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Understanding how neural networks process information is a fundamental
challenge in neuroscience and artificial intelligence. A pivotal question in this
context is how external stimuli, particularly noise, influence the dynamics and
information flow within these networks. Traditionally, noise is perceived as a
hindrance to information processing, introducing randomness and diminishing
the fidelity of neural signals. However, distinguishing noise from structured input
uncovers a paradoxical insight: under specific conditions, noise can actually
enhance information processing. This intriguing possibility prompts a deeper
investigation into the nuanced role of noise within neural networks. In specific
motifs of three recurrently connected neurons with probabilistic response, the
spontaneous information flux, defined as the mutual information between
subsequent states, has been shown to increase by adding ongoing white
noise of some optimal strength to each of the neurons. However, the precise
conditions for and mechanisms of this phenomenon called ‘recurrence
resonance’ (RR) remain largely unexplored. Using Boltzmann machines of
different sizes and with various types of weight matrices, we show that RR
can generally occur when a system has multiple dynamical attractors, but is
trapped in one or a few of them. In probabilistic networks, the phenomenon is
bound to a suitable observation time scale, as the system could autonomously
access its entire attractor landscape evenwithout the help of external noise, given
enough time. Yet, even in large systems, where time scales for observing RR in the
full network become too long, the resonance can still be detected in small
subsets of neurons. Finally, we show that short noise pulses can be used to
transfer recurrent neural networks, both probabilistic and deterministic, between
their dynamical attractors. Our results are relevant to the fields of reservoir
computing and neuroscience, where controlled noise may turn out a key
factor for efficient information processing leading to more robust and
adaptable systems.
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1 Introduction

Artificial neural networks are a cornerstone of many contemporary machine learning
methods, especially in deep learning (LeCun et al., 2015). Over the past decades, these
systems have found extensive applications in both industrial and scientific domains
(Alzubaidi et al., 2021). Typically, neural networks in machine learning are organized
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in layered structures, where information flows unidirectionally from
the input layer to the output layer. In contrast, Recurrent Neural
Networks (RNNs) incorporate feedback loops within their neuronal
connections, allowing information to continuously circulate within
the system (Maheswaranathan et al., 2019). Consequently, RNNs
function as autonomous dynamical systems with ongoing neural
activity even in the absence of external input, and they are
recognized as ‘universal approximators’ (Maximilian Schäfer and
Zimmermann, 2006). These unique characteristics have spurred a
significant increase in research on artificial RNNs, leading to both
advancements and intriguing unresolved issues: Thanks to their
recurrent connectivity, RNNs are particularly well-suited for
processing time series data (Jaeger, 2001) and for storing
sequential inputs over time (Schuecker et al., 2018; Büsing et al.,
2010; Dambre et al., 2012; Wallace et al., 2013; Gonon and Ortega,
2021). For example, RNNs have been shown to learn robust
representations by dynamically balancing compression and
expansion (Farrell et al., 2022). Specifically, a dynamic state
known as the ‘edge of chaos’, situated at the transition between
periodic and chaotic behavior (Kadmon and Sompolinsky, 2015),
has been extensively investigated and identified as crucial for
computation (Wang et al., 2011; Boedecker et al., 2012; Langton,
1990; Natschläger et al., 2005; Legenstein and Maass, 2007;
Bertschinger and Natschläger, 2004; Schrauwen et al., 2009;
Toyoizumi and Abbott, 2011; Kaneko and Suzuki, 1994; Solé and
Miramontes, 1995) and short-termmemory (Haruna and Nakajima,
2019; Ichikawa and Kaneko, 2021). Moreover, several studies focus
on controlling the dynamics of RNNs (Rajan et al., 2010; Jaeger,
2014; Haviv et al., 2019), particularly through the influence of
external or internal noise (Molgedey et al., 1992; Ikemoto et al.,
2018; Krauss et al., 2019a; Bönsel et al., 2022; Metzner and Krauss,
2022). RNNs are also proposed as versatile tools in neuroscience
research (Barak, 2017). Notably, very sparse RNNs, similar to those
found in the human brain (Song et al., 2005), exhibit remarkable
properties such as superior information storage capacities (Brunel,
2016) (Narang et al., 2017; Gerum et al., 2020; Folli et al., 2018).

In our previous research, we systematically analyzed the relation
between network structure and dynamical properties in recurrent
three-neuron motifs (Krauss et al., 2019b). We also demonstrated
how statistical parameters of the weight matrix can be used to
control the dynamics in large RNNs (Krauss et al., 2019c; Metzner
and Krauss, 2022). Another focus of our research are noise-induced
resonance phenomena (Bönsel et al., 2022; Schilling et al., 2022;
Krauss et al., 2016; Schilling et al., 2021; Schilling et al., 2023). In
particular, we discovered that in specific recurrent motifs of three
probabilistic neurons, connected with ternary (−1, 0,+1) weights,
the mutual information I between subsequent system states can go
through a resonance-like maximum when normal-distributed white
noise of increasing standard deviation r is added independently to all
neurons. The phenomenon was called ‘Recurrence Resonance’ (RR)
(Krauss et al., 2019a), because I can be interpreted as the
spontaneous recurrent information flux in the network. It grows
with the number of visited system states and with the degree of
predictability of each successor state from its predecessor.

Since I is a key factor for the information processing faculties of
RNNs, it became important to understand which types of weight
matrices enable a large spontaneous information flux in probabilistic
RNNs, such as Symmetric Boltzmann Machines (SBMs, see

Methods for details). By reverse-engineering evolutionary
optimized networks (Gerum et al., 2020), we found indeed a
universal design principle for maximizing I (Metzner et al.,
2024). It was called ‘NRooks’, because in optimal N-neuron
networks each row and column of the N×N weight matrix only
contains a single non-zero entry, resembling the N-rooks-problem
in chess (Katz and Sobel, 1972). While these N non-zero elements
should ideally have the same magnitude w, their signs can be
arbitrary. In the limit of large magnitudes w, the SBMs become
quasi-deterministic and the information flux I approaches the
theoretical maximum Imax � N. In this extreme case, all 2N

possible system states are periodically visited in a fixed order.
The present work aims to understand, on a deeper level than

before, the pre-conditions of the RR phenomenon, as well as its
mechanism. As model systems, we will mainly use probabilistic
SBMs, but we will also briefly consider deterministic networks with
‘tanh’ activation functions. Different types of weight matrices will be
investigated, but NRooks system will play a particularly important
role, as their information theoretic properties are very well
understood (Metzner et al., 2024).

2 Methods

2.1 Neural network model

We consider a recurrent network of Nneu model neurons. The
total sum of inputs entering neuron n in the discrete time step t is
given by

u t( )
n � vn + ∑Nneu

m�1
wnms

t( )
m

⎛⎝ ⎞⎠ + q x t( )
n( ) + r η t( )

n( ). (1)

Here, the first bracket contains a possible bias vn, as well as a
weighted sum of the momentary output signals s(t)m from all
neurons m in the network. The weighting wnm describes the
coupling strength from source neuron m to target neuron n. The
second bracket accounts for the momentary external input signal
x(t)
n entering neuron n, scaled by a global input coupling

parameter q. Finally, the third bracket accounts for a random
signal η(t)n entering neuron n, scaled by a global noise strength
parameter r. The η(t)n ~ N (0, 1) are statistically independent
random numbers, drawn from a standard Gaussian
distribution with mean 0 and standard deviation 1. Further
on, we will denote the complete weight matrix by W, the bias
vector by v, the momentary state vector by s(t), and the external
input vector by x(t). The total sum u(t)n of inputs, as defined in
Equation 1, is used to compute the next output state s(t+1)n of
neuron n. This update, which is performed synchronously for all
neurons, differs for the two models considered in this paper:

In the deterministic model, neural output signals are
continuous in the range [−1,+1] and are computed directly as
the hyperbolic tangent of the total sum:

s t+1( )
n � tanh u t( )

n( ). (2)

To initialize the deterministic network, theNneu elements of the
zero-time state vector st�0 � (s00, s01, . . . , s0Nneu−1) are drawn
independently from a uniform distribution in the range [−1,+1].
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In the probabilistic model, neural output signals are discrete
with the two possible values −1,+1{ }. The probability for the value
+1, also called the ‘on’-probability, is computed as a logistic function
of the total sum:

p t+1( )
on,n � σ u t( )

n( ) � 1

1 + exp −u t( )
n( ). (3)

To initialize the probabilistic network, the Nneu elements of the
zero-time state vector st�0 � (s00, s01, . . . , s0Nneu−1) are drawn
independently from a Bernoulli distribution, in which the
possible outcomes −1 and +1 occur with equal probability.

We also refer to our probabilistic model as a Symmetrical
Boltzmann Machine (SBM), which is called ‘symmetric’ because
the binary outputs are set to −1,+1{ }, rather than the values 0, 1{ } in
conventional Boltzmann machines. Our choice makes the SBMs
directly comparable to deterministic tanh-networks with the same
weight matrix.

Note that here we do not apply any input to the recurrent neural
networks, and thus q � 0. Also, we do not use any biases, so that
vn � 0 as well. For some types of sparse weight matrices considered
in this work, the elements have ternary values wnm ∈ −w, 0,+w{ }. In
this case, w is called the weight magnitude parameter. The same
name is also used for a multiplicative parameter w that scales the
standard deviation of a weight matrix with originally random
normal elements wnm ~ N (0, 1).

After defining the weight matrix and randomly initializing a
network, the time series of global system states st�0, st�1, . . . is
computed numerically for NT time steps, a parameter also called
the observation time scale.

2.2 Information theoretic quantities

Numerical evaluation of information theoretic quantities
requires data with discrete values. The binary output of the SBM
is perfectly suited for this purpose, but in the case of the tanh-
network we first needed to binarize the continuous outputs
s(t)n ∈ [−1,+1] → x(t)

n ∈ 0, 1{ }, defining x � 0 if s< 0, and x � 1 if
s ≥ 0. Thus, for both types of networks, the output time series can be
reduced to a binary matrixX � s(t), orY � s(t+1) for the time-shifted
series. The matrix X hasNT rows, each withNneu binary values 0 or
1. The rows correspond to momentary global states x of the network,
and (due to the binarization) the total number of possible global
states is Nx � 2Nneu .

The starting point for all our information theoretic quantities is
the joint probability P(x, y) that a global system state x is followed
by a subsequent state y in the time series. Since the size Nx of the
state space increases exponentially with the network size Nneu, the
estimation of P(x, y) becomes quickly unfeasible for large systems:
Not only does it take too long before the system has ergodically
spread over its entire state space and tried out all possible transitions
x → y, but in large systems it even becomes difficult to hold the
huge matrix P(x, y) in the computer memory. To alleviate the
memory problem, we hold only the matrix elements between the
subset of global system states that have actually been visited by the
system within the time scale NT, which can be much smaller if the
system is trapped in a dynamical attractor. From the joint

probability P(x, y) we directly obtain the two marginal
probabilities P(x) and P(y), which in our case are practically
identical, because each final state becomes an initial state in the
next time step.

The first information theoretical quantity of interest in the state
entropy H(X) of global system states, defined by

H X( ) � H Y( ) � −∑
x

P x( )log2P x( ), (4)

where all terms with P(x) � 0 count as zero.
The next relevant quantity is the mutual information I(X;Y)

between subsequent system states, defined by

I X;Y( ) � ∑
x

∑
y

P x, y( )log2 P x, y( )
P x( )P y( )( ), (5)

where all terms with P(x) � 0, or P(y) � 0, or P(x, y) � 0
count as zero.

The final important quantity is the conditional entropy
H(Y|X) � H(Y) − I(X;Y), which in our case can also be written
as H(Y|X) � H(X) − I(X;Y). This conditional entropy H(Y|X)
describes the random divergence from a specific initial state x to
several possible final states y and is therefore called the state
divergence D � H − I in the following. A value of D � 0 would
indicate perfectly deterministic behavior, a value ofD � H perfectly
random behavior.

3 Results

3.1 Conditions and mechanisms of
recurrence resonance

Our first goal is to identify the preconditions of RR, in particular
regarding the network weight matrices. For this purpose, we
consider a Symmetric Boltzmann Machine (SBM, see Methods
for details) (Equations 1–3) with Nneu � 5 binary neurons. Since
such a system has only Nx � 25 � 32 global states x, the entropy
H(X), the mutual information I(X;Y) between subsequent system
states x and y, as well as the divergence D � H−I can be accurately
estimated from the network’s output time series on a manageable
time scale of NT � 104 time steps (See Methods for details)
(Equations 4, 5).

As a basis for the network’s weight matrix W, the 25 elements
are first drawn independently from a standard normal distribution
~ N (0, 1) (Figure 1A). This ‘frozen random matrix’ is then
multiplied (scaled) with a weight magnitude parameter w, thus
tuning the standard deviation of the matrix, while keeping its
fundamental structure invariant. We can then explore how the
three information theoretic quantities H, I and D depend on the
weight magnitude w and on the strength r of added white noise (See
Methods for details).

Before that, it is useful to imagine the dynamical structure of the
SBM as a state transition graph, in which the 32 nodes represent the
possible global states

x ∈ 0, 0, 0, 0, 0( ) ≡ 0, 0, 0, 0, 0, 1( ) ≡ 1, . . . , 1, 1, 1, 1, 1( ) ≡ 31{ },
(6)
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FIGURE 1
Effect of weightmagnitude on Recurrence Resonance in BoltzmannMachines: (A) The elements of a 5 × 5weightmatrix are drawn randomly from a
standard normal distribution ~ N (0, 1). The matrix is then scaled (multiplied) by a tunable weight magnitude parameter w, thus changing the standard
deviation of the elements while keeping the fundamental structure of thematrix fixed. (B) The entropyH of global RNN states as a function of the strength
r of added noise, for six different w. For very small weights w ≤ 1 (dark blue, light blue and green curves) the system has near its maximum possible
entropyH � 5, as the neurons fire almost independently. The entropyH at r � 0 is however drastically reduced as the weights get stronger (w > 1, orange,
red and magenta curves), because the system is then trapped within a single attractor. In this trapped state, application of a sufficient level of noise r > 0
allows the system to escape and visit other attractors as well, leading to an increase of the entropy. (C) The mutual information I between subsequent
global RNN states as a function of the strength r of added noise, for six differentw. In the regime of lowweightsw, adding noise leads to a decrease of the
mutual information I. However, for sufficiently large w (red and magenta curves), the mutual information I increases with added noise r and shows a
maximum at some optimal noise level (at around ropt ≈ 5 for the red curve). (D) The joint probability P(s(t) , s(t+1)) of subsequent global system states, for
the RNNwithwidthmagnitude parameterw � 10, without noise. The system is trapped in one of the 32 possible states, which is also visible in themarginal
distribution p(s(t)) of system states (top of the matrix plot). This resting in the fixpoint corresponds to a mutual information of I � 0. (E) Adding a noise of
strength r � 10 allows the system to visit another quasi-stable fixpoint (as well as some other transient states) for a fraction of time steps, increasing the
mutual information to I � 2.3. (F) Adding a too large level r � 50 of noise opens up almost all possible states and transitions for the system. However, the
system can no longer stay within any particular attractor for a longer period of time. This loss of order corresponds to a drop of the mutual information to
I � 0.5. (G, H) State transition graph of the RNN forw � 1 (G) andw � 5 (H), with transition probabilities coded by arrow thickness. As theweightmagnitude
w increases, preferred paths emerge, and thus an attractor landscape. (I) Graph of only the dominant state transitions at w � 5. The system has two fix
points with large basins of attraction. For definition of state indices compare (Equation 6).
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and the weighted directional edges represent the possible transitions
x → y between pairs of states (Figures 1G, H). The probability of
each transition, which is given by the conditional probability
P(y|x), may be indicated by the thickness of the edges. This
state transition graph, which is determined only by the weight
matrix W, describes the possible dynamical behavior of the
network completely, irrespective of which path the system is
actually taking through the graph.

Below, we will visualize the aggregated activity in the network by
the joint probability P(y, x) � P(y|x)P(x). While this quantity also
respects the fundamental transition possibilities (described by
P(y|x)), it additionally accounts for which states and transitions
the system has actually used during the observation time (described
by P(x)).

3.1.1 Effect of increasing neural coupling
without noise

We first consider the system without applying external noise
(r � 0). For a weight magnitude of w � 0, the five neurons are
completely isolated from each other and also have no self-
connections (autapses). Consequently, each of the probabilistic
SBM neurons produces a non-biased, temporally uncorrelated,
binary random walk, where the two possible values −1 and +1
occur with equal probabilities, and independently from each other.
This means that any momentary global system state x can transition
to any other global successor state y with equal probability. We thus
have a ‘structureless’, fully connected state transition graph, with
equally ‘thick’ edges.

Since the time scale ofNT � 104 is long enough for the system to
explore its entire space of Nx � 32 global states, we expect that for
w � 0 the entropy reaches its maximum possible value
H � Nneu � 5. As the system is purely random with a
structureless state transition graph, the mutual information is
expected to be I � 0. Consequently, the divergence D � H − I is
also maximal atD � Nneu � 5. This is indeed found in the numerical
simulation.

As we tune the weight magnitude w from zero to increasingly
positive values, the state transition graph, being determined by the
weight matrix, is gradually developing a structure, that is, some of
the transitions become more probable than others. Consequently,
certain dominating paths are forming within the graph along the
‘thick’ edges, leading eventually to the emergence of dynamical
attractors, such as fixed points (Figure 1I), higher period
n-cycles, or transient states. These attractors are quite unstable at
low weight magnitudes w, so that the system can still transition
between them. Nevertheless, within the limited time horizon of NT

time steps, it now becomes impossible to visit all 32 global states with
equal probability. Without additional noise (r � 0), this leads to a
gradual decrease of the entropyH(r � 0) (Figure 1B). The growth of
structure in the graph with increasingwmakes the system dynamics
more deterministic and is thus also connected with a decrease of the
random divergence D(r � 5) (not shown in the figure).

However, since the entropyH and the divergence D decrease at
different rates with the weight magnitudew, the mutual information
I � H −D shows a more complicated behavior (Figure 1C). As w is
increased from 0.2 to 2, the mutual information without noise
I(r � 0) is first increasing, reflecting the higher degree of
predictability of the next state. But for w � 5, we find that

I(r � 0) is decreasing again, reaching a value of zero for w � 10
(Figure 1C, red and magenta curve).

This extreme situation of H � D � I � 0, which is most often
found at large weight magnitudes but without noise, means that the
system is trapped in a single global state, in other words, a quasi-
stable fixed point x+. Correspondingly, the joint probability P(x, y)
of subsequent system states has only a single non-zero entry at x �
y � x+ (Figure 1 (d,matrix plot)), and also the marginal state
probability P(x) has only a single entry at the fixed point state x �
x+ (Figure 1 (d,histogram on top)).

3.1.2 System behavior with noise
Wenow go back to the case of relatively weak weight magnitudes

w≤ 1 and gradually increase the strength r of added noise. Here, the
entropy H is already quite large without noise, and adding noise
increases it even further (Figure 1 (b, green curves on the very top)).
The noise thus helps the system to visit all possible states with equal
probability, which can be seen as a beneficial effect. However, the
noise increases also the divergenceD at a fast rate (not shown in the
figures), so that the mutual information I � H −D is only
decreasing as more noise is added (Figure 1 (c, green, light blue
and dark blue curves)). We therefore do not observe RR, that is, a
peak of the mutual information as a function of noise, in the regime
of weak weight magnitudes.

In contrast, a different behavior is found for stronger weight
magnitudes w≥ 5. Here, the entropy H is also increased by adding
more noise (Figure 1 (b, red and magenta curves)), but the mutual
information I is now initially increasing with noise - with a small
exception at small noise levels (Figure 1 (c, red and magenta
curves)). In the case of w � 5 (red curve), it reaches a maximum
at a noise level of around r � 5 and then decreases again. Forw � 10
(magenta curve), the maximum of I is around r � 10. Thus, RR is
only observed in the regime of sufficiently strong weight
magnitudes.

Generally, whenever the mutual information as a function of
noise shows a clear maximum in a given network, the joint and
marginal probability distributions are characteristically different at
the points without noise (Figure 1D, r � 0), close to the RR
maximum (Figure 1E, r � 10), and far beyond the RR maximum
(Figure 1E, r � 50): Without noise, the system visits relatively few
states, spending its time in only one or a few attractors. At the RR
peak, the number of visited states is larger, and those states mainly
belong to quasi-stable attractors (The matrix plot then shows a
distinct set of dominating entries). Beyond the RR peak, the system
visits even more states, but now only transiently, without staying in
any particular attractor for a longer period of time (The matrix plot
then appears more uniform and unstructured than at the
RR maximum).

3.2 RR in selected networks with multiple
attractors

If RR is a process where noise helps neural networks to reach
more attractors in a given time horizon, the phenomenon should be
particularly pronounced in systems with multiple (as well as
sufficiently stable) attractors. We therefore select the following
three specific types of weight matrices, while keeping the network
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size of the SBM at Nneu � 5 and the time scale at NT � 104: an
autapses-only network, a Hopfield network, and a NRooks network.

3.2.1 Autapses-only network
We first test a ‘autapses-only’ network, in which all non-

diagonal elements of the weight matrix (corresponding to inter-
neuron connections) are zero, whereas the diagonal elements
(corresponding to neuron self-connections, or ‘autapses’) have
the same positive value w � +10 (Figure 2 (row (a), inset of left
plot)). In this case, since the SBM neurons are isolated from each
other, they produce mutually independent, binary random walks.

The probabilities of −1 and +1 are still equal, because we do not use
biases (vn � 0, See Methods). However, due to the excitatory
autapses, the random walks are now temporally correlated
(‘persistent’), which means that an output of +1 is more likely
followed by another +1, and analogously for −1. Each neuron thus
tends to produce longer chains of outputs with identical sign, only
switching to the opposite sign after a certain correlation time. For
the total system, this means that any momentary global state is
conserved, with high probability, for a finite number of time steps.
Hence, each of the 32 global system states is a quasi-stable fixed
point here, and the degree of stability can be increased by the self-

FIGURE 2
Recurrence Resonance in various multi-attractor RNNs: We consider three types (rows a,b,c) of Boltzmann Machines with five neurons. The first
column in each row is a plot of the entropyH (black) and of the mutual information I (orange) as a function of the noise strength r, with the weight matrix
as an inset. Columns two to four show the joint probability matrices P(s(t) , s(t+1)) of subsequent global system states, with the marginal state distributions
p(s(t)) on top, for the zero noise case r � 0, optimal noise r � ropt , and excessive noise r � 50. (A)Unconnected neuronswith strong positive autapses
(self-connections). (B) Hopfield network, designed to store two distinct patterns (fixed points). (C) NRooks networks, in which each column and row
contains only one non-zero weight matrix element of large magnitude. The left inset corresponds to a network with the same weight matrix, but with
deterministic tanh-neurons.
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connection strengthw. For this reason, this type of network could be
useful as short-term memories in practical applications.

In our simulation, the autapse-only network without external
noise is spending all of the 104 time steps in only two of its
32 fixed point attractors, consequently leading to a mutual
information of about I � 1 (Figure 2 (row (a), column ‘no
noise’)). Adding an optimal amount of noise (r � 4) drives the
network to visit all available attractors, yet not with the same
frequency. Nevertheless, the peak mutual information is with I �
4.5 close to the upper limit of 5 (Figure 2 (row (a), column ‘optim.
noise’)). Applying an excessive noise of r � 50 lets the system
undergo almost all 322 possible state-to-state transitions, but
these frequent unpredictable jumps between attractors lead to a
mutual information of only I � 0.1 (Figure 2 (row (a), column
‘strong noise’))

A remarkable feature of the autapse-only network’s RR-curve
(Figure 2 (row (a)) is the part between zero and optimal noise. In this
regime, the mutual information I follows extremely closely the rising
curve of the entropyH, meaning that the divergence D is extremely
small. Hence, the noise is on the one hand able to occasionally
transfer the system from one (fixed point) attractor to a different
one, but on the other hand allows the system to stay for a sufficiently
long time interval within each attractor, so that the next state
remains predictable to a high degree which constitutes a
precondition for a high mutual information. We will see below
that other systems also show this initial noise regime where entropy
and mutual information rise together, while the divergence remains
close to zero. At some level of noise, of course, the divergence must
increase as well.

3.2.2 Hopfield network
Another type of recurrent neural network that is famous for its

ability to have multiple (designable) fixed point attractors is the
Hopfield network (Hopfield, 1982). Weight matrices of Hopfield
networks are symmetric (wmn � wnm) and have no self-connections
(wmm � 0). Its neurons are traditionally updated one by one in an
asynchronous manner, but we continue to use a synchronous update
in our SBM model.

We have designed the weight matrix to ‘store’ the two patterns
[+1 + 1 − 1 − 1 − 1] ≡ 24 and [−1 − 1 + 1 + 1 + 1] ≡ 7. The

magnitude w of the weight matrix elements was made large
enough to ensure a good stability of the two fixed points
corresponding to the stored patterns (Figure 2 (row (b), inset of
left plot)).

In a broad initial regime of noise strengths r � 0 . . . 10, the
RR-curve of the Hopfield network (Figure 2 (row (b), left plot))
shows an entropy H and mutual information I of zero, which is
characteristic for a system that is trapped in a single fixed point.
The matrix plot of the joint probability reveals that this fixed
point is the global state [+1 + 1 − 1 − 1 − 1] ≡ 24, the first of the
two stored patterns (Figure 2 (row (b), column ‘no noise’)). The
mutual information I starts to rise sharply at around r � 15 and
reaches a peak at r � 23, while the entropy H continues to
increase toward the upper limit. At the optimal noise level,
the system is now visiting both fixed points (state 7 as well as
state 24) with similar frequency, resulting in a peak mutual
information of about I � 1.3 (Figure 2 (row (b), column
‘optim. noise’)). Since the two fixed points are very stable (due

to the large magnitude of matrix elements), the system is
spending a comparatively large fraction of time in these two
states, even at a large noise level of r � 50 (Figure 2 (row (b),
column ‘strong noise’)).

3.2.3 NRooks network
Finally, we test the RR phenomenon in so-called ‘NRooks’

networks, which under ideal conditions (large magnitude w of
non-zero weights and long observation time scale NT) are known
to approach the upper theoretical limit of mutual information and
entropy, corresponding to I � H � Nneu (Metzner et al., 2024), and
a vanishing divergence D � 0. The NRooks weight matrix has only
one non-zero matrix element in each row and column (hence the
name), and these Nneu non-zero matrix elements have the same
magnitude w, but arbitrary signs (Figure 2 (row (c), upper inset of
left plot)). It has been shown that all global states of an NRooks
system are parts of n-cyles of various sizes, that is, there are no
transient states that wouldmerely lead into these attractors (Metzner
et al., 2024).

Our specific NRooks system turns out to have four different
8-cycles as attractors, and without noise it is trapped in one of
them (Figure 2 (row (c), column ‘no noise’)). Since running for
thousands of time steps within this attractor involves eight
distinct states (creating entropy) in a perfectly predictable
order (without divergence D), the entropy and mutual
information have already a relatively large value of H � I � 3,
even without external noise (Figure 2 (row (c), left plot)). Since
attractors are quite stable at w � 20, we observe a plateau with
H � I � 3 in the RR-curve, holding up to a noise level of r � 4,
whereH and I start to increase rapidly. At the peak of the mutual
information, occurring for a noise level of r � 7, it reaches the
value of I � 4.9, which is close to the theoretical maximum of 5.
Indeed, at that point the system is visiting all four 8-cycle
attractors with about the same frequency (Figure 2 (row (c),
column ‘optim. noise’)). It stays for a very long time in each of
them, behaving almost perfectly deterministic. Only
occasionally, the noise of optimal strength ‘kicks’ the system
randomly to one of the other three attractors. As usual, for a very
strong amount of noise, the system looses its predictability, and
the mutual information I drops accordingly, while the entropyH
remains at the upper limit.

In the above numerical experiments with multi-attractor
SBMs, we have used relatively large weight magnitudes w. In
the given context, this served the purpose to make the attractors
of the autonomous networks more stable. More generally, large
weight magnitudes drive the SBM neurons into the saturation
regime of the logistic activation function, so that the on-
probabilities p(t)

on,n become either ≈ 0 or ≈ 1 for all neurons n
and all time steps t. Hence, the probabilistic SBM then behaves
quasi deterministic. For this reason, we could use an SBM to
implement a Hopfield network, which is usually based on
deterministic binary threshold neurons.

In order to further demonstrate the saturation regime of the
SBM, we have used the same weight matrix that was used in the
NRooks example also in a network with deterministic tanh-Neurons
(See Methods for details). The resulting RR-curve is indeed
extremely similar to that of the probabilistic SBM (Figure 2 (row
(c), lower inset of left plot)).
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3.3 Time-scale dependence of RR

As already mentioned above, the observation time scale NT is
another critical factor that determines whether a RR peak will be
observable in a given system.

For a demonstration, we now use a NRooks system of only three
neurons (Figure 3A). Because of its extremely small state space
(Nx � 8), it is possible to make the attractors stable by a relatively

large weight magnitude of w � 10, but nevertheless to approach the
ergodic limit of very large time scalesNT, where the system is able to
visit all its attractors autonomously, without the injection of
external noise.

We find that for too strong levels of noise (here r ≥ 4), the mutual
information I is just declining, irrespective from the time scaleNT. In
this regime, the system is operating already at maximum entropy
(H≈ 3), but the noise is causing an increasing loss of predictability.

FIGURE 3
(A): Time-scale dependence of information quantities. Mutual information I in a 3-neuron NRooks system, with weight magnitude w � 10 of the
non-zero matrix elements, as a function of the noise strength r, evaluated for different numbers of simulation time stepsNT between 5000 and 100,000.
All curves show the same decay of mutual information I for noise levels larger than about r � 4, but they differ drastically in the regime of smaller noise
levels: For a proper time scale NT � 5000, the curve I � I(r) shows clearly the RR phenomenon, with a peak mutual information at r � 3. As the
observation time scaleNT is increased, themutual information I in the whole regime of smaller noise levels is rising, as the system getsmore opportunities
to switch attractors. This leads to a shift of the RR peak to lower noised levels ropt . For time scale above NT ≈ 10000, the mutual information I(r � 0)
without noise is rather abruptly jumping to close to the maximum possible value, meaning that the system does not require external help any more to
realize optimal information flux. At this point the RR phenomenon disappears. (B): ‘Local’ mutual information I′ in a 15-neuron NRooks system with
weight magnitudew � 15 and time scaleNT � 104, as a function of the noise strength r, evaluated only in a subgroup ofNE ∈ 2,4,6,8, 10, 12, 14{ } neurons.
Since the time scale of NT � 104 is insufficient to reach ‘ergodic’ behaviour in a space of 215 states, no RR maximum is visible for large subgroup sizes
NE � 12 and NE � 10, but instead a rise and saturation of I′ with increasing noise (plateau remains until at least r � 50, data not shown). For too small
subgroup sizesNE � 2 andNE � 4, only amonotonous drop ofmutual information is observed as a function of the noise level r. However, for intermediate
subgroup size NE � 6 and NE � 8, a clear RR peak is emerging. It is therefore possible to detect RR even in large systems, at least locally.
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For a time scale ofNT � 5000, which is appropriate for the given
system, a clear RR peak is observed in the mutual information curve
I � I(r) at around r � 3. As the time scale is now prolonged, up to
around NT � 9000, the mutual information I � I(r) is generally
rising for moderate noise levels in the range r ∈ [0, 3], because the
systems gets more opportunities to escape and switch from one
attractor state to another. As a consequence, the RR peak is moving
to smaller noise levels ropt.

For the moderate time scales NT < 9000 considered so far, the
system, without noise, is trapped in a 4-cycle, and therefore the
mutual information is I(r � 0) � 2. However for larger time scales
NT > 10000, we find a value I(r � 0) ≈ 3 close to the theoretical
maximum of 3, which means that now even the zero-noise system
can visit all its attractor states and run through each of them in an
almost perfectly predictable way. Thus, the phenomenon of RR is
not observable on extremely long time scales, where systems already
operate close to their ergodic regime.

3.4 “Local” mutual information in
sub-networks

In actual applications of RNNs, such as reservoir computing,
networks are typically so large (Nneu > 100) and consequently the
state spaces so huge (Nx > 2100) that the ergodic regime cannot be
reached on any practical time scale NT. Moreover, in such
practically non-ergodic systems, it is also impossible to accurately
evaluate the full mutual information of subsequent system states,
because the joint probability matrices are too large
(Nx × Nx > 2100 × 2100) and because the empirical distributions
have not enough time to converge toward a stable result. The
question then arises how to compute a useful approximation of I �
I(r) in large systems, even when they are observed on ‘too short’
(but practically relevant) time scales.

Although a detailed investigation of this question is beyond
the scope of the present paper, we provide a first insight using a
15-neuron NRooks system, observed on the non-ergodic time
scale of NT � 10000 (Figure 3B). To alleviate the matrix size
problem, we only consider global states that have actually been
visited during the observation time (See Methods for details).
Moreover, as a proxy for the full I(r), we compute the ‘local’
mutual information I′(r) within smaller sub-networks,
i.e., subgroups of only NE ≤ Nneu neurons.

For large sub-networks (NE > 10), instead of a RR peak, we find
an increase of the local mutual information I′(r) with noise, and
finally a saturation. This plateau is also observed for larger noise
levels up to r � 50 (data not shown).

In contrast, for very small sub-networks (NE ≤ 4), we find
already a smaller starting value of I′(r � 0) at zero noise, and
eventually a decline of I′(r) with increasing noise level r.

However, for a certain intermediate range of sub-network sizes
between NE � 6 and NE � 8, the curve I′(r) shows a clear
maximum that decays very slowly after the peak. Thus, in large
networks, when observed on short quasi non-ergodic time scales, a
phenomenon similar to RR can occur within smaller sub-networks,
whereas the mutual information of the total system then shows a
saturation-type dependence on the noise level.

3.5 Effect of noise pulses in probabilistic,
binary-valued RNNs

At the peak of the RR curve, the continuous white noise input of
optimal strength ropt is leaving a RNN in its present attractor for
long times, but occasionally causes a random transit to one of the
other available attractors. It is this combination of high predictability
and high entropy that leads to the optimal value of the mutual
information.

A natural extension (and putative application) of this concept
are short noise pulses - applied only at times when a change of
attractor state is required - instead of a continuous feed-in of noise.
To test this concept, we have again used the 5-neuron NRooks
system of Figure 2C, with its four different 8-cycles as attractors. The
system is initially in one of its 8-cycle attractors (Figure 4A), and
remains in this attractor for an arbitrarily long period that only
depends on the weight magnitude w. By applying short (10 time
steps) yet strong (r � 50) Gaussian white noise pulses, we could
indeed transfer the system randomly to one of the other attractors. It
also happens that the system ends up in the same attractor (yet at a
different ‘phase’ of the periodic cycle), but eventually we could reach
all four 8-cycles by this way (Figures 4B–D).

In actual applications, the noise strength r could be made a
continuously or abruptly changing function of time, designed to
accelerate the ‘equilibration’ of the RNN over its state space. This
clearly resembles the well-known technique of simulated annealing
(Kirkpatrick et al., 1983; Aarts et al., 1987; Aarts and Van Laarhoven,
1989), yet with the important difference that quasi-deterministic
RNNs follow a prescribed order of states, once they have entered a
cyclic attractor. In biological neural networks, the optimal
momentary noise strength might even be provided by a feedback
control system that continuously aims to optimize network
performance.

3.6 Effect of noise pulses in continuous-
valued RNNs

So far, we have only briefly explored the effect of noise on
networks of deterministic tanh-neurons (inset of Figure 2C). As a
further glimpse into this alternative field of research, we apply a
short (5 time steps) and weak (r � 5) noise pulse to a very small
(3 neurons) tanh-network, in which the nine matrix elements have
been drawn randomly from a standard normal distribution
~ N (0, 1).

Before the noise pulse, the system is allowed to run freely for
100 time steps. The resulting system states at each time step are here
continuous points within the three-dimensional cube ] − 1,+1[3 and
can thus be visualized directly as a 3-dimensional trajectory (Figures
4E–G). We find the system initially within a ‘strange’, loop-like
attractor (e). During the short noise pulse, the trajectory is erratic
and reaches the borders of the state space cube (f). After the pulse,
the system has settled in a new strange attractor, which resembles a
2-cycle, but only with an approximate return to the end points in
each oscillation period. Thus, it is also possible to achieve a switch of
attractor states in deterministic RNNs with continous output values
by the injection of noise pulses.

Frontiers in Complex Systems frontiersin.org09

Metzner et al. 10.3389/fcpxs.2024.1479417

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2024.1479417


4 Conclusion

In this work, we have re-considered the phenomenon of
Recurrence Resonance (RR), i.e., the peak-like dependence of an
RNN’s internal information flux on the level r of white noise added
to each of the neurons (Krauss et al., 2019a). The information flux is
measured by the mutual information I � H−D between subsequent
system states, a quantity that grows as more states become available
(larger entropy H), and/or when each successor state can be better
predicted from its predecessor (smaller divergence D).

We have shown that a resonance-like peak of I(r) can only be
observed in networks that fundamentally have a whole set of
relatively stable dynamical attractors available, but which -
without external intervention - would remain trapped in one of
them during the entire observation time scale NT. In this situation,
adding a small level r≤ ropt of noise helps such networks to
occasionally jump out of the present attractor and switch into
another one, without significantly reducing the predictability of
the state sequence within each of these quasi-stable attractors
(strong increase of H, but weak increase of D). If the noise level
r is however increased beyond the optimal point ropt, predictability
is lost and consequently the information flux I(r) is declining again,

while the entropy H is still increasing toward its upper limit. By
contrast, networks that already have a high internal information flux
from the beginning will not show a RR peak, but only a decline of I
as a function of r.

We have demonstrated the RR phenomenon using Symmetric
Boltzmann Machines (SBMs) with different types of weight
matrices, including random Gaussian matrices, diagonal matrices
(autapse-only networks), Hopfield networks trained on specific
patterns, and in NRooks systems that are known to reach the
upper limit of information flux. In each case, we demonstrated
that the network without noise is trapped in a single or few
attractors, based on the joint probability of subsequent system
states. An optimal level of noise makes more (or even all)
attractors available without too many unpredictable transitions.
However, excessive levels of noise cause more or less random
jumps between all possible pairs of states. In systems with a very
high stability of attractors (induced by a large weight magnitude w),
we have found that I(r) remains constant at the initial value
I(r � 0) for a certain range of noise levels, before it abruptly
rises in the way of a phase transition.

We have also demonstrated that RR can only be observed in
appropriate time scales NT, relative to the total number of possible

FIGURE 4
Applying noise pulses to RNNs. (A–D): 5-neuron NRooks systemwith a state space consisting of four 8-cycles. The system (weight matrix see inset)
is originally trapped in one of these attractors (A). After applying a noise pulse with a duration of 10 steps and a strength of r � 50, the system has been
randomly transferred to another 8-cycle (B). A further noise pulse moves the system into the third available 8-cycle (C). The next four noise pulses
produce the same attractors that have been already visited, but the subsequent noise pulse transfers the system into the final of the four distinct
attractors (D). Without adding noise, the system remains stable in its current attractor for arbitrarily long times, as determined by the weight magnitude of
the non-zero weights (here w � 20). (A–D): 3-neuron system with random Gaussian weight matrix and deterministic tanh-neurons. Plotted is the
trajectory of the system (weight matrix see inset) in the continuous state space cube ] − 1,+1[3. Originally, the system is running through a strange
attractor, where the trajectory is approximately confinedwithin a torus (E). After 100 steps of free time evolution, a noise pulse is applied with a duration of
five steps and a strength of r � 5 (F). After the pulse, the system is in a new attractor resembling a 2-cycle, but without precise re-visitation of the endpoints
(G). These examples show that short noise pulses may be a way to access, on demand, various new attractors of a system, but without compromising the
perfect order within each attractor.
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system states Nx � 2Nneu . For arbitrarily long observation times
(which are of theoretical interest but not so much of practical
relevance), a neural network operating in the quasi-deterministic
regime, but with at least a small probabilistic component (like SBMs
with a large but finite weight magnitudew) can eventually visit all its
attractors in an ergodic manner, but still stay in each of them for
extended time intervals. Then I(r � 0) is already close to the
optimum value and application of noise only degrades the
information flux.

An interesting problem arises therefore in networks with many
neurons and thus an exponentially large state space, such as
reservoir computers, or brains. Such systems will necessarily
spend all their lives within a negligible fraction of the
fundamentally available state space, possibly consisting of only a
tiny subset of attractors. One way to cope with this ‘practical non-
ergodicity’ would be a repeated active switching between attractor
subsets (perhaps using noise pulses), until a useful one is found, and
then to stay there. Alternatively, the networks may be designed (or
optimized) such that the useful attractors have a very large basin of
attraction. A similar problem has been discussed in the context of
protein folding with the ‘Levinthal paradox’, where naturally
existing proteins fold into the desired conformation much faster
than expected by a random thermal search in conformation space
(Zwanzig et al., 1992; Karplus, 1997; Honig, 1999), probably due to
funnel-type energy landscapes (Bryngelson et al., 1995; Martínez,
2014; Wolynes, 2015; Röder et al., 2019).

In our context of the RR phenomenon, practical non-ergodicity
makes it impossible to compute the stationary information flux in a
large network, because the system never reaches a stationary state
(marked by constant probability distributions) within any practical
time scaleNT. When the information flux in a network is evaluated
naively, using the ‘transient’ (not yet converged) joint probability
distributions, we have found that I(r) shows a saturating behavior,
rather than a maximum. Nevertheless, the ‘local’ mutual
information, evaluated for a suitably sized sub-network, can then
still show a RR peak.

Finally, we have explored the repeated application of short noise
pulses, rather than feeding continuous noise into the neurons. We
could demonstrate that each pulse offers the network a chance to
switch to a new random attractor (such as an n-cycle), while the
intermediate free running phases allow the system to
deterministically and thus predictably follow the fixed order of
states within each of the attractors.

If the random noise signals are delivered independently to each
individual neuron, and if the levels of these external control signals
are strong enough to override the recurrent internal signals from the
other neurons, then the network could theoretically end up, after the
noise application, in any of its 2n global system states. Thus all the
system’s attractors could theoretically be accessed by this way.
Nevertheless, a complete exploration of the entire attractor
landscape will take an extremely long time in large networks.

Based on this noise-induced random switching mechanism, an
evolutionary optimization algorithm could be implemented in a
recurrent neural network, in which various attractors are tried until
one turns out useful for a given task. We speculate that this principle
might be used in central pattern generators of biological brains
(Hooper, 2000), for example, in order to find temporal activation
patterns for certain motor tasks (Marder and Bucher, 2001).

5 Discussion

In free running SBMs, a neuron’s probability of being ‘on’ in the
next time step is computed by a logistic activation function σ(u),
where u is the weighted sum of inputs from other neurons. Adding
white, normally distributed noise to u corresponds to a convolution
of the logistic function with a Gaussian kernel, resulting in a
‘broadening’ of the activation function. Increasing the noise level
thus has an effect similar to turning up the ‘temperature’ parameter
T in a re-scaled activation function σ(u/T). This opens up a new
interpretation of the RR phenomenon in terms of statistical physics,
in particular if an energy E(s) � −∑mnwmnsmsn can be assigned to
each global system state s.

In this case, the system - after sufficiently long time - would
come to thermal equilibrium, and the probability of finding it at any
state s would be proportional to the Boltzmann distribution
∝e−E(s)/T. At low temperature, the system would therefore spend
most of its time in the deepest valleys of the energy landscape, which
may correspond to fixed point attractors. Increasing the temperature
would lead to a more uniform distribution of states over the energy
landscape, and there might be a sweet spot for the temperature that
perfectly balances stability of the attractors with occasional barrier
crossings, just as in the RR phenomenon. Moreover, during the
equilibration process, it might be advantageous to start with a high
temperature (noise level) and then to slowly decrease it, as in
Simulated Annealing (Van Laarhoven et al., 1987; Bertsimas and
Tsitsiklis, 1993).

Note, however, that in our SBM model the system’s dynamics
cannot be visualized as a simple probabilistic downhill relaxation
within the energy landscape E(s), because we are using a
synchronous update of all neurons and non-symmetric weights.
For example, in NRooks systems, each n-cycle attractor can have
another energy, but the energy is the same for all states that belong to
the same attractor. Despite of this ‘energetical degeneration’ of states
within a given n-cycle, the system is not randomly jumping between
those states, as it would be expected from a thermal system, but it is
running through the state sequence in a perfectly deterministic way.

In this work, we have mainly focused on probabilistic SBMs as
model systems of recurrent neural networks. However, we have
shown that for sufficiently large weight magnitudes w the neurons
operate in the saturation regime of the logistic activation function
and therefore the SBMs behave quasi-deterministic. In this regime,
the RR curves of SBMs turned out to be extremely similar to those of
networks with the same weight matrix, but with deterministic tanh-
neurons. Also, we have demonstrated that attractor switching by
noise pulses works equally well for tanh-networks with continuous
outputs. Nevertheless, regarding the details of the RR phenomenon,
we expect future work to reveal some fundamental differences
between probabilistic and deterministic RNNs. In particular,
while the SBM neurons turn into independent random
generators when the general weight magnitude w of their
connections is turned down, deterministic networks can - even
for small w - produce complex dynamical attractor states. It is not
clear at present how sensitive those attractors react on externally
injected noise.

Neural networks, both artificial and biological, have a tendency
to become trapped in low-entropy dynamical attractors, which
correspond to repetitive, predictable patterns of activity (Khona
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and Fiete, 2022). These attractors are often associated with stable
cognitive states or established perceptual interpretations (Beer and
Barak, 2024). In particular, it has been shown that during
spontaneous activity the brain does not randomly change
between all theoretically possible states, but rather samples from
the realm of possible sensory responses (Luczak et al., 2009; Schilling
et al., 2024). This indicates that the brain’s spontaneous activity
encompasses a spectrum of potential responses to stimuli, effectively
preconfiguring the neural landscape for incoming sensory
information. While stability and predictability are crucial for
efficient functioning and reliable behavior, they can also limit the
flexibility and adaptability of the system (Khona and Fiete, 2022;
Beer and Barak, 2024). This is particularly problematic in contexts
requiring learning, creativity, and the generation of novel ideas
(Sandamirskaya, 2013).

The introduction of noise into neural networks has been
suggested as a mechanism to overcome the limitations imposed
by these low-entropy attractors (Hinton and Van Camp, 1993).
Noise, in this context, refers to stochastic fluctuations that perturb
the network’s activity, pushing it out of stable attractor states and
into new regions of the state space (Bishop, 1995). This process can
enhance the network’s ability to explore a wider range of potential
states (Sietsma and Dow, 1991), thereby increasing its entropy and
promoting the discovery of novel solutions or interpretations.

Biological neural systems, such as the human brain, provide
compelling evidence for the utility of noise in cognitive processes.
The brain is inherently noisy, with intrinsic fluctuations occurring at
multiple levels, from ion channel gating to synaptic transmission
and neural firing (Faisal et al., 2008). This noise is not merely a
byproduct of biological imperfection; rather, it plays a functional
role in various cognitive tasks (McDonnell and Ward, 2011). For
example, noise-induced variability in neural firing can enhance
sensory perception by enabling the brain to detect weak signals
that would otherwise be drowned out by deterministic activity (Deco
et al., 2009).

Another noise-based phenomenon of great importance in
physical and biological systems is Stochastic Resonance
(Gammaitoni et al., 1998; Moss et al., 1993). It is typically
occurring in signal detection systems, where the incoming signal
needs to exceed a minimal threshold in amplitude to be detected.
Adding an appropriate level of noise to the input can then
stochastically lift even weak signal above the threshold and
thereby improve the detection performance, as it has indeed been
observed in various sensory systems (Moss et al., 2004; Stein et al.,
2005; Ward, 2013). The phenomenon of Recurrence Resonance
discussed in this paper is different from Stochastic Resonance, as it
improves the spontaneous, internal information flux in a neural
network, rather than the signal transmission from the outside to the
inside of the system. However, using mutual information or
correlation-based measures, it is also possible to quantify the
information flux from the input nodes of a RNN at time t to the
internal network state at a later time t+Δt (Metzner and
Krauss, 2022).

Noise also facilitates learning and plasticity. During
development, random fluctuations in neural activity contribute to
the refinement of neural circuits, allowing for the fine-tuning of
synaptic connections based on experience (Marzola et al., 2023;
Zhang et al., 2021; Fang et al., 2020). In adulthood, noise can help the

brain escape from local minima during learning processes, thereby
preventing overfitting to specific patterns and promoting
generalization (Zhang et al., 2021; Fang et al., 2020). This is
particularly relevant in the context of reinforcement learning,
where exploration of the state space is crucial for finding optimal
strategies (Weng, 2020; Bai et al., 2023).

Moreover, noise-induced transitions between attractor states
can support cognitive flexibility and creativity. For instance, the
ability to switch between different interpretations of ambiguous
stimuli (Panagiotaropoulos et al., 2013), or to generate novel
ideas, relies on the brain’s capacity to break free from dominant
attractor states and explore alternative possibilities (Wu and
Koutstaal, 2020; Jaimes-Reátegui et al., 2022). This is
consistent with the observation that certain cognitive
disorders, characterized by rigidity and a lack of flexibility
(e.g., autism, obsessive-compulsive disorder), are associated
with reduced neural noise and hyper-stable attractor dynamics
(Dwyer et al., 2024; Watanabe et al., 2019).

In conclusion, the investigations detailed in our study firmly
establish Recurrence Resonance (RR) as a genuine emergent
phenomenon within neural dynamics: the mutual information of
the system is increased by the addition of noise that itself has zero
mutual information. Hence, the application of optimal noise levels
can transform neural systems from states of minimal information
processing capabilities to significantly enhanced states where
information flow is not only possible but also maximized. This
effect, whereby noise beneficially modifies system dynamics,
underscores the complex and non-intuitive nature of neural
information processing, presenting noise not merely as a
disruptor but as a critical facilitator of dynamic neural activity.
This finding opens up new avenues for exploiting noise in the design
and enhancement of neural network models, particularly in areas
demanding robust and adaptive information processing.

The introduction of noise into neural networks can be seen as a
fundamental mechanism by which the brain enhances its cognitive
capabilities. By destabilizing low-entropy attractors and promoting
the exploration of new states, noise enables learning, perception, and
creativity. This perspective not only aligns with empirical findings
from neuroscience but also offers a theoretical framework for
understanding how complex cognitive functions can emerge from
the interplay between deterministic and stochastic processes in
neural systems.

Furthermore, the insights gained from our study provide a
valuable foundation for advancing artificial intelligence (AI)
technologies, particularly in the realms of reservoir computing
and machine learning. Reservoir computing, which leverages the
dynamic behavior of recurrent neural networks, can benefit from the
strategic introduction of noise to enhance its computational power
and adaptability. Similarly, machine learning models can
incorporate noise to avoid overfitting, explore diverse solution
spaces, and improve generalization. By integrating these
principles, AI systems can emulate the brain’s ability to learn and
adapt in complex, unpredictable environments, leading to more
robust and innovative technological solutions. This convergence of
neuroscience and AI not only deepens our understanding of
cognitive processes but may also drive the development of next-
generation intelligent systems capable of solving real-world
problems with unprecedented efficiency and creativity.
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