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Estimating the entropy rate of physical random number generators with
uncertainty is crucial for information security applications. We evaluate the
sample entropy of chaotic temporal waveforms generated experimentally by a
semiconductor laser with time-delayed optical feedback. We demonstrate
random number generation with uncertainty using a quantitative
measurement of the entropy rate.
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1 Introduction

Physical random number generators have attracted increasing interest for engineering
applications in information security and numerical simulations. Physical random number
generators are based on physical random phenomena, and the sequences generated from
physical random number generators are, in principle, unpredictable and irreproducible
(Uchida, 2012). However, the speed of physical random number generators based on noise
in electronic circuits is limited to tens of megabits per second (Mb/s). To enhance the
generation speed, physical random number generators based on chaotic semiconductor
lasers have been proposed (Uchida et al., 2008), where physical random numbers are
generated at a rate of gigabits per second (Gb/s). Several post-processing methods have been
applied to improve the randomness of the generated bit sequences, such as least significant
bit (LSB) extraction and bit-order reversal (Akizawa et al., 2012). Using these post-
processing methods, the speed of random number generation based on chaotic
semiconductor lasers can be improved at a rate of up to terabits per second (Tb/s)
(Sakuraba et al., 2015). Real-time random number generation uses a photonic
integrated circuit and FPGA (Ugajin et al., 2017). Recently, physical random number
generation at a rate of 250 Tb/s was reported using the spatiotemporal dynamics of a
specially designed semiconductor laser with curved facets (Kim et al., 2021).

An important issue in high-speed random number generation is that its speed of
random number generation may exceed the entropy rate (i.e., the uncertainty generation
rate) of the physical entropy sources (Hart et al., 2017). High-speed random number
generation can be achieved by introducing complex post-processing; however, the entropy
rate cannot be enhanced by post-processing. The entropy rate of physical random number
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generators must be evaluated to ensure the uncertainty and
unpredictability of the generated bit sequences (Hart et al., 2017).

Several measures of entropy rate have been reported in the
literature. One of the most common entropy measures is the
Kolmogorov-Sinai (KS) entropy in nonlinear dynamical systems
(Eckmann and Ruelle, 1985). The KS entropy can be calculated
from the sum of positive Lyapunov exponents. However, a
numerical model is required to obtain a reliable estimation of
multiple Lyapunov exponents (i.e., the Lyapunov spectrum), and
linearized equations of the numerical model are used to calculate
the KS entropy (Uchida, 2012). Therefore, it is difficult to
estimate the KS entropy obtained from experimentally
measured chaotic temporal waveforms using physical
entropy sources.

The (ε,τ) entropy has been reported as a measure of entropy rate,
which can be directly calculated from experimentally obtained
temporal waveforms (Cohen and Procaccia, 1985; Gaspard and
Wang, 1993; Kawaguchi et al., 2021). The (ε,τ) entropy requires
the discretization and quantization of temporal waveforms using the
quantization interval ε of the amplitude and the sampling interval τ
of the time. This is useful for estimating the entropy of the
experimental data because they are already discretized
and quantized.

One of the issues of the (ε,τ) entropy is the fact that a large
number of sampling data is required when ε and τ are small. In
addition, the number of data points within the distance ε is
diminished when the length of reference vectors d is increased
for a finite number of sampled data. Therefore, revised versions of
the (ε,τ) entropy have been proposed to reduce the computational
cost, such as the sample entropy and the approximate entropy
(Richman and Moorman, 2000; Yentes et al., 2013), where the
algorithms of the entropy estimation process are simplified.
Statistical tests of entropy estimation for physical random
number generators were proposed by the National Institute of
Standards and Technology (NIST) Special Publication (SP)
800–90B (Barker and Kelsey, 2016).

The estimation of entropy rate in chaotic laser dynamics has
been investigated (Hagerstrom et al., 2015; Li et al., 2016). The
estimation of the (ε,τ) entropy has been reported using chaotic
temporal waveforms generated from a semiconductor laser with
optical injection (Kawaguchi et al., 2021). In addition, the entropy
rate of white chaos generated from optical heterodyne signals was
evaluated using NIST SP 800-90B (Yoshiya et al., 2020). However,
an entropy evaluation method for photonic dynamic systems is yet
to be developed. In particular, simplified techniques, such as sample
entropy, have not been applied to the chaotic dynamics in
semiconductor lasers with time-delayed optical feedback.
Therefore, it is crucial to develop a concrete method for
obtaining a simple and reliable estimation of the entropy rate
from experimental data.

In this study, we experimentally evaluate the entropy rate of
chaotic temporal waveforms generated by a semiconductor laser
with time-delayed optical feedback. We focus on the sample entropy
and compare it with other entropy for reliable estimation. We
generate random bit sequences from a chaotic semiconductor
laser and evaluate the randomness of the bit sequences and the
entropy rate of the physical source to guarantee the random number
generation with uncertainty.

2 Entropy rate estimation

2.1 Methods for estimation of (ε,τ) entropy
and sample entropy

In this section, we describe the calculation method of the (ε,τ)
entropy and sample entropy. We prepare a chaotic temporal
waveform of laser intensity generated by a semiconductor laser
with optical feedback (Uchida, 2012). The temporal waveform is
sampled at a sampling interval τ, as shown in Figure 1. The
discrete time t is represented as iτ (i = 1,2, . . ., N, where Nτ is the
total length of the temporal waveform). The amplitude of the
temporal waveform is quantized at a quantization interval ε.
Next, we randomly select a sampling point x(iτ) in the temporal
waveform, which is called the reference data, and prepare a
reference vector xdi with vector length d. The reference vector
xdi is expressed as follows:

xdi � x iτ( ), x i + 1( )τ( ), . . . , x i + d − 1( )τ( )[ ] (1)
The distance between two vectors xdi and x

d
j (i ≠ j) is defined by

calculating the maximum value of the difference in each vector
component as follows.

dist[xdi , xdj ] � max
x iτ( ) − x jτ( )∣∣∣∣ ∣∣∣∣, x i + 1( )τ( ) − x j + 1( )τ( )∣∣∣∣ ∣∣∣∣, . . . ,

x i + d − 1( )τ( ) − x j + d − 1( )τ( )∣∣∣∣ ∣∣∣∣[ ]
(2)

We calculate the probability Ad
i of the existence of the

neighboring vectors within the distance ε as follows.

Ad
i �

Number xdi ; dist[xdi , xdj ]≤ ε[ ]
Number xdi[ ] , (3)

where Number[xdi ; dist[xdi , xdj ]≤ ε] represents the number of
the neighboring vectors within the distance ε and Number[xdi ]
indicates the total number of the vectors xdi . The value of Ad

i is
calculated for different sampling points i. The average of the base
2 (binary) logarithm of Ad

i is calculated for the (ε,τ) entropy
as follows.

Ad � −1
R
∑R
i�1
log2 A

d
i for ε, τ( ) entropy( ), (4)

where R denotes the number of reference data points. By contrast,
for the sample entropy, the average of Ad

i is calculated first, and the
logarithm of the average value is calculated as follows:

Ad � − log2
1
R
∑R
i�1
Ad

i
⎛⎝ ⎞⎠ for sample entropy( ) (5)

The entropy E is obtained from the difference between Ad and
Ad+1 as follows.

E � Ad − Ad+1 bit/sample[ ] (6)
The entropy rate is obtained by dividing the entropy E by τ

as follows.

h � E

τ
bit/second[ ] (7)

The entropy rate relies on both the quantization and sampling
intervals (ε and τ) of chaotic temporal waveforms and the vector
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length d. It has been known that the (ε,τ) entropy converges to the
KS entropy under the limit of ε → 0 and τ → 0 (Cohen and
Procaccia, 1985; Gaspard and Wang, 1993).

For the (ε,τ) entropy, when ε is set to be too small, Ad
i can be

zero, and Eq. 4 diverges to negative infinity. To avoid this issue, the
reference vector is considered as the neighboring vector, so that
Number[xdi ; dist[xdi , xdj ]≤ ε] is one or larger. By contrast, this
modification is not required for sample entropy because the average
of Ad

i is first calculated, and the logarithm of the averaged
probability is obtained. Therefore, the sample entropy is expected
to be more reliable for a large d.

3 Experimental results

3.1 Experimental setup and chaotic
temporal waveforms

Figure 2 shows the experimental setup for generating chaotic
temporal waveforms in a semiconductor laser with time-delayed
optical feedback. A distributed-feedback (DFB) semiconductor laser
(NTT Electronics, KELD1C5GAAA) was used as a light source. The
injection current of the semiconductor laser was set to 38.5 mA
(3.5 times the lasing threshold). A fiber reflector was used to produce
time-delayed optical feedback for the laser to generate chaotic laser
outputs. The feedback delay time was set to 25.0 ns. The feedback
power is set to 58 μW, which corresponds to the feedback ratio of

0.008 compared with the laser power. The chaotic temporal
dynamics of the laser intensity can be obtained using time-
delayed optical feedback. The chaotic temporal waveforms were
converted into electric signals using a photoreceiver (Newport,
1554-B, 12 GHz bandwidth). The converted electric signals were
measured using a digital oscilloscope (Tektronix, DPO73304D,
33 GHz bandwidth, maximum sampling rate of 100 GigaSample/
s (GS/s), and 8-bit vertical resolution). The sampled data were stored
on a digital oscilloscope and were used to estimate the entropy rate.
The radio frequency (RF) spectra of the electric signals were
observed using an RF spectrum analyzer (Agilent Technologies,
N9010A-544, 44 GHz bandwidth).

Figure 3 shows the experimental results for the chaotic temporal
waveform of the laser intensity, the corresponding RF spectrum, and
a histogram of the amplitude of the chaotic temporal waveform.
Chaotic temporal waveforms are obtained and broad spectral
components are observed in the RF spectrum. In addition, the
histogram of the chaotic temporal waveforms appears to be
asymmetric, as shown in Figure 3C. This asymmetry can be
eliminated by subtracting the original chaotic signal from its
time-delayed signal (Reidler et al., 2009) to improve the statistical
characteristics of the generated random bits. However, our goal is to
estimate the entropy rate of the original chaotic signal, and we use
the chaotic data with the asymmetric histogram shown in Figure 3C.
The chaotic temporal waveforms are acquired so that their standard
deviation is set to σ = 32 in the 8-bit vertical resolution with a range
of [-128, 127], where the histogram is ranged within ±4σ.

FIGURE 1
Schematic of the calculation of the (ε,τ) entropy and the sample entropy.

FIGURE 2
Experimental setup for generating chaotic temporal waveforms in a semiconductor laser with time-delayed optical feedback.
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3.2 Entropy rate estimation

We estimate the (ε,τ) entropy and sample entropy of the
experimentally obtained chaotic temporal waveforms in Figure 3.
The parameter values for the entropy estimation are set as follows:
The sampling interval of τ = 100 ps (10 GHz in frequency), the
quantization resolution of ε = 28-n for Most Significant Bits n (MSBs
n) in the 8-bit vertical resolution with the range of [-128, 127], the
number of sampling data of N = 109, and the number of reference
data of R = 105. We use a notation of “MSBs n” for multiple bits
generated from the 1st, 2nd, . . ., and nth MSB at one sampling point.

The remaining bits from the (n+1)-th MSB, . . ., and 8th MSB are
discarded from the original 8-bit data. The 8th MSB corresponds to
the 1st least significant bit (LSB) of 8-bit data. For example, MSBs 3
corresponds to three bits, including the 1st, 2nd, and 3rd MSB of the
8-bit data. We also use a notation of “the nth MSB” for a single bit
generated from only the nth MSB at one sampling point
(see Section 4.2).

Figure 4 shows the comparison of the (ε,τ) entropy and the
sample entropy for different MSBs n (i.e., different ε = 28-n) when the
vector length d is increased. τ is fixed at 100 ps. In Figure 4A, the (ε,τ)
entropy decreases for a large d and large MSBs n (a small ε). Plateaus

FIGURE 3
Experimental results of (A) the chaotic temporal waveform of the laser intensity, (B) the corresponding radio-frequency (RF) spectrum, and (C) the
histogram of the amplitude of the chaotic temporal waveform.
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are not observed when d or n increases. By contrast, in Figure 4B, the
sample entropy shows large plateau regions for all MSBs. The
entropy at the plateau can be considered as the estimated value
of the sample entropy. Therefore, the sample entropy can be
estimated even for large MSBs n, and it is more reliable than the
(ε,τ) entropy.

To investigate the difference between Figures 4A, B, we plot the
probability of having the value of Ad

i � 0 in R reference data when d
is increased for MSBs 4, as shown in Figure 5. In Figure 5A, the (ε,τ)
entropy for MSBs 4 decreases as the probability of Ad

i � 0 increases
for a large d, and the (ε,τ) entropy becomes zero when the
probability of Ad

i � 0 reaches one. Therefore, it is difficult to

FIGURE 4
Comparison of (A) the (ε,τ) entropy and (B) the sample entropy for differentMSBs n (different ε=28-n) when the vector length d is increased. The black
dotted line corresponds to d =5, whose crossing points are used to estimate the value of entropy for different MSBs n.

FIGURE 5
(A) (ε,τ) entropy and (B) the sample entropy for MSBs 4 when the vector length d is increased (the blue curve). The probability of having the value of
Ad
i � 0 in R reference data are also plotted (the red curve).
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correctly estimate the (ε,τ) entropy when the two neighboring
vectors within the distance ε do not exist. By contrast, in
Figure 5B, the sample entropy remains constant with an increase
in d, even though the probability of Ad

i � 0 increases and is close to
one. This result originates from the average calculation of Ad

i for R
reference data before creating a logarithm, as shown in Eq. 5.
Therefore, the sample entropy is more robust when the number
of neighboring vectors within the distance ε is reduced for a large
number of d and MSBs n.

From Figures 4, 5, we found that the sample entropy is less
dependent onMSBs n than the (ε,τ) entropy. This result is explained
by the comparison of Figures 5A, B, where the (ε,τ) entropy
decreases as the probability of Ad

i � 0 increases, while the sample
entropy remains the same value. Therefore, sample entropy can
provide an entropy measurement for larger MSBs n. We consider
this characteristic to be a general feature of other data used for
entropy measurements.

Next, we change the quantization interval ε and the
corresponding MSBs n. Figure 6 shows the comparison of
the (ε,τ) entropy and the sample entropy obtained from the
values of the plateaus shown in Figures 4A, B, where the vector
length is set to d = 5. In Figure 6, the (ε,τ) entropy can be
estimated reliably up to MSBs 3, because of the lack of the
plateaus in Figure 4A. By contrast, the sample entropy can be
obtained up to MSBs 8 (i.e., all 8 bits), as shown in Figure 4B.
Figure 6 shows the maximum sample entropy (5.0) for MSBs 8.
In addition, a sample entropy of more than one bit can be
obtained for MSBs 4 or more MSBs. This result indicates that
random number generation with uncertainty (i.e., entropy
generation) can be achieved using one bit generated from
MSBs 4 or larger.

We also change the sampling interval τ, corresponding to the
inverse of the sampling frequency fs (=1/τ). Figure 7 shows the
sample entropy for different fs values when n is changed. The
quantization interval ε = 28-n is also changed. The vector length
is set to d = 5. The sample entropy increases for large MSBs n. In
addition, higher entropy is obtained when fs is reduced. The sample
entropy is saturated when fs is reduced to 10 GS/s or smaller (τ =
100 ps or larger).

From Figure 7, the entropy rate is calculated by multiplying the
estimated sample entropy by the sampling frequency. We can obtain
an entropy up to MSBs 6 for fs = 25 and 50 GS/s, and MSBs 8 for
10 GS/s or less, because of the existence of plateaus, as shown in
Figure 4B. In Figure 7, a sample entropy of 5.0 at fs = 10 GS/s is
obtained for MSBs 8, and the corresponding entropy rate is 50 GHz
(=5.0 × 10 GS/s). In another case, a sample entropy of 1.0 at 50 GS/s
is obtained for MSBs 5, and the entropy rate is 50 GHz (=1.0 ×
50 GS/s) as well. The same entropy rate can be obtained for different
combinations of the sampling rate and number of MSBs. Therefore,
an entropy rate of 50 GHz is obtained for the chaotic temporal
waveforms of the laser intensity generated in the experiment.

3.3 Validation of sample entropy

To confirm the validity of the sample entropy estimation, we use
the de facto standard of statistical tests of entropy evaluation for
physical random number generators, known as NIST SP 800-90B
(Barker and Kelsey, 2016). We obtain signals with n-bit vertical
resolutions (MSBs n) for the NIST SP 800-90B tests and evaluate the
minimum entropy of the n-bit signals generated from the physical
entropy sources. The statistical tests consist of ten different entropy
evaluations. The minimum value of the entropy evaluations in the

FIGURE 6
Comparison of the (ε,τ) entropy (the red curve) and the sample
entropy (the black curve) obtained from the values of the plateaus
shown in Figures 4A, B, where the vector length is set to d= 5. The blue
dotted line indicates the sample entropy of 1.

FIGURE 7
Sample entropy for different sampling frequency fs (=1/τ) when
MSBs n is changed. The quantization interval ε = 28-n is also changed.
The vector length is set to d = 5.
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ten tests is selected as the final estimate. We select the MSBs n of the
8-bit data (n bits) and evaluate the entropy of MSBs n. The
maximum entropy corresponds to n for the data of MSBs n. We
use 1 Mega point data to evaluate the entropy using NIST SP
800-90B.

Figure 8 compares the sample entropy and minimum entropy
values obtained from NIST SP 800-90B. The sampling frequency is
set to fs = 10 GS/s (τ = 100 ps). Both of the entropy values increase as
the number of MSBs increases. In addition, the sample entropy is
smaller than that obtained using NIST SP 800-90B for all the MSBs.
This result indicates that the sample entropy is underestimated
compared with the entropy of NIST SP 800-90B. The sample
entropy is close to the entropy of NIST SP 800-90B for MSBs
5 and 6. The overall characteristics coincides between the sample
entropy and entropy of NIST SP 800-90B.

4 Random number generation with
uncertainty

4.1 Estimation of entropy of noise signals

In this section, we evaluate the entropy rate of chaotic
temporal waveforms used for physical random number
generation. First, we evaluate the entropy of the noise signals
to distinguish the origin of the entropy from stochastic noise and
deterministic chaos. Figure 9A shows the temporal waveform of
the experimentally obtained noise signals. The noise signal is
detected using the digital oscilloscope and the photoreceiver
without optical injection from the semiconductor laser (see
Figure 2). The vertical range of the amplitude is set to be the
same as that for the chaotic signals, as shown in Figure 3A.

Figure 9B shows the sample entropy of the noise signals obtained
in the experiment. The sample entropy is zero between MSBs 1 and
5, and the entropy for more than MSBs 5 has a positive value. Here,
MSBs 5 consists of the 1st, 2nd, . . ., and 5th MSB, and the 6th, 7th,
and 8th MSB, which are the most sensitive to noise, are not included
in MSBs 5. This result indicates that entropy originating from
stochastic noise exists in the data of MSBs 6 or larger. Therefore,
we use data of MSBs 5 or less for physical random number
generation to avoid the contribution of stochastic noise to entropy.

4.2 Statistical evaluation of random number
generation

We generate physical random bit sequences using minimum
post-processing based on a bitwise XOR operation between the
original and time-delayed signals (Takahashi et al., 2014; Sakuraba
et al., 2015). First, chaotic temporal waveforms are sampled and
converted into 8-bit signals. The 8-bit signal and its time-delayed
signal are stored, and a bitwise XOR operation is performed between
the original and time-delayed signals. The delay time is set to 3.0 ns
(30 sampling points at the sampling interval of τ = 100 ps) to avoid
the correlation between the original and time-delayed chaotic
signals. The nth MSB of the resultant bits is extracted and
combined with the signals sampled at different times as random
bit sequences. Note that the nthMSB indicates only one bit at the nth
bit counted from the 1st MSB, which differs fromMSBs n used in the
previous sections (i.e., MSBs n include the 1st, 2nd, . . ., and nth
MSB). One bit obtained at the nth MSB is combined with different
sampled data points, and N bits are generated from N sampled data
points for each nth MSB.

To evaluate the statistical randomness of the generated bit
sequences, we use NIST SP 800-22 tests (Rukhin et al., 2010),
which are de facto standard tests for the statistical evaluation of
random numbers. These statistical tests evaluate the statistical
randomness of the bits (0 or 1) generated from the random
number generators. NIST SP 800-22 consists of 15 statistical
tests, and the random bits that pass all statistical tests are
considered high-quality random numbers.

Figure 10A shows the results of NIST SP 800-22 at a sampling
frequency of fs = 50 GS/s. The bit sequences generated from the 5th
MSB or higher can pass all 15 tests However, the bit sequences
generated from the 4th MSB or less fails to some tests. This result
indicates that the 5th MSB can be used as a random number.
Figure 10B shows the results of NIST SP 800-22 for different
sampling frequencies ranging from fs = 2 to 25 GS/s. The 4th
MSB or higher can pass all NIST tests in these cases. Therefore,
the 4th MSB is also useful as a random number when fs is reduced to
25 GS/s or less.

5 Discussion

From the results in Figures 7, 9, 10, we consider that data with
the 4th or 5th MSB are useful for random number generation with
uncertainty. From Figure 7, an entropy greater than one can be
generated forMSBs 5 sampled at 50 GS/s, and forMSBs 4 sampled at
25 GS/s or less. Therefore, at least one random bit can be extracted

FIGURE 8
Comparison of the sample entropy (the black curve) and the
minimum value of the entropy obtained from NIST SP 800-90B (the
blue curve). The sampling frequency is set to fs = 10 GS/s (τ = 100 ps).
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from the data. From Figure 9, wemust avoid data of MSBs 6 or larger
to distinguish the origin of the entropy from stochastic noise and
deterministic chaos. From Figure 10, we can confirm that all NIST
SP 800-22 tests are passed for the 5th MSB sampled at 50 GS/s and

the 4thMSB sampled at 25 GS/s or less. Data of small MSBs correlate
with neighboring bits and that the randomness of these bits is not
sufficiently high. By contrast, data of large MSBs are affected by
stochastic noise, which can be avoided when we consider the

FIGURE 9
(A) Temporal waveform and (B) sample entropy of the noise signal obtained in experiment. The vector length is set to d = 5.

FIGURE 10
Result of NIST SP 800-22 for the bit sequences generated from the nth MSB at the sampling frequency of (A) fs = 50 GS/s and (B) fs = 2, 5, 10, and
25 GS/s. All 15 tests need to be passed for high-quality random numbers.
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contribution of entropy only from a deterministic chaotic signal and
not from stochastic noise. Therefore, an intermediate MSB (e.g., the
4th or 5th MSB) is useful for extracting one random bit with
uncertainty.

Our results show that an entropy of more than one bit can be
obtained from the bit sequences generated from MSBs 5, which
includes the 1st, 2nd, . . ., and 5th MSB, as measured by NIST SP
800-90B tests. In addition, the bit sequences generated from the 4th
or 5th MSB can pass the statistical tests of randomness, as measured
by the NIST SP 800-22 tests. The entropy measurement using NIST
SP 800-90B requires n-bit data (n ≥ 1), whereas the measurement of
statistical bias using NIST SP 800-22 requires 1-bit data. Therefore,
different data formats are used for the measurement of entropy and
statistical bias.

The entropy can be generated by a small change in two vectors xdi
and xdj (i ≠ j) for MSBs n data when the vector length increases from
d to d+1, defined by Eq. 6. In most cases, the distance of one of the
elements between the two vectors is slightly over the quantization
interval ε = 28-n when entropy is generated, described as in Eq. 3. This
indicates that uncertainty of the two vectors appears at the least
significant bit of the MSB n data (i.e., the nth MSB). Therefore, we
consider that the nth MSB must contain most uncertainty among
other bits of MSBs n when MSBs n data can pass NIST SP 800-90B.
We thus recommend using the 4th MSB (sampled at 25 GS/s or less)
or 5th MSB (sampled at 50 GS/s) to generate random bit sequences
with both uncertainty and no statistical bias.

We compare our results to those of a previous study (Kawaguchi
et al., 2021). In the previous work, the entropy was calculated only
from MSBs 1 to 3, because they used the (ε,τ) entropy. As seen in
Figure 4 of this study, the estimation of entropy for larger MSBs n is
difficult by using the (ε,τ) entropy. Instead, we perform the
estimation of entropy for all MSBs n (1 ≤ n ≤ 8) by using the
sample entropy. We have not obtained the same result as in the
previous work quantitatively (i.e., the use of the 3rd MSB is the best
for random number generation in the previous work, whereas the
use of the 4th or 5th MSB is the best in this study). However, the
conclusions of the previous and current studies are qualitatively
consistent, that is, an intermediate MSB of 8-bit data is useful for
physical random number generation with uncertainty.

In this study, we consider only the additive noise originating
from the measurement equipment (e.g., noise in the photodetector,
electric amplifier, and digital oscilloscope). We do not focus on the
intrinsic multiplicative noise in laser dynamics (e.g., spontaneous
emission noise). The inclusion of intrinsic noise is an important
topic that will be investigated in future work.

6 Conclusion

We experimentally evaluated the sample entropy of chaotic
temporal waveforms in a semiconductor laser with optical feedback.
We found the reliable estimation of the sample entropy even for a large
vector length d, whereas the estimation of the (ε,τ) entropy is limited for
a large d. We estimated the sample entropy at different sampling
intervals and determined the conditions for randomnumber generation
with an entropy of more than one bit at an entropy rate of 50 GHz. The
validity of the sample entropy was confirmed by a comparison with the
results of NIST SP 800-90B. We also generated random bit sequences

and evaluated their statistical randomness of the generated bits. All
NIST SP 800-22 tests were passed for the bit sequences generated from
the 5th MSB sampled at 50 GS/s and the 4th MSB sampled at 25 GS/s.
Random number generation with more than one-bit of entropy was
demonstrated using the 4th or 5th MSB as a physical random number
generator with uncertainty.

The methodology for estimating the sample entropy is
promising for evaluating physical random number generators
based on various physical entropy sources. Physical random
number generators with uncertainty are required for
information-security and cryptography applications.
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