural networks using TensorFlow (Abadi
et al., 2015) and Keras (Chollet et al., 2015).

4 Discussion of results

In this section we show the results obtained from the application
of the three different FFNN architectures, both in the purely DD and
in the physics-informed training strategies.

Solely to familiarize the reader with the physical problem being
discussed, Figure 5 depicts a typical water level profile encompassing
a hydraulic jump, as predicted by the SP, the latter having been
trained with and without the inclusion of physical information. The
reference solution, namely, the profile resulting from the Finite
Difference integration, is depicted as well.

In paragraph 4.1, NNs are trained on the complete dataset
whereas in paragraph 4.2 several stress tests are carried out by:
applying models for extrapolation, i.e., seeking predictions beyond
the range of values covered during training, a scenario common to
technical applications; exploring both overfitting and underfitting
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conditions by varying either the training dataset size or the NN
complexity.

In all the above tests, the effects of the physics-informed training
strategy are evaluated.

We employed two key metrics to evaluate the performance in
reconstructing water profiles, namely, the Normalized Mean
Absolute Error (NMAE) and the Normalized Nash-Sutcliffe
Efficiency (NNSE). The NMAE, assuming the dam’s height as a
representative length scale for the flow depth, is defined as

NMAE �
∑N
i�1

|hi − ĥi|
Nzd

. (21)

The NNSE is formulated as

NNSE � 1
2 −NSE( ) (22)

where

NSE � 1 −
∑N
i�1

hi − ĥi( )2
∑N
i�1

hi − �h( )2 (23)

and �h is the average depth of the profile. The rationale behind the
scaling in Equation 22 is to bound the NSE value between 0 and 1,
thus avoiding asymptotic tendency towards negative infinite values.
A better-performing model is characterized by a lower NMAE and a
higher NNSE.

NNSE weighs large and small errors differently, as clearly
depicted in the middle panel of Figure 5, and thus provides a
more significant measure of the model performance. In our case,
the NNSE is employed in addition to the NMAE due to its ability to
amplify errors made close to the location of the hydraulic
jump. Indeed, NNSE penalizes errors in areas where the flow
depth is close to the mean value, and the hydraulic jump is
bounded by the two conjugate depths (see Appendix A) which
are the closest to the mean value within each profile.

FIGURE 5
Typical outcome of the comparison between the employed models (DD, EN, and FR), and the reference solution (FD). The lower panel depicts the
water surface profile, as predicted by the models, and the reference solution, highlighting the hydraulic jump separating subcritical and supercritical flow
regimes. The two upper panels illustrate the spatial distribution of the Normalized Absolute Error and theNash–Sutcliffe Efficiency along the channel. The
values of the corresponding aggregatedmetrics for the entire profile (NMAE andNNSE, as in Equations 21, 22) and for eachmodel are reported in the
insets. Only the case of the SP architecture is shown for the sake of clarity.
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4.1 Complete training dataset

The cumulative frequency distributions of NMAE andNNSE are
here employed to provide a comprehensive picture of the model
performance over the whole test set. In Figure 6 and in Figure 7, we
employ a boxplot representation to depict the cumulative frequency
distribution of NMAE and NNSE for each model over the test set.

The introduction of the physical information for all
architectures improves their predictive performance. Looking at
the results, the performance obtained by embedding the Froude
number training strategy looks very similar to the one given by the

energy training strategy. The similarity of results stems from the
fact that both the Froude number and the energy depend on the
same variables, namely, local depth and velocity. In the context of
VTS, all but the VOL training strategies induce a similar
improvement in the model’s performance (Figure 7).
Constraining the volume of the water profile seems to
consistently provide a misleading information content which
detrimentally impacts the model’s performance. The reason is
that the same volume is shared by a large number of possible
output profiles. This example unveils that, despite apparently
providing additional and physically sound information (i.e., the

FIGURE 6
Complete training dataset: box plot of the NMAE and NNSE distributions for SP (A) and INT (B) architectures; boxes extend from the 25th to 75th
percentile; whiskers are placed at 10th and 90th percentiles; mean values and median values are respectively shown as triangles (with the respective
numerical value) and orange segments. An overall improvement of predictive capabilities is detectable for both architecture employing physical training
strategies.

Frontiers in Complex Systems frontiersin.org10

Guglielmo et al. 10.3389/fcpxs.2024.1508091

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2024.1508091


volume of water in the channel), the training phase may be
diverted towards non-physical solutions.

4.2 Stress tests: extrapolation, training
dataset size, and model complexity

As seldom carried out in ML frameworks, we also explore the
extrapolation abilities of the models, which we deem crucial to
ensure applicability to flood mapping. New water profiles were
generated by considering at least one of the values of the five
inputs s, b, n, zd, Q extending by 10% above or below the range
covered by the training set. A set of profiles of the same size as the
interpolation test set was randomly selected, resulting in a modified
test set (referred to as EX).

The curves of average values of the cumulative frequency
distributions, for both interpolation and extrapolation (EX) sets
in small data regimes (decreasing the size of the training set by up to
two orders of magnitude), are illustrated in Figure 8. Whereas, as
expected, the performances progressively worsen by reducing the

training set, the physical training strategy can almost always achieve
better predictions (e.g., the improvement in NMAE is typically
between 10% and 15%), thereby effectively enhancing
generalization capabilities. In some isolated cases for the INT
architecture, performance was not improved with the physical
training strategy, most likely due to a particularly unfavorable
initialization of the weights. The consistent drop in overall
performance for extrapolation cases, compared to interpolation
cases, is expected. This performance deterioration is more
pronounced with the full dataset and less significant under small
data regime conditions. However, models trained with physical
information still show improved performance in extrapolation
scenarios, with the NMAE improvement ranging in most cases
from 5% to 20%.

These results are of crucial importance for the perspective
application to flood mapping. Indeed, in such field, predictions
are often sought not only for scenarios falling within the quantitative
range of available observations, though previously unexplored, but
also for cases featuring values of the observed quantities falling out of
the range of the recorded series.

FIGURE 7
Complete training dataset: box plot of the NMAE and NNSE distributions for the VTS architecture. Box plot features are the same as in Figure 6. VTS
also yields better predictions when trained with all types of the proposed physical constraints, but the volume (VOL) one.
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We also investigated whether the complexity of the model
impacts our suggested training approach. The total number of
trainable parameters was varied while preserving the three,

equally sized layer architecture, and in both a data-rich
(complete dataset) and a data-scarce (5% of the complete
dataset) regime. Results are summarized in Figure 9.

FIGURE 8
Stress tests: mean values of NMAE and NNSE on the test set against the size of the training dataset for each architecture. Black traces and markers
represent models’ results on the test dataset fully contained in the range of the training one; red ones regard the test dataset containing values out of the
range of the training dataset (extrapolation, EX series). Although performance is lower for extrapolated scenarios, the beneficial effect of physical
information remains evident.
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When dealing with the complete training dataset, an expected
trend emerges as the number of trainable parameters decreases:
performance consistently deteriorates across all three architectures.
This discernible pattern clearly unveils the occurrence of

underfitting. Oppositely to overfitting, underfitting occurs when
the model lacks complexity compared to the information-rich
training data. The lower complexity architectures now strive to
capture the variability spanned by the complete dataset. In such

FIGURE 9
Stress tests: mean values of NMAE and NNSE on the test set against the number of trainable parameters. Black traces andmarkers represent models’
results after training on the complete dataset; red ones showmodels’ results after training on a reduced dataset (referred to as 5% in the legend). Physically
aided training provides clear improvements only for simpler models and data rich scenario.

Frontiers in Complex Systems frontiersin.org13

Guglielmo et al. 10.3389/fcpxs.2024.1508091

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2024.1508091


underfitting regime, it is noteworthy that the introduction of a
physical training strategy does not yield a consistent improvement in
generalization results. This behavior is the consequence of the
requirement for the low-complexity model, which is already
struggling to discern patterns in the data, to fulfill additional
constraints, such as the physical ones.

In the context of a small data regime, however, different behaviors
emerge. Model performance can loose dependence on the number of
parameters (as for INT) and, in some cases, it even deteriorates as the
complexity of the models increases (as for VTS). Even in this clear
overfitting scenario, models enhanced with the physical training
strategy consistently ensure an improvement in performance. Indeed
the physical term, involving both input and output data, akin to a form
of data augmentation, provides the model with further insights into the
nature of the system to be interpreted.

5 Conclusion

In this work, we propose to incorporate PDE-unrelated physical
information into the training strategy of data driven neural networks to
improve their generalization capabilities, outside the context of the
neural solvers framework.We develop a synthetic case study in the field
of environmental hydraulics to implement, apply and evaluate the
proposed methodology. Specifically, we test the enhancements in the
predictive capabilities of three neural network architectures when
recreating the water mixed-regime profile along a rectangular
channel, whereas modifying the parameters that define the solution.
This physical system often develops a discontinuity, represented by the
hydraulic jump, whose solution challenges the employed models.

The independence of our method from the knowledge of the
governing PDEs and their parameters (e.g., as exploited by the strategy
underlying the PINNs approach) presents a significant advantage in
dealing with large epistemic uncertainty, as occurs in river hydraulics.

The NNs predictions are evaluated also for scenarios falling
beyond the range of the training data (extrapolation), an aspect
which is often overlooked in ML applications. This kind of
assessment is of great relevance to the possible applications of
NNs to flood mapping, where cases featuring values of the
observed quantities falling out of the range of the recorded series
need to be predicted. Even in this context, our analysis unveils that
the physical information allows for a clear gain in performance.

Better predictive skills are also obtained in presence of
overfitting, whereas underfitting cannot be mitigated by the
added physical information.

As a complementary finding our analysis unveils the possible
occurrence of a detrimental effect of an apparently informative
physical constraint, namely, the volume. In this sense, our work calls
for the development of a systematic framework to measure the
informational content of physical constraints.

The proposed approach, involving only the loss function, is
compatible with all NN architectures. Furthermore, it could be
applicable to a wide range of physical systems where the underlying
governing PDE is not entirely known, but either other physical
principles hold true or a priori expert knowledge can be exploited.
To adapt this methodology to other problems or applications, further
exploration is necessary to integrate the relevant physical insights.
Finally, the use of synthetic datasets does not restrict in any case the

validity of our conclusions, though the implementation of the proposed
technique to real world problem will be the object of future works.
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FIGURE A1
Schematic of a hydraulic jump, showing the two control sections (section 1, upstream, and section 2, downstream) with their conjugate depths h1
and h2.
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Appendix A: Dataset generation

The dataset was generated by solving the specific energy
equation, expressed as [Cengel and Cimbala, 2013]

dE

dx
� s − J. (A1)

Here, E represents the specific energy relative to the channel bottom,
which, for a rectangular channel, can be calculated as

E � h + Q2

2gb2h2
(A2)

where g is the gravity, b is the channel width, h is the flow depth; s is
the channel slope, whereas J is the energy grade slope, calculated
using the Chezy relation

J � n2Q2

Ω2R4/3
(A3)

n is the Manning coefficient, Ω � bh is the cross-sectional flow area
and R � Ω/(b + 2h) is the hydraulic radius. The downstream
boundary condition is represented by the broad-crested
weir equation

h � zd + 3
�
3

√
Q

2
���
2g

√
b

( )2/3

(A4)

where zd is the weir height.
The possible transition from supercritical (Fr> 1) to subcritical

(Fr< 1) flow occurs through a hydraulic jump, where

Fr � Q

Ω
���
gh

√ . (A5)

Examining the conservation of momentum within the fluid
volume encompassing the hydraulic jump, two cross-sections
denoted as 1 (upstream, supercritical flow) and 2 (downstream,
subcritical flow) as in Figure A1 can be defined [Cengel and
Cimbala, 2013]. The conservation of momentum can be
expressed as

Πp1 +M1 � Πp2 +M2. (A6)

Here,Πp1 andΠp2 represent the upstream and downstream values
of the hydrostatic force, whereasM1 andM2 denote the upstream and
downstream values of the momentum flux, respectively. For a
rectangular prismatic channel, (Equation A6) becomes

h21
2
+ Q2

gb2h1
� h22

2
+ Q2

gb2h2
(A7)

which can be arranged in the following expression, establishing a
mathematical relation between h1 and h2, that are called
conjugate depths

h1 � h2
2

−1 +
�������
1 + 8Fr22

√( ) (A8)

Fr2 is the Froude number (Equation A5) at the cross-Section 2.
The water profile is obtained by solving (Equation A1) using a

first order FD scheme, with a constant spatial discretization Δx. An
upstream marching algorithm is employed, encompassing the
solution of the hydraulic jump if necessary.
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