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The process of training an artificial neural network involves iteratively adapting its
parameters so as to minimize the error of the network’s prediction, when
confronted with a learning task. This iterative change can be naturally
interpreted as a trajectory in network space–a time series of networks–and
thus the training algorithm (e.g., gradient descent optimization of a suitable loss
function) can be interpreted as a dynamical system in graph space. In order to
illustrate this interpretation, here we study the dynamical properties of this
process by analyzing through this lens the network trajectories of a shallow
neural network, and its evolution through learning a simple classification task. We
systematically consider different ranges of the learning rate and explore both the
dynamical and orbital stability of the resulting network trajectories, finding hints
of regular and chaotic behavior depending on the learning rate regime. Our
findings are put in contrast to common wisdom on convergence properties of
neural networks and dynamical systems theory. This work also contributes to the
cross-fertilization of ideas between dynamical systems theory, network theory
and machine learning.
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1 Introduction

The impact of artificial neural network (ANN) models (Yegnanarayana, 2009;
Goodfellow et al., 2016) for science, engineering, and technology is undeniable, but
their inner workings are notoriously difficult to understand or interpret (Marcus, 2018).
This black-box feeling extends as well to the process of training, whereby an ANN is
exposed to a training set to “learn” a representation of the patterns lying inside the input
data, with the ultimate goal of leveraging this ANN representation for the prediction of
unseen data. In this work we propose to study such a training process–in the scenario where
ANNs are used in a supervised learning task–through the lens of dynamical systems theory,
in an attempt to provide mechanistic understanding of the complex behavior emerging in
machine learning solutions (Arola-Fernández and Lacasa, 2023; San Miguel, 2023). As a
matter of fact, training an ANNwithin a supervised learning task traditionally boils down to
an iterative process whereby the parameters of the ANN are sequentially readjusted in order
for the output of the ANN to match the expected output of a previously defined ground
truth. Such iterative process is, in essence, a (discrete) dynamical system, and more
particularly a graph dynamical system (Prisner, 1995), as the mathematical object that
evolves through training is the structure of the ANN itself.

Note that, from an optimization viewpoint, such dynamics is vastly projected onto a
scalar function (the so-called loss function), that training aims to minimize, usually via a
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gradient-descent type of relaxational dynamics (Ruder, 2016), i.e., a
“pure exploitation” type of search algorithm. This low-dimensional
projection, however, precludes insight on how the specific ANN’s
structure evolves while the loss function is forced to follow a gradient
descent scheme. Therefore, we turn our attention to the question:
how does the structure of an ANN evolve in graph space as the loss
function is updated?

At the same time, observe that not all gradient-descent-like
schemes yield necessarily monotonically decreasing loss functions,
as this often depends on the particular learning rate within the
gradient-descent-based iterative scheme. More concretely, the
learning rate can be adjusted to introduce non-relaxational
behavior into the gradient descent dynamics, potentially helping
to escape local minima, and thus an element of exploration is added,
making this an exploration-exploitation type of algorithm. This
raises a second question: How does the specific structure of the ANN
evolve in such optimisation schemes that produce non-
monotonically decreasing loss functions?

These questions naturally call for the use of dynamical systems
concepts and tools, such as dynamical and orbital stability. Under
this lens, the ANN is an evolving system whose dynamical variables
are the parameters (weights and biases) and the dynamical equations
are those implicitly defined by the training algorithm. The training
algorithm is a scheme applied iteratively to batches of input data, in
such a way that the ANN parameters are successively updated
(Hoffer et al., 2017), i.e., this is a (high dimensional) discrete-
time map. The whole training process is thus nothing but a
trajectory in high-dimensional weight space, i.e., a specific type of
temporal network (Holme and Saramäki, 2019) that has been coined
as a network trajectory (Lacasa et al., 2022; Caligiuri et al., 2023), see
Figure 1 for an illustration. The purpose of training is to take the loss

function to a minimum which, intuitively, is a stationary point not
only of such loss function, but also of the implicitly defined network
dynamics. However, it is not clear whether this intuition always
holds, or what happens if the training algorithm is designed to
produce a non-monotonic evolution of the loss.

This paper aims to explore the questions stated above, to
challenge some of the basic intuitions, and to further explore the
interface between machine learning, dynamical systems and
network theory (Ribas et al., 2020; La Malfa et al., 2021; La
Malfa et al., 2022; Scabini et al., 2022) by putting together ideas
and tools in the specific context of ANN training of a supervised
task. The purpose of this work is to offer an illustration of this cross-
disciplinary perspective. In particular, we are interested in the
dynamical stability of training trajectories in graph space and in
the dependence of the dynamical behavior observed on the learning
rate parameter of the training algorithm. To this end, inspired by
traditional methods and tools from dynamical systems theory
(Schuster and Just, 2006)–such as linear stability theory, the
concept of Lyapunov exponents, or orbital stability–, as well as
by more recent ideas of marginal stability close to criticality and the
edge of chaos hypothesis (Bak et al., 1988; Langton, 1990; Carroll,
2020), our main approach is to track, for specific values of the
learning rate, the evolution (in graph space) of nearby network
trajectories during training. This allows us to confirm or dispel some
intuitions about the learning process and the landscape of the
loss function.

The rest of the paper is organized as follows: in Section 2 we
introduce some notation, setting the language and defining the ANN
architecture, its specific supervised learning task and its
optimization scheme. We discuss how to recast the ANN and its
training as a graph dynamical system–establishing trajectories in

FIGURE 1
The training process of an ANN is depicted as a network trajectory in graph space, where in each iteration of the optimization scheme the network
parameters are updated, leading to a decreasing loss function.
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graph space as orbits–and, accordingly, introduce relevant tools to
investigate its dynamical behavior. In Section 2, we also discuss
related literature in the areas of machine learning, optimization
theory as well as dynamical systems. Sections 3, 4 depict our results
on the dynamical stability of the system, which are organized into
two separate cases: the low and high learning rate regimes,
respectively. In particular, Section 3 summarises the results of
our investigation for the case where the learning rate of the
training scheme is sufficiently small so that we expect a
monotonically decreasing loss function (purely relaxational
dynamics of the loss function). For parsimonious reasons, we
keep the ANN topology as simple as possible and propose a
feed-forward architecture with a single hidden layer and use a
very simple classification task (Iris dataset) as the supervised
learning problem. Despite such simplicity, our results challenge
basic intuitions of low-dimensional stability theory. Section 4 then
summarises the results for the opposite case, where the learning rate
does not necessarily guarantee convergence of the training
algorithm. We find a rich taxonomy of complex dynamical
behaviors that non-trivially relate to the actual learning of the
ANN. The final part of the manuscript, Section 5, provides an
overview of our findings and relate them to the general questions
that we have stated in the opening paragraphs.

2 Preliminaries

2.1 Notation, system definition and
useful metrics

To formalize the intuitive notion of ANN training as a graph
dynamical system, we first briefly define the network architecture
and our training task. A more thorough description can be found in
many standard texts on ML and deep learning [e.g., Refs.
(Yegnanarayana, 2009; Goodfellow et al., 2016)]. As we have
mentioned already, in this work we investigate a quite simple
learning task—a fully-connected, feed-forward neural network
with a single hidden layer trained for classification on the Iris
dataset (Fisher, 1936). A fully-connected, feed-forward artificial
neural network (also known as a multi-layer perceptron) is a
parametrized functional mapping whose purpose is to encode a
meaningful relationship, usually inferred from an empirical dataset
during the so-called training process. Conceptually, the non-linear
computational units (neurons) of the network can be grouped into
layers, where computation flows sequentially through all layers,
from input to output.

Concretely, we consider a multi-layer ANN as a nonlinear
function F(x; W) with input x and parameter set W. For a
network of L layers (one input layer, one output layer, and H =
L − 2 hidden layers), we define the output at each layer l = 1, . . . , L as
f l ∈ Rnl , where nl is the dimensionality of layer l (i.e., number of
neurons). Thus, f1 = x is the input data and fL = F(x; W) is the final
output of the network. To obtain the output of layer l for each
neuron, we take a weighted sum over the output of the previous layer
l − 1 and feed it through a non-linear activation function φ. Utilizing
vector notation, we have the recursive definition

f l � φ Wlf l−1 + bl( ) for l � 2, . . . , L,

whereWl is an nl × nl−1 weight matrix and bl ∈ Rnl is an additive bias
term. In all of our experiments, we use the sigmoid activation
function φ(z) = 1/(1 + e−z). If the architecture is held fixed, in
order to make our functional mapping F(x;W) meaningful, we need
to specify the parameter set W = {W2, . . . , WL, b2, . . . , bL}. This is
the main problem of training artificial neural networks, often
formalized as an optimization task: defining a loss function
L(x,W) that measures the “badness” of any given output F(x;
W) using the parameter set W. Then, training is the process that
allows you to find

W* � argmin
W

L x,W( ). (1)

This is usually done via a Gradient Descent optimization algorithm,
as described below. In general, the loss function depends on the
specific task that we are designing our network to solve. In
supervised classification, it quantifies the mismatch between
prediction and ground truth, and the standard choice is a cross-
entropy loss function

L x,W( ) � − 1
N

∑
i

yi logF xi;W( ).

In general, we can include a so-called regularization term in our
loss functions that penalizes large weights in an attempt to prevent
overfitting of the model. However, to constrain the complexity of the
problem and ease our analysis of the Gradient Descent map, we do
not include a regularization term. Later on we discuss the possible
implications of this choice.

To facilitate the exploration of the training dynamics we have
chosen to tackle a simple, toy problem: the so-called Iris dataset
(directly available from the scikit-learn library). This dataset consists
ofN = 150 samples {xi, yi}, where each xi is measuring 4 physiological
properties of one of three species of Iris flowers, and our goal is to
train a network that can classify flowers into one of the three species

FIGURE 2
Illustration of the Iris dataset and difficulty in linearly separating
the three classes. Datapoints are shown in the space of two of their
four input features, namely “sepal length” and “sepal width.” Colors
correspond to different classes, while markers show whether the
instances were classified correctly or not (marked as “x” if the
prediction was incorrect).
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given its physiological properties, i.e., yi is a categorical variable with
three categories. Thus our network has an input dimension n1 = 4
(number of physiological properties) and an output dimension nL =
3. We split the dataset into 120 samples for training and 30 samples
for testing performance. To illustrate why this problem is simple, but
non-trivial, in Figure 2 we plot the dataset in the space of two of its
input features, where we can see that some, but not all, of the classes
are easily separable. In addition, we mark instances that were not
correctly predicted by a typical network trained using the procedure
described in this and the following sections, where we can see that
these instances fall between two classes whose boundary
is ambiguous.

The choice of a simple task allows us to also use a simple
architecture. Our network has a single hidden layer of 10 units.
Thus, we have L = 3, H = 1, and n2 = 10. In total, the number of
trainable parameters is # = 83, which is also the dimensionality of
our dynamical system. To initialize our parameters, we set bias
weights equal to zero and each of the weights to an independent
realization of a standard Gaussian N̂(0, 1) random variable.

To solve the optimization problem Eq. 1, we employ the
Gradient Descent (GD) algorithm, which is used widely in the
training of neural networks. Consider any parameter, e.g., w ∈
Wl for any l. Under GD, we iteratively update the parameter w
based on the gradient of the loss function L with respect to it,
effectively moving w in the direction of the steepest descent along
the surface of the loss function. That is, at iteration t we have

w t + 1( ) � w t( ) − η
∂L
∂w

∣∣∣∣∣∣∣W t( )
.

The notation t for the iteration index is not accidental, since we
will interpret it as a time parameter when we reformulate the GD
algorithm as a discrete dynamical system. We can already see that
the above is an equation for a dynamical map. This can be defined
equally well for any of the parameter matrices or vectors, where
we have

Wl t + 1( ) � Wl t( ) − η∇Wl t( )L x,W t( )( ).
in practice, the gradients are computed using the backpropagation
algorithm (Goodfellow et al., 2016)

∇Wl
L ≡

∂L
∂Wl

� φ′ f l−1( )Wl−1 ×/× φ′ fL−1( )WL−1 × φ′ fL( )WL ×
∂L
∂fL

.

There are in principle many ways to choose the learning rate η
[e.g., adaptive learning rates (Goodfellow et al., 2016)], but we adopt
the simplest strategy, which is to assign η a constant value
throughout the training process.

In supervised learning, the loss term relies on comparing the
outputs of the network F(x;W) given a parameter setW and a set of
input data x to the ground-truth of the respective datapoints xi ∈ x.
Given our dataset, how we choose what data to use for calculating
the loss term is very important. The most common approach, mainly
due to efficiency concerns (see Section 2.2), is to randomly partition
the dataset into batches and use the batches for successive parameter
updates. This is known as Stochastic Gradient Descent (SGD).
Alternatively, we can use the whole training dataset at every
parameter update step. This is the classic GD algorithm, but in
many cases the datasets are too large to make this approach tractable

or efficient. However, in our work we use the GD algorithm, which
has the advantage of making the dynamics fully deterministic [see
(Ziyin et al., 2023) for an interesting analysis on the stability
problem for SGD].

Finally, we formalize the notion of GD training as a
deterministic graph dynamical system that we have alluded to.
Since the architecture is very standard, the network is small, and
in general here we are more interested in the dynamics of the
network throughout training, we shift focus away from the details of
the network internals and adopt some notational conveniences. We
will represent the parameter set W (i.e., trainable weights) of all L
layers as a single composite weight matrixW. This composite matrix
represents the dynamical variables we are interested in, so we define
W(t) as the weight matrix at time step t, i.e., after t iterations of the
training algorithm. Thus W(0) is the initial condition of our
dynamical system, i.e., the (random) initialization of our ANN
weights described before. The dynamical equation of our system
W(t) is the GD algorithm, which now reads:

W t + 1( ) � W t( ) − ηL W t( )[ ] ≡ g W t( ); η[ ]. (2)

From this definition, we can immediately form the intuitive
conjecture that the stability of the map W(t + 1) = g(W; η) will
depend on the learning rate η. The rest of our paper is devoted to
exploring this dependence, and soon we formalize what we mean
by stability.

Now that we have formalized our dynamical system, we can
define trajectories and a number of tools we will use to study them.
Intuitively, the evolution of network weights described by g(·)
defines a trajectory through multi-dimensional network space.
More formally, the dynamics occur over iterations defined by the
composition of the gradient map g(W), where at time step t the
weights are defined as W(t) = g(t)(W) and g(0)(W) = W(0) are the
initial weights. We call the sequence {W(t)} a weight or network
trajectory, and it is our main object of study. We will sometimes also
look at the trajectory of the loss function {L(W(t))} and individual
weights {wij(t)}, all defined intuitively from the network trajectory.

Our main approach is to analyze how the distance between
initially close trajectories evolves over time. Initially close
trajectories are generated by training from an initial condition
obtained through a “small,” point-wise perturbation of a
reference weight matrix. Concretely, if our reference matrix is
W = {wij}, our perturbed matrix will be W′ = {wij + δij} where
the values δij are iid realizations of a random variable δ̂. We can
define δ̂ as we wish, but in this work we focus on the case where
δ̂ ≡ Û(−ϵ, ϵ). We refer to the parameter 0 < ϵ≪ 1 as the perturbation
radius. Intuitively, this perturbation scheme amounts to generating a
new set of weights within an ϵ-ball around the reference point1.

Once we obtain a perturbed matrix W′, we independently train
the model with those weights as initialization, to obtain a perturbed
trajectory {W′(t)}. Given a reference and perturbed trajectories, we
can measure the divergence between them by applying a distance

1 To be precise, the perturbation is actually bounded by a hypercube (an N-

cube) with side length 2ϵ centered at the point defined byW. Nevertheless,

we will still refer to ϵ as the “radius” of perturbations.
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metric d(W(t),W′(t)) at each iteration t. We take d as simply the L1-
norm of the element-wise difference between weight matrices:

d W,W′( ) � ‖W −W′‖ � ∑
i,j

|wij − wij′ |.

In a slight abuse of notation, when it is unambiguous to do so we
will use d(t) ≡ d(W(t),W′(t)) to denote the evolution of the distance
between two trajectories.

In this work we consider two types of stability: stability of
stationary solutions (dynamical stability) and stability of network
trajectories (orbital stability). Dynamical stability refers to
understand how d(t) grows or shrinks when {W} is a network
configuration found after the training has finished (i.e., {W} is
somewhat stationary) and {W′} is a perturbation around the
stationary solution. Orbital stability on the other hand does not
require {W} to be a stationary solution, and assesses if a perturbed
trajectory {W′} does not diverge (indefinitely) from the reference
trajectory {W}: in that case the latter is stable. Of course, this could
imply a weaker form of stability, where the perturbation remains
bounded within some neighborhood of the reference, or a stronger
one if the perturbation is attracted to the reference, i.e., their distance
obeys limt→∞d(t) = 0. If the distance between trajectories increases
(e.g., exponentially), the reference is dynamically unstable. This kind
of sensitive dependence to initial conditions is a feature of many
chaotic systems (Strogatz, 2015). To study this formally, we will
estimate the (network) maximum Lyapunov exponent (Caligiuri
et al., 2023), which provides an average estimation of the exponential
expansion of initially close network trajectories. More concretely,
given an initial condition (reference trajectory W) and an ensemble
ofM perturbed initial conditions, we first calculate the distance di(t),
i = 1, . . . ,M between the reference and each of theM perturbations
at each iteration t. We then calculate the expansion rate of the
distance averaged over perturbations as

Λ W( ) � 1
τ
ln
M−1∑M

j�1dj τ( )
M−1∑M

j�1dj 0( ), (3)

where the parameter τ is the saturation time (Caligiuri et al.,
2023), at which the distance reaches the size of the attractor and
any eventual exponential divergence necessarily stops. The
quantity Λ characterizes the local expansion rate around the
initial condition W, and is called a finite network Lyapunov
exponent (just as it happens for finite time Lyapunov exponents
(Aurell et al., 1996; Aurell et al., 1997), here the initial distance
between nearby networks cannot–by construction–be
infinitesimally small, and thus the distance between initially
close conditions reach the size of the attractor in finite time).
To obtain a global picture we can look at the distribution P(Λ)
over different initial conditions. If P(Λ) is unimodal, its mean
provides an estimate of the maximum network Lyapunov
exponent λnMLE (Caligiuri et al., 2023)

λnMLE � 〈Λ W( )〉W.
The saturation time τ is fixed for a given reference trajectory and

set of perturbations. In practice, it has to be found by visually
exploring the distance curve or (better) by numerically estimating a
good window for calculating the expansion rate (i.e., by trying
various windows and taking the ones with the best exponential fit).

2.2 Relevant concepts

2.2.1 On convergence of gradient descent
Since we adopt the perspective of dynamical stability, a

particularly relevant question for us is under what conditions GD
will converge to a local or global minimum of the loss function,
which we will identify with a stable equilibrium of the dynamics.
Convergence to global minima is guaranteed under the
mathematical assumptions of ℓ-smoothness and (strong)
convexity of the loss function L. In those cases GD is guaranteed
to make progress towards the global minimum, and if the loss
function is convex the convergence is exponential, as we would
expect for a globally attracting fixed point. In a sense then the loss
function is a Lyapunov function of the dynamical system, as its value
will decrease monotonically on trajectories. This is an interesting
thought experiment, but this scenario is not realistic. In practically
all applications of neural networks, the loss functionL is highly non-
convex, with a large number of local minima and saddle points,
which represent critical points of the dynamics. Gradient descent
(let it be full-batch, or stochastic) is in general only guaranteed to
converge to a local minimum in this case. Interestingly, escape from
local minima can be done by accurately striking a balance between
so-called exploitation strategies (e.g., purely relaxational, gradient
descent) and exploration rules. While classic GD with small learning
rate can be seen as a pure exploitation strategy, to some extent some
variations of such classical scheme such as increasing the learning
rate, adding a dropout mechanism, or moving from full-batch GD to
stochastic gradient descent, can themselves be seen as adding a
certain amount of exploration. Other approaches that fully balance
exploration and exploitation include simulated annealing or genetic
algorithms (Montana and Davis, 1989). While finding the global
minimum in a highly non-convex loss landscape is generally
intractable, in practice this is not an issue of practical concern
since for large networks most local minima have near-optimal loss
(Choromanska et al., 2015), and therefore exploration rules are not
as important as exploitation strategies when it comes to
training ANNs.

Convergence theorems give a bound to the learning rate η ≤ 2/ℓ
(where ℓ refers to the Lipschitz constant of the loss function), above
which GD is expected to diverge. This bound is commonly used as a
heuristic for the choice of learning rate η, but in practice, a number
of studies have observed that learning and convergence towards
minima can happen for large η at or above this threshold as well
(Kong et al., 2020; Agarwal et al., 2021; Cohen et al., 2021). Exploring
this question is one of the goals of this work.

An important and often debated question in the literature on
optimization theory is the convergence to saddle points.
Theoretically, if saddle points are strict (i.e., at least one of the
eigenvalues of the loss function Hessian is strictly negative) then GD
will never remain trapped in them (Lee et al., 2016), though it is still
possible that in practice the trajectories take an impractically long
time to escape. Note that for shallow networks with one hidden layer
(which we consider in this work) saddle points are guaranteed to be
strict (Kawaguchi et al., 2016; Zhu et al., 2020). However, for the loss
function arising in an arbitrary ANN problem it seems difficult to
determine whether saddles can be assumed strict or not, so even the
convergence of GD towards local minima is not guaranteed
theoretically. This is why in practice one never waits for the
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algorithm to converge to a truly stationary point, but stops training
when the gradient has been deemed sufficiently small.

2.2.2 Loss landscape
There is also a line of study in machine learning theory focusing

on describing the landscape of the loss function, which can give us
some insights. In general, studies continuously find that loss
landscapes are very difficult to characterize in theory, but seem
to behave more simply in practice, and one of our aims is to see if the
dynamical systems perspective can help explain this. In particular,
the modality of the loss function (i.e., presence and nature of fixed
points) has been studied by many authors. For example, Kawaguchi
(Kawaguchi et al., 2016) shows that all local minima have the same
loss and deep networks can have non-strict saddle nodes, which
could help to explain why obtaining “good” results under gradient
optimization is tractable despite it being an NP-complete problem in
theory. In other work, Bosman et al. (Bosman et al., 2020a) among
many other authors show that with an increased dimensionality of
the ANN problem, the loss landscape contains more saddles and
fewer local minima. Lastly, other features of the loss surface seem
simpler than we might assume, given that for example, regions with
low loss are represented by high-dimensional basins rather than
isolated points (Fort and Jastrzebski, 2019), SGD usually quickly
takes solutions to those basins, and then slowly moves to find the
most optimal solution (Fort et al., 2019; Havasi et al., 2020), and
quadratic approximations to the loss landscape do well in the latter
phase (Fort et al., 2020).

2.2.3 Reminder on dynamical and orbital stability
See (Alligood et al., 1996; Holmes and Shea-Brown, 2006;

Strogatz, 2015) for background. We restrict our focus to
autonomous, discrete-time maps, as is the GD algorithm defined
in Eq. 2. Consider a dynamical system in m dimensions with
dynamical variable x � (x1, . . . , xm)T ∈ Rm and the set of
difference equations f(x) such that

x ↦ f x( ) or xn � f xn−1( ) � fn x0( ),

Where n is used to index time as iterations of the map functions
f(x) � (f1(x), . . . , fm(x))T. A fixed point of the system is x* for
which x* = f(x*). A fixed point is considered Lyapunov stable if,
intuitively, all orbits starting near the fixed point remain close to it
indefinitely, i.e., the distance between points on the trajectory and
the fixed point is bounded. Concretely, if for every neighbourhoodU
around x* there exists a neighbourhood V ⊆ U s.t. ∀x0 ∈ V we have
fn(x0) ∈ U as n → ∞, the point x* is Lyapunov stable. A point is
considered asymptotically stable if it is both Lyapunov stable and
also ∀x ∈ V, limn→∞|fn(x0) − x*| = 0. That is, the distance between
nearby points and the fixed point decreases over time, thus x* is
attracting. Note this implies that |f(x)−x*|

|x−x*| < a for some 0 < a < 1, and
for a sequence of n iterations of the map we have |fn(x) − x*| ≤ an|x −
x*|, which is an exponential convergence to the fixed point x*. If a
point is Lyapunov stable, but not asymptotically stable, we will call it
marginally or neutrally stable, since nearby trajectories neither grow
unboundedly nor decrease exponentially.

Finally, the concept of orbital stability (Holmes and Shea-
Brown, 2006) extends the notion of stability of fixed points to
general orbits of a dynamical system. The intuition is the
same—an asymptotically stable orbit will attract nearby orbits,

i.e., the distance between the orbits will shrink over time; while a
marginally stable orbit will have nearby trajectories bounded within
some neighborhood. This is the main perspective we will adopt
when studying the trajectories defined by the GD map in
network space.

3 The low learning rate regime

Unless otherwise stated, the data we show in this section is based
on simulations of (deterministic) Gradient Descent (i.e., full batch)
with a small learning rate η = 0.01, a regime in which the
convergence of the loss function is typically guaranteed (note
however that the precise values of η that delineate the different
regimes likely depend on the problem, architecture, and data, so the
values here should not be taken as universal).

Note that in this work we are more interested in establishing a
methodology to study the evolution of network trajectories, rather
than in designing optimal ANN architectures. Nevertheless, we
recognize that examining the performance of the network on
both training and held-out testing data is an important indicator
to ensure its architecture is relevant, and thus include sample
performance metrics in Supplementary Appendix S1.

3.1 Divergence of network trajectories and
orbital stability

Here, we track and examine the trajectories of the ANN as it
learns. For illustration, Figure 3 shows the distance d(t) of perturbed
network initial conditions with respect to a reference initial
condition, the average distance of the ensemble, and training loss
L, over the network trajectory depicted through learning (i.e., at
each iteration), for a perturbation radius ϵ = 10−8. While the network
is always ‘learning’ (the loss function monotonically decreases), and
contrary to naive expectations, we observe that:

• The network distance d(t) is not monotonic, and neither
increases exponentially (as in chaotic systems), nor
monotonically shrinks over time.

• For a particular network initial condition, the dynamical
evolution of nearby perturbations (within the perturbation
radius) is not consistent. This a priori suggests lack of
orbital stability.

• The shape of the network distances is dependent on the
specific network initial condition, and the dynamical
behavior is therefore not ergodic.

A possible explanation for the fact that distances do not vanish
(actually, they seem to systematically increase in the long run) and
that perturbations exhibit different convergence patterns relative to
the reference trajectory would be that, within the perturbation
radius, different perturbations are indeed converging towards
different minima of the loss function, i.e., different network
configurations with nearly-identical loss values (Choromanska
et al., 2015). If this was the main reason underlying the observed
phenomenology, then we speculate that, for small enough
perturbation radius ϵ, we should find a transition to non-
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increasing distances. However, the results shown in Figure 4 indicate
that, for the same network initial condition, perturbations within
systematically smaller radius ϵ still show a similar qualitative
behavior for d(t), i.e., almost independently of ϵ. In Figure 4, we
do not see a transition between convergence and divergence with ϵ,
at least for the values considered here. The conclusion is thus that,
numerically, what we are observing is consistent with the lack of
orbital stability: there is no small enough ϵ such that orbits within
that radius stay confined. At the same time, the evolution of network
distances is not consistent with sensitive dependence of initial
conditions (exponential expansion): enforcing a low learning rate
η guarantees convergence of the iteration scheme and thus such
exponential expansion is not to be expected in this regime.

Hence, why do initially close network trajectories appear to
continuously diverge, irrespective of the initial distance ϵ? What is
causing this lack of orbital stability? This brings us to the conjecture
of the existence of irrelevant directions (i.e., that not all weights are
important for the output of the network) and the scenario of
marginal stability, where the network trajectory would be
“drifting” along some dimensions that are essentially flat with
respect to the loss function, which in turn would imply that
minima of the loss function would be represented by stationary
manifolds, rather than simple stationary points. In such a scenario,
throughout training initially a handful of network parameters would
be updating to go in the direction of strong gradients, and eventually
most of the gradients would be very small, so that the update would

FIGURE 3
Example showing the evolution of the distances between reference and perturbed trajectories, for a perturbation radius ϵ = 10−8. Each panel shows
results for a different network initial condition and a random set of perturbations. Gray lines are the distances from individual perturbations, and black is
the average distance over all (20) perturbations. Overlaid in blue dashed line (right-hand axis) is the loss trajectory of the network plotted for all
perturbations (all loss curves coincide).

FIGURE 4
Evolution of distances between perturbations and reference trajectory for a single initial condition and different values of the perturbation range ϵ =
{10−14, 10−10, 10−6, 10−2}. Randomperturbations are sampled separately for each value of ϵ. Gray lines represent individual perturbations and black line is the
mean over perturbations. Note the different scales on the distance axis (left-hand side). The loss of perturbations is overlaid in dashed blue line (right-
hand axis).
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be producing a sort of random walk trajectory within the stationary
manifold, and such network diffusion would in turn produce the
continuous–yet slow–divergence of trajectories observed in
Figures 3, 4.

The existence of irrelevant directions seems to be supported
when looking at how the loss changes when we disable individual
weights after training has finished. The results in the left panel of
Figure 5 show that the “importance” of weights, defined as the
decrease in loss incurred after they have been disabled (set to
zero), is not normally distributed, and while disabling some
weights has a disproportionately large impact on the loss, this
impact is minimal for plenty of others. Note, however, that the
story is far more intricate, since the “problem-solving ability” of
neural networks is based not on individual weights, but on non-
linear combinations of multiple weights (this echoes the issues
with similar “feature importance” approaches in classical
machine learning).

To test for the neutral drift hypothesis, we finally look at the
dynamics on the level of individual network weights: for each weight
w, we compute its per-weight displacement Δw as

Δw � |w T( ) − w 0( )|
|w 0( )| ,

where T denotes the time of the final iteration, and scatter plot it
against the per-weight total distance travelled Dw, i.e., a rectification
of its trajectory

Dw � ∑
T

t�1
|w t( ) − w t − 1( )|.

Intuitively, along the irrelevant dimensions (with unbiased
random-walk-like drift), we would expect a small displacement
Δw and a large distance traveled Dw, whereas more ballistic
weight trajectories would yield Dw ∝Δw. The right panel of

FIGURE 5
(Left panel) Heatmap for one of the weight matrices of a final solution, i.e., W1 at the final iteration. Color corresponds to difference in loss Lw after
disabling each weight individually (i.e., settingwji = 0 only and recalculating loss). Difference is shown relative to baseline loss Lwhen all weights are kept
as is. (Right panel) Relationship between per-weight displacements Δw and the total distance travelled by individual weightsDw. Results are for the weight
matrices of a single network trajectory.

FIGURE 6
Distance between perturbed and reference trajectories for ϵ = 10−8, where perturbations are taken after 4,000 learning iterations (the change in the
loss function is O(10−2)). Gray lines correspond to individual perturbations and black line corresponds to mean over perturbations. Each panel shows a
different independent initial condition.
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Figure 5 shows scatter plots of this relationship for all the weights of
a typical network trajectory, finding a linear relationship in this
representation between displacement and distance and the lack of
weights with both small displacement and large distance. Thus,
naive neutral drift is an unlikely explanation.

In the end, the most plausible explanation of the continued
divergence observed at perturbation near the initial conditions
might come in light of findings about the effect of cross-entropy
loss on the shape of low-loss basins (Fort et al., 2019). Essentially,
once a training algorithm has found a basin of low loss (i.e., classifies
samples correctly), it will further try to scale up the outputs of neural
units in order to increase the gap with the incorrect prediction and
make the outputs match as best as possible the ground-truth
(represented by unit vectors with a value of 1 at the index of the

correct prediction). As a result of this, low-loss basins for cross-
entropy loss “extend outwards” from the origin and the dynamics
move gradually (but slowly) away from the origin. Since
independent initial conditions are unlikely to converge towards
the same minima, the perturbations drift away from one another.

3.2 Stability analysis near the stationary state
(post-learning)

In the preceding section we have analysed how perturbations of
an initial network condition evolve through learning, i.e., exploring
network divergences related to the ideas of orbital stability. Here we
turn our attention to the problem of dynamical stability close to

FIGURE 7
Distance fromperturbed to reference trajectories, and training loss in the Edge of Stability (η= 1) regime, for four example initial conditions (each row
corresponds to a different network initial condition). Around each initial condition, we build five perturbed networks, with ϵ = 10−8. The first column from
the left shows distances d(t) for the full training period. The second column shows the region of exponential divergence for the first 200 iterations. Red
dotted lines illustrate the slope of best fit for the exponential region. The third column shows the distances for the last 50 iterations. The final column
shows the evolution of the loss L.
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stationary points of the dynamics. It has been observed empirically
that at the start of training the network is looking for a basin of lower
loss, while later on it is exploring within that region (Fort et al.,
2019). We would like to explore here the intuition that as the
network asymptotically reaches a plateau of the loss function late in
training, the trajectory reaches a (stable) stationary solution. A naive
linear stability theory tells us that, close to a stable (unstable) fixed
point, small perturbations generate orbits that converge
exponentially towards (diverge exponentially away from) the
fixed point, depending on the eigenvalues of the linearized
system’s Jacobian (the same phenomenology is expected for
gradient descent under a strongly convex function). In Figure 6
we show examples for the distance d(t) between perturbations taken
with respect to a network condition found near the end of training
(after 4,000 epochs). We see that distance between trajectories
predominantly remains flat or decreases slowly, but on rare
occasions also increases or experiences bumps. By plotting the
distances on a semi-logarithmic scale, we see that for many
initial conditions they exhibit a relatively sharp drop followed by
a very slow decay. These results seem to be incompatible with an
exponential shrinkage, and thus the solutions obtained after
4,000 training epochs are not strictly attractive fixed points in the
sense of dynamical systems, or minima of locally convex functions,
from the point of view of optimisation theory.

The above notwidthstanding, the behavior of the distances shown
in Figure 6 is indeed very different from that observed for perturbations
taken at the initial condition, as shown earlier in e.g., Figure 3.
Considering the tendency for distances to experience abrupt swelling
and other non-trivial behaviors, we cannot state with certainty whether
trajectories are bounded for long times, and therefore stable (in a
weaker, Lyapunov sense). However, we should bemore confident in this
conclusion than for perturbations at the initial condition.

The fact that for the same initial condition some perturbations
decay while others grow seem to imply that, within a radius ϵ, the
behavior is not homogeneous (it is still unclear whether perturbed
trajectories converge towards the same local minimum). When
minima are locally convex/well-like, the loss function represents
a Lyapunov potential and linear stability theory predicts exponential
decay, as mentioned before. In the case when minima are not points
dotting the phase space, but instead are represented by high-
dimensional manifolds, random perturbations would converge to
points at a distance from the reference along the flat dimensions. In
this case, the distance between some weight values would decay
exponentially while for others it would remain constant. In the
language of linear stability theory of maps, it is possible that the
Jacobian of the linearized system has many eigenvalues equal to
1 and only a handful smaller than 1.

Finally, since distances do not decay fully, this could again imply
that trajectories converge to nearby saddle points. We know that
saddle points are ubiquitous in high-dimensional systems (both
general dynamical systems (Fyodorov and Khoruzhenko, 2016; Ben
Arous et al., 2021) and empirically in neural network loss landscapes
(Bosman et al., 2020b) and that the convergence of GD slows down
near any critical point, whether that is a minima or a saddle. In fact,
GD is notoriously bad at escaping saddle points (one of the reasons
SGD is preferred in practice). On one hand, perturbations away
from a local minimum (if that minimum is isolated and narrow)
could cause the trajectory to evolve towards nearby saddle-points

and slow down the dynamics. On the other hand, perturbations
away from saddle points might allow a trajectory to escape that
saddle more quickly and continue the evolution towards a different
critical point (unlikely for low-rank saddles). We return to this
discussion in Section 5, after presenting the exploration of large
learning rates in the following section.

4 The large learning rate regimes

In the previous section, we explored the evolution of network
trajectories when the learning rate is “conventionally” small (η =
0.01), i.e., for which the loss function monotonically decreases
towards its minimum by the action of the gradient descent
scheme, see e.g., Figure 3. Here we relax this assumption and
consider larger values of the learning rate η, where such
convergence is less well understood, and explore how both
network trajectories and loss trajectories evolve and what type of
dynamics are observed.

4.1 η = 1 (edge of stability): evidence of
sensitive dependence on initial conditions

Recent literature (Kong et al., 2020; Agarwal et al., 2021; Cohen
et al., 2021) points to the fact that gradient descent on non-convex loss
functions does not necessarily become unstable when the learning rate
is increased above the threshold predicted by the theory for convex
optimization; astonishingly, within some region labelled the “edge of
stability” the convergence of the neural network (i.e., learning) is faster
than for the traditionally lower learning rate.

More concretely (Cohen et al., 2021), in this regime the
maximum eigenvalue of the loss function Hessian (so called
sharpness) increases until it reaches the theoretical bound of
divergence for Gradient Descent, yet the training itself does not
diverge, and this occurs consistently across many tasks and
architectures. In this regime, the loss overall tends to decrease
but non-monotonically in the short-term.

Accordingly, we now fix a substantially higher learning rate2 η =
1 and replicate the analysis performed in Figure 3. Results are plotted
in Figure 7, for four different network initial conditions and a
perturbation radius ϵ = 10−8. We can see (fourth column) that
while the loss eventually reaches a minimum close to zero, its
transient behavior is clearly non-monotonic. At the same time,
we can observe (first column) that the distance between initially
close network trajectories typically show strong divergences (with an
order of magnitude significantly larger than for η = 0.01). Zooming

2 Note that η = 1 is actually larger than the learning rate for which Cohen

et al. (Cohen et al., 2021) observe the Edge of Stability in their tasks. The

authors note that for shallow networks and easy tasks, the sharpness

increases to a lesser degree. Since our network is shallow and our task

easy, it is reasonable to assume that we need larger values of η to reach the

sharpness necessary for the Edge of Stability. Additionally, they show that

for cross-entropy loss (rather than e.g., MSE loss), the sharpness drops

towards the end of training.
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in (second column), we can see that the initial divergence between
network trajectories displays in many cases an exponential phase,
whereas asymptotically (third column) distances are often
oscillatory with a small period, sometimes resembling (stable)
limit cycles.

We now pay a bit more attention to the presence of an
exponentially expanding phase depicted in the second column of
Figure 7, which might be indicative to the presence of sensitivity to
initial conditions in network space. One can quantify this effect by
estimating the finite network Lyapunov exponent distribution P(Λ)
(Caligiuri et al., 2023) [the network version of finite Lyapunov
exponents (Aurell et al., 1996), following the procedure depicted
(Caligiuri et al., 2023) and briefly summarised in Section 2]. In
Figure 8 (left) we show P(Λ) reconstructed from 500 different
network initial conditions, where (i) around each network initial
condition we consider an ϵ-ball of radius ϵ = 10−8 and track the
evolution of 5 perturbations within that radius, (ii) we compute Λ
via Eq. 3, where (iii) τ is automatically found as the window yielding the
best exponential fit. We only keep those cases where the exponential fit
has a R2 > 0.9, and also discard cases where the resulting Λ < 0.05
(around 90% of the initial conditions were kept after this filtering was
performed). Observe that the distribution is unimodal, its mean is
therefore a good proxy for the network MLE. In the right panel of
Figure 8, we plot the resulting λnMLE, as a function of the perturbation
radius ϵ. The exponent stabilises to a positive value λnMLE ≈ 0.33 as ϵ
decreases, indeed suggesting the onset of sensitive dependence of initial
conditions along the training process for η = 1, an interesting result that
clearly deserves further investigation.

4.2 η = 5: rich taxonomy of dynamical
behavior and hints of intermittency

If we increase the learning rate well beyond the point that is
conventionally considered stable, we still see no numerical

divergence in the loss, but the dynamics–both at the level of the
loss function and the network dynamics–once again change
dramatically. For illustration, Figure 9 shows the evolution of the
loss L and the weight norm ‖W‖ for different independent initial
conditions and a learning rate η = 5. Generally, we can observe that
the loss is very different from the other regimes studied so far. Its
magnitude is very large compared to other regimes we have studied,
to the point where it is difficult to argue that the network is indeed
learning, except for occasions where the loss manages to settle to a
small value. Even then, it is unclear whether the loss stays small for
long times, since we sometimes observe jumps to larger-loss regions.

Interestingly, the time series of the loss for individual trajectories
switches between a (period 3) quasi-periodic behavior3 and a
random-like phase. Such tendency for the trajectory to alternate
between a quasi-periodic phase and a random-like phase is
reminiscent of deterministic intermittency (Schuster and Just,
2006; Núnez et al., 2013), a classical phenomenon describing the
alternation of laminar phases intertwined with chaotic bursts. We
thus look more closely into these random-like phases.

In Figure 10 we depict the evolution of the scalar loss function,
along with an estimation of its autocorrelation function, for a typical
time series within one of these random-like intermissions. It is
interesting to see that, while the time series is highly irregular and no
obvious pattern emerges at the naked eye, the autocorrelation
function detects statistically significant, periodic-like
autocorrelation, suggesting that the loss time series might be

FIGURE 8
Lyapunov exponents for trajectories in the Edge of Stability (η= 1) regime. (Left panel) Distribution of finite Lyapunov exponents P(Λ), where eachΛ is
estimated from Eq. 3 for an ϵ-ball of radius ϵ = 10−8 centred at a network initial condition with 5 perturbed networks. P(Λ) reconstructs the distribution for
500 different network initial conditions (only exponential fits with R2 > 0.9 and value greater than 0.05 have been used in order to exclude cases where no
exponential divergence can be observed). (Right panel) Mean and standard deviation of P(Λ), providing the network Maximum Lyapunov Exponent
λnMLE and its fluctuations, respectively, for ϵ ∈ [10−14, 10−2]. λnMLE converges to a stable value λnMLE ≈ 0.33 as ϵ decreases.

3 The time series does not strictly bounce between three fixed values, but

instead three fixed regions. Within a region, the trajectory takes values that

in isolation appear as a monotonically decaying series. The distance

between region boundaries is usually O(1) or larger, but the size of the

regions is much smaller, often approximately O(10−6). Thus, to the “naked

eye” the trajectories appear periodic, e.g., on the plots in Figure 9.
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performing an irregular evolution but alternating between two
separate regions of the loss. This image is for instance
reminiscent of the evolution of a chaotic orbit in a two-band
chaotic attractor (Nunez et al., 2012). Subsequently, in Figure 11
we perform a Kantz-based (Kantz, 1994) approach to compute the
(finite) Lyapunov exponent directly from the loss time series. Results

indicate that for some initial conditions, there is evidence of sensitive
dependence on initial conditions, whereas for many other initial
conditions, such evidence is not statistically significant. All this
points to the fact that the complex, intermittent-like evolution of the
loss function cannot be simply accommodated to a one dimensional
chaotic intermittent process. In hindsight, this is not surprising as

FIGURE 9
Training trajectories in the very large η= 5 regime. Each column (A–D) represents the trajectory starting from an independent initial condition, where
in total four were picked to illustrate the range of dynamical behaviors. Shown are the training loss L (top row) and weight norms ‖W‖ (bottom row) for
each trajectory.

FIGURE 10
Closer look at a representative sequence of chaotic-like loss of a single trajectory (extracted from trajectory shown in column b) in Figure 9 in the
very large η = 5 regime. (Left) Time series of loss during the chaotic-like regime. (Center) Zoom in on 50 iterations of the loss series. (Right) ACF up to lag
τ = 50 of the loss series. The shaded area represents the bounds of the 95% confidence interval for a randomized null model, i.e., the ACF computed for
1,000 realizations of the shuffled series.
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the projection of the network dynamics into the loss function
dynamics is quite severe: whereas the loss time series is a one-
dimensional scalar one, the actual underlying system is high-
dimensional and thus we expect a spectrum of Lyapunov
exponents govern the long-run behavior. Finally, we observed
that a qualitatively similar phenomenology is observed for the
evolution of individual network weights wij (Figure 12). At the
network level (Figure 9), the observed intermittent-like behavior
seems to be caused by a few weights acting in an intermittent-like
fashion (which we have picked out for the plot in Figure 12),
while the rest of the weights remain constant throughout
training. Interestingly, the onset or end of chaotic-like
behavior seems to coincide for different weights. This rich
phenomenology deserves further investigation, alongside with
an investigation of the transition between the η = 1 and the larger
values explored here.

5 Discussion and outlook

In this work we have illustrated how the process of training a
neural network can be interpreted as a graph dynamical system
yielding network trajectories, and how classical concepts from
dynamical systems such as dynamical or orbital stability can be
leveraged to gain some understanding of this training process
(Lacasa et al., 2022; Caligiuri et al., 2023; Ziyin et al., 2023). For
illustration, we considered a simple (toy) classification task, and
trained a shallow neural network via gradient descent optimization.
We analysed both the loss function time series and the actual neural
network trajectories, and examined how small network
perturbations propagate throughout the action of the training
process to gain insights on dynamical and orbital stability of the
graph dynamics. Our analysis allows us to distinguish clearly
between two regimes, the so-called low learning rate regime (η =

FIGURE 11
Analysis of local expansion rates for the chaotic-like loss of a single trajectory, shown in Figure 10, in the η = 5 regime. (Left panels) Divergence of
initially nearby orbits for two example initial conditions. Light blue corresponds to distance dn between the initial condition and a single perturbation,
while dark blue is the average distance over all perturbations for the given initial condition. The top panel shows an initial condition with a statistically
significant exponential slope (best fit illustrated in red dashed line). The bottom panel shows an initial condition for which a slope of zero (i.e., no
exponential divergence) cannot be rejected. (Right panels) Distribution of finite Lyapunov exponents Λ, for 1,000 different initial conditions of the loss
time series (top) and scatter plot of Λ as a function of the initial condition of the loss L (bottom). Gray corresponds to initial conditions for which random
evolution cannot be rejected (p-value >0.05), while red corresponds to those for which a period of exponential divergence is statistically significant
(p-value <0.05).
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0.01) where gradient descent schemes are typically producing
monotonically decreasing loss functions towards a minimum, and the
large learning rate regime (η ≥ 1) where such convergence is not
necessarily guaranteed, and more complex dynamics at the level of the
loss function can develop. Overall our results challenge naive expectations
from low-dimensional dynamical systems and optimization theory.

In the low learning rate regime, despite the fact that the loss
monotonically decreases towards a minimum, initially closeby
network trajectories perform non-trivial evolution in graph space,
marked by an alternation of divergence and convergence, eventually
reaching a phase of slow yet monotonic divergence. Such behavior
was found to be qualitatively similar regardless how close the
network trajectories were initially but heavily dependent on the
position of the initial condition within the whole graph space and
results were put in the context of a lack of orbital stability. Similarly,
we examined the evolution of closeby network trajectories in a post-
learning process, i.e., where the loss had already approached a
minimum, mimicking the dynamical stability analysis of
dynamical systems close to a stationary point. We found hints of
dynamical stability but overall results were pointing to the existence
of plenty of irrelevant dimensions in graph space, i.e., the loss
function minima being more of a stationary manifold in graph
space. The absence of (exponentially fast) convergence of
perturbations of network stationary points deserves further
investigation. Our conjecture that the marginal stability we
observe is caused by the presence of flat dimensions (where the
loss gradient vanishes) seems plausible in light of research presented
earlier on the high-dimensional nature of low-loss basins (Fort and
Jastrzebski, 2019). In fact, there is evidence from both analytical

results (in a reduced setting) and numerical experiments (for the
Fashion-MNIST dataset) for the existence of wide and flat loss
minima which, although rare, can be reached by many simple
learning algorithms, especially when a cross-entropy loss function
is employed (Baldassi et al., 2020). Intuitions developed from low-
dimensional landscapes do not seem to hold for higher dimensions.

We stress that the phenomenology in the low learning rate
regime is quite dependent on the initial condition, pointing to a
severe loss of ergodicity, as it is usually the case for optimization
problems in non-convex loss function landscapes. An interesting
question for future work is the effect of including a regularization
term in the loss function, which would essentially add a preferred
direction for optimization in flatter regions of the loss landscape and
thus we suspect would lead to more stable trajectories.

When the learning rate is large but the loss function still converges
(η = 1), we found hints of complex behavior both in the loss function
time series and the network trajectories, including non-monotonic loss
dynamics and hints of sensitive dependence of initial conditions for the
network dynamics. Further research is necessary to elucidate whether
this phenomenon is universal, but preliminary results in this direction
(shown in Supplementary Appendix S2) suggest that for the more
complex MNIST dataset (Lecun et al., 1998), network trajectories
exhibit similar behavior and a region of optimal exploration-
exploitation tradeoff with sensitive dependence on initial conditions
is again identifiable. At this point, it is stimulating to mention the so-
called edge of chaos paradigm, where dynamics poised near a critical
point that separates an ordered and a disordered phase might evidence
some degree of optimality in information processing capabilities
(Carroll, 2020). This classical hypothesis was introduced by Langton

FIGURE 12
Trajectories for three individual weights that exhibit intermittent-like behavior, from a single initial condition (corresponding to column b) in Figure 9.
Different colors correspond to different weights wij.
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in the context of cellular automata (Langton, 1990), and has been
recently explored in the context of information processing (Boedecker
et al., 2012; Carroll, 2020; Vettelschoss et al., 2022). A very similar
hypothesis is that living systems exhibit self-organized criticality (Bak
et al., 1988;Hidalgo et al., 2014;Watkins et al., 2016;Munoz, 2018), with
the brain being an archetypical example (Chialvo, 2010; Moretti and
Muñoz, 2013; Morales et al., 2023a). Connecting the apparent criticality
of brain dynamics with the information processing advantages of
artificial systems and neural networks at the edge of chaos (Carroll,
2020; Morales and Muñoz, 2021; Morales et al., 2023b) has invigorated
this interdisciplinary research line even further. It is thus suggestive to
relate this phenomenology to our findings in the so-called edge of
stability: a region where the loss function is still converging to a
minimum (i.e., the ANN learns) albeit in a non-monotonic and
faster way. The fact that in this region we find evidence of sensitive
dependence on initial conditions (with positive maximum Lyapunov
exponent) suggests that the search algorithm has switched from being a
pure exploitation one for low learning rates to a balanced exploitation-
exploration one at higher learning rate: a possible optimal strategy given
the fact that the loss function indeed converges faster.

Finally, in the (very) large learning rate, we have observed and
alternation of quasi-periodic and chaotic-like evolution of both the loss
and the network itself (pointing to the presence of chaotic
intermittency) for even larger learning rates. Further research is
needed to better understand the dynamical nature of these regimes,
their possible relation to classical paradigms of complex behavior such
as the intermittency routes to chaos, and how these could be leveraged
to develop deterministic gradient-based training strategies at extremely
large learning rates (Kong et al., 2020; Geiping et al., 2022).

To conclude, this work provides an illustration as to how
concepts and tools from dynamical systems, time series analysis
and temporal networks can be combined to gain understanding of
the training process of a neural network. The specific classification
task and network architecture under consideration were chosen for
illustration, rather than specific interest. In this sense, more realistic
scenarios (both for tasks and network architectures) should be
explored. Further work is also needed to understand whether the
results presented here generalize well across tasks and architectures,
or e.g., if specific architectures display different types of dynamical
stability. Ultimately, our exploratory findings aims to stimulate
research and exchange of ideas between the above-mentioned fields.
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