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Background: Historically, although researchers in the science of complex
systems proposed the idea of the edge of chaos and/or self-organized
criticality as the essential feature of complex organization, they were not able
to generalize this concept. Complex organization is regarded at the edge of
chaos between the order phase and the chaos phase and a very rare case.
Additionally, in cellular automata, the critical property is class IV, which is also
rarely found. Therefore, there can be overestimation for natural selection. More
recently, developments in cognitive and brain science have led to the free energy
principle based on Bayesian inference, while quantum cognition has been
established to explain various cognitive phenomena. Since Bayesian inference
results in the perspective of a steady state, it can be described in Boolean logic.
Considering that quantum logic consists of multiple Boolean logic in terms of
lattice theory, the perspective of the free energy principle is the perspective of
order, and the perspective of quantum logic might be the perspective of multiple
worlds, which is strongly relevant for the edge of chaos.

Problem: The next question arises whether the perspective derived from
quantum logic can be generalized for the complex behavior consisting of
both order and chaos, instead of the edge of chaos or self-organized
criticality, to reveal the property of critical behavior such as a power-law
distribution.

Solution: In this study, we define quantum logic automata, which entail quantum
logic (orthomodular lattice) in terms of lattice theory and have the features of a
dynamical system. Because quantum logic automata are applied to a binary
sequence, one can estimate the behavior of those automata with respect to
patterns and a time series. Here, we show that most of a group of quantum logic
automata display class IV-like behavior, in which oscillatory traveling waves
collide with each other, leading to complex behavior; moreover, a time series
of binary sequences displays 1/f noise. Therefore, one can see that quantum logic
automata generalize and expand the idea of the edge of chaos.
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1 Introduction

While artificial intelligence (AI) has been developed as a
technology by which a given problem can be solved, it entails
optimization and prediction (Minsky, 1961; Russel and Norving,
2010). This suggests that the whole world can be seen without
ambiguity and that phenomena can be repeated so far as their
boundary conditions can be determined (Krizhevsky et al., 2012;
LeCun et al., 2015; Linardatos et al., 2020; Khan et al., 2022).
Complex system science has indicated the existence of deviations
from steady states and/or oscillation, chaotic dynamics, and open-
ended evolution (Haken, 1977; Peitgen et al., 2004; Abraham et al.,
1990; Ott et al., 1990; Kauffman, 1993; Shinbrot et al., 1993; Kaneko,
1994; Prigogine and Stengers, 2018). After the development of
chaotic dynamics with many degrees of freedom (Kaneko, 1985;
Bunimovich and Sinai, 1988; Kaneko, 1990; Kaneko, 1992),
researchers of complex systems approached the issue of living
systems, consciousness, and the mind, thus producing studies in
complex systems and AI that have tended to be strongly relevant for
brain science (Tsuda, 2001; Kaneko, 2006; Santos et al., 2017; Nukh
et al., 2019; Kauffman, 2019).

Recently, AI and brain science have been unified in terms of the
free energy principle (FEP), by which the Kullback‒Leibler
divergence between a priori probability and a posteriori
probability is minimized under surprise minimization (Friston
et al., 2006; Friston and Kiebel, 2009a; Friston and Kiebel, 2009b;
Friston, 2010; Friston, 2019). Thus, the FEP implies that human
consciousness regards the world as an experienced world based on
Bayesian inference and that any phenomena are regarded as
experienced phenomena. This principle is, therefore, consistent
with conventional thinking taken after AI research. However, this
idea might be inconsistent with alternative ideas for human
consciousness called quantum cognition (Khrenikov, 2001; Aerts,
2009; Aerts et al., 2012; Busemeyer and Burza, 2012; Haven and
Khrenikov, 2013) and in conflict with complex systems revealing
open-ended evolution (Kaneko, 2006; Kauffman, 2019). We first
describe quantum cognition, complex systems, and, especially, edge
of chaos (EOC) (Langton, 1990; Kauffman and Johnsen, 1991) and
self-organized criticality (Bak, 1996), and then we describe the
relationships among them, including FEP.

Quantum cognition shows that humans can make decisions
based on quantum theory (Khrenikov, 2010; Asano et al., 2015;
Burza et al., 2015; Khrenikov, 2021). There are many cognitive
illusions that cannot be explained by classical probability theory.
The guppy effect and/or the Linda fallacy suggest that humans tend
to presume the conditional probability is larger than the underlying
probability, which is inconsistent with classical probability theory.
The order effect suggests that humans sometimes distinguish the
joint probability of A and B from that of B and A. These cognitive
illusions can be explained by using quantum theory (Aerts et al.,
2013; Aerts et al., 2019). Because quantum mechanics is defined as a
vector space whose coefficients are complex numbers equipped with
Hilbert space, the probability of an event is defined by the norm of
the vector, and various cognitive illusions can be explained through
the interference of some probabilities that are essential properties of
quantum mechanics. Quantum cognition posits that quantum
mechanics is used not as a physical entity but only as
information theory (Busemeyer et al., 2011; Blutner & beim

Graben, 2016; Gunji and Haruna, 2022) in macroscopic cognitive
phenomena. This is in explicit contrast to the idea of the quantum
brain (Hameroff, 2012).

Because the FEP shows that a system converges to the
experienced world, any event can be repeated and predicted. Any
predictable event is a certain thing without ambiguity, and the world
consists of any combinations of predictable events. In that sense, the
world is subject to a set theoretic logic or classical logic. A
propositional logic is transformed by a lattice that is a partially
ordered set closed with respect to some binary operations (Davey
and Priesley, 2002). In that sense, a lattice has an algebraic structure.
Classical logic is equivalent to a Boolean lattice in lattice theory, and
the FEP can be described in a Boolean lattice (Gunji et al., 2022).

Quantum cognition based on quantum mechanics can be
described in an orthomodular lattice that is equivalent to
quantum logic (Svozil, 1993; Atmanspacher et al., 2002). The
quantum logic is also formalized with respect to formal concept
analysis (Shivhare and Cherukuri, 2017; Ishwarya and Cherukuri,
2020a; Ishwarya and Cherukuri, 2020a). If an orthomodular lattice
satisfies the distributive law, it is a Boolean lattice. In this paper, we
call a lattice satisfying the complementary law and the orthomodular
law, but not the distributive law, an orthomodular lattice or
quantum logic. The distributive law implies the essential property
of set-theoretic logic. Thus, it can be said that the FEP realizes the
world in which anything can be reduced to atoms. In contrast, the
world is divided into subworlds in an orthomodular lattice. If two
events are taken from the same subworld, they obey the distributive
law, and those combinations can be reduced to atoms. However, if
two events are taken from different subworlds, they break the
distributive law. While FEP compared to classical logic entails a
closed predictable world, quantum cognition compared to quantum
logic entails an open-ended world (Gunji et al., 2016; Gunji et al.,
2017; Gunji and Nakamura, 2022; Gunji and Nakamura, 2023).

How about complex systems? Chaotic systems with many
degrees of freedom seem to have the ability to balance order with
chaos. The property of such systems is called homeochaos,
suggesting implicitly critical phenomena (Kaneko and Ikegami,
1992). There is an explicit critical state in the first-order phase
transition. The critical state has the properties of both phases in the
phase transition and displays a characteristic power-law distribution
(Bak, 1996; Newman, 2005). However, few behaviors showing a
power-law distribution are found in homeochaos in the strict sense
(Kaneko and Ikegami, 1992; Solé et al., 1992).

Critical phenomena were previously studied in the context of
self-organized criticality (Bak et al., 1987; Bak and Tang, 1989; Bak
and Sneppen, 1993; Sneppen et al., 1995) and/or the edge of chaos
(Kauffman and Johnsen, 1991) in the science of complex systems.
The two phases are generalized as the order phase and the chaos
phase. The critical state between the chaos and order phases shows
cluster-like spatial and temporal patterns and a power-law
distribution. The self-organized criticality proposed by Bak is
illustrated by the earthquake model, sand pile model (Bak et al.,
1987; Bak and Tang, 1989), and evolution model (Bak and Sneppen,
1993). In the sand pile model, sand grains fall from above and
constitute sand piles. Each sand pile grows until the slope of the pile
exceeds the stable angle. Once it exceeds the stable angle, a sand pile
is broken like an avalanche. The distribution of avalanche size and
avalanche time span shows a power-law distribution. The EOC
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concept proposed by Kauffman is based on the “rugged landscape”
in which attractors face other attractors through rugged walls
(Kauffman and Johnsen, 1991). The rugged landscape leads to
rare transitions from one attractor to another attractor, which
entails the power-law distribution of the transits. The idea of
criticality is also used to reach the optimal solution (Erskine and
Hermann, 2015; Cordero, 2017).

In cellular automata, an idea similar to the edge of chaos can be
found (Langton, 1990; Barbu, 2013). Time–space patterns of
elementary cellular automata are divided into three types: class I
(homogeneous pattern) and II (locally stable pattern), showing an
order pattern; class III, showing a chaotic pattern; and class IV,
showing a complex pattern consisting of chaos and order. Thus,
class IV cellular automata, which are very rare, are regarded at the

location between the order and chaos (Wolfram, 1983; Wolfram,
1984; Wolfram, 2002). While the explicit comparison between the
edge of chaos and class IV automata is clear, class IV automata show
some explicit characteristics of the critical state, such as the power-
law distribution (also see Uragami and Gunji, 2018).

Recently, it was reported that neural data in real brains show
power-law distributions (Kello et al., 2010; Fontenele et al., 2018;
Lendner et al., 2020), neuronal avalanches (Jannessai et al., 2020),
maximized Lempel–Ziv complexity (Toker, et al., 2022), maximal
active information storage (Boedecker et al., 2012), and
eigenspectrum of the covariance matrix (Dahmen et al., 2019,
Moreles et val., 2021), which indicates a critical state in the phase
transition between order and chaos. Therefore, these observations of
electrophysiological data show that the brain moves at the critical

FIGURE 1
Examples of the input‒output table showing one-to-many type mapping, not a map, and a map in the form of an input triplet to an output triplet.

FIGURE 2
Illustration of the method of application for the one-to-many type map, deterministic rule. The left diagrams show some examples of time
development generated by the input‒output table in which the deterministic rule is described at the location of the relation, such as 000R000.
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state (Wilting and Proessemann, 2019; Plenz et al., 2021). As even
FEP cannot ignore the properties in critical phenomena such as the
power-law distribution, an additional idea of a transition is
introduced as the interface balancing the steady state obtained by
Bayesian inference and its environments in the external world or
chaos. That interface is a Markov blanket that was originally
proposed in AI research (Pearl, 1988). The interactions revealing
a predictable, experienced world seem to be protected by theMarkov
blanket, and they sometimes communicate with the external world
outside the Markov blanket (Clark, 2017; Kirchhoff et al., 2018).
However, the idea of a Markov blanket is sometimes general but
speculative (Friston et al., 2020) and sometimes rigorous but specific
(Friston et al., 2021) to indicate the power-law distribution in terms
of the connectivity of neurons.

We can summarize the history of cognitive science, brain
science, and the science of complex systems with respect to
critical phenomena. Although it is clear that real brain data show
the properties of critical phenomena, there is no general model to
explain critical phenomena showing a power-law distribution or
scale-free property. While homeochaos has generality, it does not
display a power-law distribution. Although the idea of self-
organized criticality and/or the edge of chaos shows a power-law
distribution, the mechanism balancing chaos and order is too
specific and loses generality. This is also true for the Markov
blanket, which has generality, but if it shows a power-law
distribution, then it is specifically implemented. How about
quantum cognition? While quantum cognition suggests the
interaction among multiple subspaces, which is similar to the

idea of homeochaos, no relationship has been found between
quantum cognition and the properties of critical phenomena.

However, there might be a breakthrough showing the critical
phenomena and quantum cognition. Quantum cognition and
Bayesian inference have recently been connected by the idea of
excess Bayesian or inverse Bayesian inference (Gunji et al., 2016;
Gunji et al., 2017; Gunji et al., 2022). While Bayesian inference
works well, as the likelihood of each hypothesis (i.e., the
distribution of data in a hypothesis) does not overlap with
each other, it is assumed that each hypothesis has a steep peak
and that the peak of each hypothesis does not overlap in advance.
This assumption is not trivial. In AI or machine learning, this
assumption is implemented in advance. How about the brain? In
the brain, it is necessary to generate this hypothesis by a specific
mechanism. The excess Bayesian inference is one of the hopeful
candidates for the mechanism. While the excess Bayesian
inference can generate a set of nonoverlapping hypotheses for
a region of experienced data, the relationship between the
hypotheses and unexperienced data is generated as a nonzero
joint probability between the hypotheses and unexperienced data
(Gunji et al., 2022). This structure entails multiple Bayesian
subworlds connected to each other via stochastic transients.
That is, there is nothing but the structure of the orthomodular
lattice, and it is verified that the structure entails quantum logic.
In other words, excess Bayesian inference can be one of the
candidates for Markov blankets.

Therefore, the excess Bayesian inference of inverse Bayesian
inference connects the perspective of FEP to quantum cognition via

FIGURE 3
Construction of a lattice in the form of LKT � X ⊆ S|K*(T*(X)) � X{ }. From a binary relation between equivalence classes of K and T defined in a set S
(left), for all subsets of S, K*(T*(X)) are calculated in a table, where subsets satisfying a fixed point are highlighted (center). The corresponding lattice is
shown in the form of a Hasse diagram (right). See the text for details.
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quantum logic. The next important question arises whether
quantum cognition or quantum logic entails explicit properties
characterized by a power-law distribution. That is the aim of this
paper. Here, we define the dynamics of quantum logic in terms of
cellular automata, which we call “quantum logic automata,” and
we estimate the behavior of quantum logic automata with respect
to the power-law distribution, especially the power spectrum of
time series.

2 General logic automata

2.1 Definition of logic automata

The logic automata are defined by a triplet of the input‒output
table, a binary sequence, and the method of application. Given
the input‒output table, logic in the form of a lattice is
determined. The input‒output table is defined by a binary
relation, R, between a set of inputs in the form of I �
000, 001, 010, 011, 100, 101, 110, 111{ } and a set of outputs in the
form of O � u(0), u(1), u(2), u(3), u(4), u(5), u(6), u(7){ }, where
u(k) ∈ 000, 001, 010, 100, 101, 111{ } with k � 0, 1, . . . , 7. The

input‒output table represents a possible transition from an
input triplet to an output triplet. For instance, the binary
relation is defined as 000Ru(0), 000Ru(1), 001Ru(2), 010Ru(5),
and u(0) � 000, u(1) � 001, u(2) � 001, u(3) � 010, u(4) � 100,
u(5) � 100, u(6) � 111, u(7) � 100. Based on the binary relation,
000 is transited to either 000 or 001, 001 is transited to 001, 010 is
transited to 100, and for any other input triplet, 011, 100, 101, 110,
and 111, the transition is not defined. If any element in
u(0), u(1), u(2), u(3), u(4), u(5), u(6), u(7){ } has a relation with
only one of O, the transition is defined as a map in the form of a
triplet to a triplet.

Figure 1 shows some examples of input‒output tables,
where the blue square represents a relation between the
input and output triplet and the blank represents no
relation. The left diagram shows one-to-many type mapping
and that there are multiple relations in some rows. The central
diagram does not show a map because some rows consist only
of blanks. The right diagram, a diagonal relation, shows a map
in the form of a triplet to triplet, and that there is only one
relation in each row. A map of a triplet to a triplet is expressed
only as a diagonal relation because the location of the row is
changeable, and any map can be expressed as a diagonal

FIGURE 4
Two quantum logic automata entailing orthomodular lattices. (A) An orthomodular lattice is constructed as an almost disjoint union of 25- and 23-
Boolean algebras. (B) An orthomodular lattice is constructed as an almost disjoint union of two 23- and 22-Boolean algebras.
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relation. Therefore, the input‒output table assigning a map is
always expressed as

xRu x( ), x � ∑2

k�02
2−kck, (1)

where c0c1c2 is a triplet of the input state. In this paper, only maps
and one-to-many type maps are discussed.

A binary sequence is expressed as a sequence of
ati ∈ 0, 1{ }, i � 1, 2, . . . , N. Given a binary sequence
a0i ∈ 0, 1{ }, i � 1, 2, . . . , N, the input‒output table is applied to a
binary sequence, and binary generation at the next step is carried
out. Since a binary relation assigns an input as a triplet of binary
states, a binary state is divided into a series of triplets such as
(at1, at2, at3), (at4, at5, at6), . . .. The method of application is divided
into two cases with respect to the style of the input‒output tables: 1)
map style and 2) one-to-many type map style.

The method of application for the map style is expressed as

at+1i � d0, a
t+1
i+1 � d1, a

t+1
i+2 � d2, (2)

i%3 � 0

where ati � c0, ati+1 � c1, ati+2 � c2, x � ∑2
k�02

2−kck, xRu(x), and
u x( ) � d0d1d2. (3)

For instance, if at15 � 1, at16 � 1, and at17 � 0, for 15%3 � 0, then
x � 6. If u(6) � 001, the next states are obtained
as at+115 � 0, at+116 � 0, at+117 � 1.

The method of application for the one-to-many type map style is
divided into two rules: a deterministic rule and a stochastic rule.
Given the input‒output table as xRu(x1), xRu(x2), . . . , xRu(xm),
the possible next states are u(x1), u(x2), . . . , u(xm), and one of the
possible states is determined as the next state. First, a deterministic
rule is defined. The next state is determined dependent on the

neighbors of the triplet. If 22(n−1) <m≤ 22n, the n number of
neighbors is used to determine the next state. If ati � c0, ati+1 � c1,
ati+2 � c2, i%3 � 0, and x � ∑2

k�02
2−kck, 22n number 2n-bit binary

sequences are divided into m number sets, D1, D2, . . . , Dm. That is
the definition of the deterministic rule of the method of application
for the one-to-many type map style. If

ati−n, a
t
i−n+1, . . . , a

t
i−1, a

t
i+3, a

t
i+4, . . . , a

t
i+3+n( ) ∈ Ds (4)

with s ∈ 1, 2, . . . , m{ }, at+1i � d0, at+1i+1 � d1, and at+1i+2 � d2, where

u xs( ) � d0d1d2. (5)

By the stochastic rule, one of the possible states,
u(x1), u(x2), . . . , u(xm) is chosen, dependent on the probability
function P(k), k � 1, 2, . . . , m with ∑m

k�1P(k) � 1.
Figure 2 shows an example of the deterministic rule of the

method of application for the one-to-many type map. The right
diagram is the input‒output table, where input triplets are
arranged vertically and out triplets are arranged horizontally,
at the location of which the input triplet has a relation to the
output triplet, a pair of input and output triplets, and its
neighbors. It is clear that 000R000, 000R101, 000R110, and
000R111. This implies that 000 can be transitioned to four
possible outputs, namely, 000, 101, 110, and 111. Because
22(n−1) < 4≤ 22n is satisfied by n � 1, binary states of (ati−1, ati+3)
are divided into four sets, D1 � (0, 0){ },D2 � (0, 1){ }, D3 � (1, 0){ },
andD4 � (1, 1){ }. Thus, dependent on the state of the neighbors of
the triplet, the next triplet is deterministically obtained. The left
diagrams of Figure 2 show four different time developments of
binary sequences generated by the input‒output table with a
deterministic rule. The numbers surrounded by red lines
represent some examples of applications of the input‒output
table with deterministic rules.

FIGURE 5
Input‒output table and the method of application for quantum logic automata. The output values, u(k), k � 0, 1, ..., 7, are defined by a triplet of 0 and
1. The right table of the method of application corresponds to the input‒output table. See the text for details.
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Similarly, it is clear that 110R000, 110R001, 110R010, 110R011,
110R100, and 110R110 and that 110 can transition to six possible
triplets. Since 22(n−1) < 6≤ 22n is satisfied by n � 2, binary states of
(ati−2, a

t
i−1, a

t
i+3, ati+4), that is, 16 binary sequences, are divided into

six sets:

D1 � 0, 0, 0, 0( ), 0, 0, 0, 1( ), 1, 0, 0, 0( ), 1, 0, 0, 1( ){ } � 0, 0( ){ }, (6)
D2 � 0, 0, 1, 0( ), 0, 0, 1, 1( ), 1, 0, 1, 0( ), 1, 0, 1, 1( ){ } � 0, 1( ){ }, (7)

D3 � 0, 1, 0, 0( ){ }, (8)
D4 � 0, 1, 0, 1( ){ }, (9)

D5 � 1, 1, 0, 0( ), 1, 1, 0, 1( ){ }, (10)
D6 � 0, 1, 1, 0( ), 0, 1, 1, 1( ), 1, 1, 1, 0( ), 1, 1, 1, 1( ){ } � 1, 1( ){ }. (11)
We note that D1 � (ati−2,{ ati−1, ati+3, ati+4)|(0, 0, 0, 0), (0, 0, 0, 1),

(1, 0, 0, 0), (1, 0, 0, 1)} � (ati−1, ati+3) | (0, 0){ } and all combinations
of (ati−2, ati+4) are contained and redundant and thus, omitted. D2

andD6 are the same situation. EachDk corresponds to R(xk);D1 to
R(x1) � 000, D2 to R(x2) � 001, D3 to R(x3) � 010, D4 to
R(x4) � 011, D5 to R(x5) � 100, and D6 to R(x6) � 110. The
application of the deterministic rule is shown in the time
development shown in the left diagram of Figure 2. See the
numbers surrounded by red lines at the bottom. Since ati � 1,
ati+1 � 1, ati+2 � 0, and (ati−2, a

t
i−1, a

t
i+3, ati+4) � (0, 1, 0, 0) ∈ D3, the

next triplet is R(x3) � 010, and then, ati � 0, ati+1 � 1, and ati+2 � 0.

2.2 Logic in the form of a lattice entailed by
an input‒output table

Any binary table entails logic in terms of lattice theory (Davey
and Priestley, 2002). Although most researchers studying
complex systems are not familiar with lattice theory, a lattice

is compact and useful for estimating the logical structure. The
states of dynamical systems are usually defined by integers or real
numbers that constitute a totally ordered set. While any two
elements, x and y, exist in a totally ordered set, x≤y or y≤x.
Thus, one can estimate the states with respect to quantity.
Partially ordered sets are generalized from totally ordered sets,
where some elements, x and y, may be neither x≤y nor y≤x,
which implies differences in quality. One can say that a partially
ordered set deals not only with quantity but also quality. Strictly
speaking, the order relation is defined as follows. For any
elements x, y, z in P,

x≤x, (12)
x≤y, y≤ x 0 x � y, (13)
x≤y, y≤ z 0 x≤ z. (14)

A set equipped with an order relation is called a partially
ordered set.

If a partially ordered set, L, is closed with respect to two binary
operations, meet and join, L is called a lattice. The meet of x and y in
L, represented by x ∧ y, is defined by z in L

z≤x, z≤y 0 z≤ x ∧ y. (15)

Similarly, the union of x and y in L, represented by x ∨ y, is
defined by z in L

x≤ z, y≤ z 0 x ∨ y≤ z. (16)
Given a binary relation, one can obtain a lattice in various ways.

The first way is a concept lattice in which an element of an object set,
O, has a relation to an element of an attribute set,M, and the binary
relation is called a formal context. A pair of A ⊆ O and B ⊆ M,
(A, B), is called a formal concept if each element of A has a relation

FIGURE 6
Patterns generated by quantum logic automata (A) and Boolean logic automata (B) under the same u(k), k � 0, 1, ..., 7. Boundary conditions are
periodic boundaries. The binary relations shown above correspond to the input‒output table for quantum logic automata and Boolean logic automata. In
the generated patterns, a state of 1 is represented by a black square and 0 by a blank, where the horizontal line represents space and the vertical line
represents time.
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to all elements of B and vice versa. A collection of formal concepts
constitutes a lattice. This implies that the formal concept is too
mathematical and is not consistent with the real-world concept
proposed by cognitive linguistics. The second way is abstract
chemical, in which the neighborhood of chemical species is
defined, and a set of internal points and closures are defined. By
using these two operations, one can constitute a fixed point, and a
collection of fixed points constitutes a lattice. The third way is a
rough set lattice, which is consistent with the abstract chemical
approach. Therefore, a rough set lattice is a universal way to
construct a lattice from a binary relation.

Given a set, S, an equivalence relationK is defined as follows. For
any x, y, z in S,

xKx, (17)
xKy 0 yKx, (18)

xKy, yKz 0 xKz. (19)

The expression xKy implies that x is equivalent to y in terms of
K. A set consisting of equivalent elements in terms of K is called an
equivalent class, and such a set is defined as

a[ ]K � x ∈ S|xKa{ }. (20)

By using an equivalent class such as neighborhood, in a term of
rough set (Yao, 2004; Gunji and Haruna, 2010), upper
approximation, K*(X), and lower approximation, K*(X), of
X ⊆ S are defined by

K* X( ) � x ∈ S{ | x[ ]K ⋂ X ≠ ∅}, (21)
K* X( ) � {x ∈ S| x[ ]K ⊆ X}. (22)

It is easy to see that the upper and lower approximations
of X correspond to necessary and sufficient conditions for
X since

K* X( ) ⊆ X ⊆ K* X( ). (23)

Therefore, the necessary and sufficient condition for X in terms
of K is expressed as K*(K*(X)) � X. It is easy to verify that a
collection of fixed points is a lattice, expressed as

LK � {X ⊆ S|K* K* X( )( )� X}. (24)

This lattice consists of subsets of S, and the order relation is
defined by inclusion. It is easy to see that inclusion satisfies
conditions (17)–(19). For any equivalent class that satisfies
K*(K*(X)) � X, any combinations of equivalent classes
(i.e., union of equivalent classes) are elements of a lattice, LK. A
true subset of the equivalent class never satisfies K*(K*(X)) � X.
Y ⊂ [x]K, K*(Y) � [x]K, and K*(K*(X)) � [x]K ≠ Y. Therefore,
the least elements (i.e., atoms), except for the empty set, in the lattice
are equivalent classes. This implies that there exists both a union of
and an intersection of any two elements of a lattice and that meet
and join can be expressed as an intersection and union, respectively.
In other words, lattice LK is a set lattice that is based on set theory.

Given a binary relation, one can regard a row element as an
equivalent class of K and a column element as an equivalent class of
another equivalent class T. It can also be verified that

LKT � {X ⊆ S|K* T* X( )( )� X} (25)
is a lattice, called a rough set lattice. While K and T are different
equivalent relations, LKT is not generally a set lattice.

FIGURE 7
Percentage of class II, III, and IV patterns generated by quantum logic automata (above) and time development generated by quantum logic
automata showing class II (left two patterns), class IV (central four patterns), and class III (right two patterns).
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x[ ]KI y[ ]T :5 ∃z ∈ S z ∈ x[ ]K, z ∈ y[ ]T( ). (26)

In the left-hand side of Figure 3, if [x]KI[y]T, the
corresponding cell is painted blue; otherwise, it is blank. Thus,
T*(X) is a collection of [y]T that has a relation to elements of X.
If X � a, b{ }, then T*( a, b{ }) � A, B, C{ } for aIA, aIC and bIB. In
contrast, K*(Y) is a collection of [x]K whose all relations are
included in Y (i.e., [x]K, which has no relation to elements other
than Y). If Y � A, B, C{ }, then K*( A, B, C{ }) � a, b{ } since
aIA, aIC and bIB, and c and d have a relation to elements
other than A, B, C{ } (e.g., cID, dID). Finally, one can see that
K*(T*( a, b{ })) � a, b{ }, which implies that a, b{ } is an element of
the lattice.

The right-hand side of Figure 3 shows a graphical display of
the corresponding lattice in the form of a Hasse diagram. Each
element of a lattice is represented by a circle accompanied by the
name of the corresponding element. If one element is smaller
than the other and if there is no element between the two, two
elements are linked by a line, where the smaller element is located
lower than the other.

As mentioned above, given a binary relation, one can obtain a
lattice. In terms of a rough set lattice, rows and columns are regarded
as different equivalent classes. In other words, rows and columns
show two kinds of partitions based on different equivalent relations.
Therefore, given an input‒output table, input triplets and output
triplets are regarded as different kinds of partitions, K and T of a
virtual world, and then, K*(T*(X)) � X is a structure by which
different partitions are connected to each other, which is nothing but
a logical structure of dynamics.

3 Quantum logic automata

3.1 Traumatic relations and
orthomodular lattice

Some of the input‒output tables entail quantum logic or
orthomodular lattice. First, the orthocomplemented lattice is
defined. A lattice L is an orthocomplemented lattice if and only
if for any a ∈ L there exists a⊥ ∈ L such that

a ∧ a⊥ � 0 or a ∨ a⊥ � 1, (27)
a≤ b 0 b⊥ ≤ a⊥, (28)

a⊥⊥ � a. (29)

The distributive lattice is also defined. For any a, b, c ∈ L,
a lattice,

a ∧ b ∨ c( ) � a ∧ b( ) ∨ a ∧ c( ). (30)
L is a distributive lattice. Indeed, a lattice L is a complemented
lattice, if and only if for any a ∈ L, there exists a⊥ ∈ L such that

a ∧ a⊥ � 0 and a ∨ a⊥ � 1. (31)

In particular, a distributive and complemented lattice is called a
Boolean lattice.

Finally, we define an orthomodular lattice. An
orthocomplemented lattice L is an orthomodular lattice if and
only if

a≤ b0 b � a ∨ b ∧ a⊥( ) (32)

FIGURE 8
Comparison of patterns generated by quantum logic automata and Boolean logic automata. In each pair, the left diagram shows the pattern
generated by quantum logic automata, and the right diagram shows the pattern generated by Boolean logic automata.
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for ∀a, b ∈ L, a⊥ ∈ L. An orthomodular lattice is called quantum
logic. Now, all background details are prepared (Gunji and
Nakamura, 2022).

Here, we define quantum logic automata. Quantum logic
automata are the logic automata whose input‒output table entails
quantum logic. Figure 4 illustrates two examples of quantum logic
automata. It is easy to construct an input‒output table whose
corresponding lattice is an orthomodular lattice. Given an 8 × 8
binary relation, I, in which each row is represented by
ak, k � 1, 2, . . . , 8, which is an equivalence class of equivalence
relations, K, on a set S, and each column is represented by
Ak, k � 1, 2, . . . , 8, which is an equivalence class of equivalence
relations, T, on a set S, if the relation consists of diagonal
relations with m × m, 2≤m≤ 6, and the background of the
diagonal relations is filled with apIAq, the relation is called the
traumatic relation and entails an orthomodular lattice. Here, the
m × m diagonal relation is defined by k � 1 + s, 2 + s, . . . , m + s,
akIAk, and if p ≠ q, ap has no relation to Aq. In that sense, the two
input‒output tables shown in Figure 4 are traumatic relations (also
see Gunji et al., 2022; Gunji and Haruna, 2022; Gunji and
Nakamura, 2022; 2023).

It is easy to see that the traumatic structure entails the
orthomodular lattice. Let us consider the binary relation shown
in Figure 4A. We confirm that the 5 × 5 diagonal relation is
surrounded by relations to A6, A7, A8{ }. Thus, for a subset of
a1, a2, . . . , a5{ } such as a1, a2{ },

T* a1, a2{ }( ) � A1, A2{ } ∪ A{ 6, A7, A8}, (33)
and then

K* A1, A2{ } ∪ A{ 6, A7, A8}( ) � a1, a2{ }. (34)

This implies that a1, a2{ } is a fixed point satisfying
K*(T*(X)) � X. While this can be generalized to any true subset
of a1, a2, . . . , a5{ }, the set, a1, a2, . . . , a5{ }, never satisfies
K*(T*(X)) � X because K*(T*( a1, a2, . . . , a5{ })) � K*(S) � S.
Any subsets of S consisting of components of different diagonal
relations such as a1{ } ∪ a8{ } also do not satisfy K*(T*(X)) � X.

From these considerations, one can say that any diagonal
relation entails a set lattice, which is a Boolean algebra where the
least element is an empty set and the greatest element is S. In other
words, each Boolean sublattice shares the greatest and least element.
In Figure 4, the solid line represents the order relation, while the
broken line connecting black circles represents the equivalent
relation. Therefore, Figure 4 shows that the traumatic relation
entails a lattice consisting of multiple Boolean algebras sharing
the greatest element represented by 1 and least element
represented by 0.

The lattice is an orthomodular lattice. For a Boolean lattice that
is a complementary lattice, one can define an orthocomplement by
the complement satisfying conditions (27) and (29) in each Boolean
sublattice. Except for the least and the greatest elements, if one of the
two elements is larger than the other, those two belong to the same
Boolean sublattice. Therefore, a≤ b implies a ∧ b � a and a⊥ �
(a ∧ b)⊥ � a⊥ ∨ b⊥ because condition (30) holds in Boolean
algebra, and then, a⊥ ∧ b⊥ � (a⊥ ∨ b⊥) ∧ b⊥ � b⊥. This finding
verifies a≤ b0 b⊥ ≤ a⊥, condition (28). This implies that the
lattice is an orthocomplemented lattice. Condition (32) can be
verified similarly. Since a≤ b and they belong to the same
Boolean sublattice, a ∨ (b ∧ a⊥) � (a ∨ b) ∧ (a ∨ a⊥) � b ∧ 1 � b.
This implies that a≤ b0 b � a ∨ (b ∧ a⊥), condition (32). Thus, an
orthocomplemented lattice is an orthomodular lattice. Finally, one

FIGURE 9
Power spectrum of a time series of Eq. 38 generated by quantum logic automata.
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can say that the traumatic relation entails an orthomodular lattice,
i.e., quantum logic.

Here, we call the logic automata whose input‒output table is the
traumatic relation quantum logic automata. In quantum logic, the
distributive law in the form of (30) does not hold for elements
belonging to different Boolean sublattices. In contrast, the
distributive law holds in Boolean algebra. If the input‒output
table consists of one diagonal relation, it entails a Boolean lattice.
For this case, we call it Boolean logic automata.

3.2 The behavior of quantum logic automata

Here, we show the behavior of quantum logic automata
compared with that of the Boolean logic automata. Figure 5
shows a schematic diagram of the input‒output table and the
method of application. Since the input‒output table is applied to
a binary sequence, for every triplet without overlapping, the
background of the diagonal relation plays an essential role in the
interactions of triplets. In Figure 5, triplet 001, for instance, can
transit to four possible triplets, (1), u(5), u(6), u(7), depending on
the state of the neighbors of the triplet. Therefore, due to the
dependency on the state of the neighbors, the triplet can interact
with each other.

Compared to quantum logic automata, Boolean logic automata
cannot realize the interactions among triplets. While quantum logic
automata reveal a one-to-many type map style with respect to
triplets, Boolean logic automata reveal a map since the transit of
a triplet is uniquely determined. That is why the time development
of the binary sequence generated by Boolean logic automata
converges into locally stable oscillations, with at most eight states
per period. In terms of classifications of cellular automata, patterns
generated by Boolean logic automata belong to class II. What is the
pattern generated by quantum logic automata? Even if the same
triplets are given for (k), k � 0, 1, ..., 7, the patterns generated by

quantum logic automata are different from those generated by
Boolean logic automata.

Figure 6 shows the patterns generated by quantum logic
automata compared to those generated by Boolean logic
automata, where the value of u(k), k � 0, 1, ..., 7 is common to
both logic automata. The patterns shown in Figure 6A are typical
patterns generated by quantum logic automata and are similar to
patterns generated by cellular automata assigned by class IV.
Periodic waves from the right to the left propagate, and the
collisions of waves lead to complex behaviors. In particular, the
patterns generated by quantum logic automata in Figure 6A reveal a
complex background pattern that consists of dense oscillatory waves
propagating from left to right. Thus, the inference between the
propagating waves and background waves also leads to
complex behavior.

As mentioned before, patterns generated by Boolean logic
automata display patterns generated by cellular automata
assigned by class II. Since u(k), k � 0, 1, ..., 7 are common to both
logic automata, the complex behavior found in quantum logic
automata may result from multiple transitions appearing in the
input‒output table of quantum logic automata. Locally stable
oscillations found in patterns generated by Boolean logic
automata (Figure 6B) are propagated diagonally depending on
the neighbors of the oscillatory state and generate propagating
waves, collision of waves, and very complex behavior.

Class IV-like behavior is not a rare case in quantum logic
automata. To estimate it with respect to the pattern in
appearance, a collection of quantum logic automata is
systematically constructed. The input‒output table and the
method of application are shown in Figure 5, where u(k), k �
0, 1, ..., 7 is randomly determined as one of 000, 001, . . . , 111{ } to
make u: 0, 1, . . . , 7{ } → 000, 001, . . . , 111{ } bijective. Once
u(k), k � 0, 1, ..., 7 is randomly determined, time development for
the rule is generated. Two hundred samples of rules are collected,
and the time development patterns are classified, as shown in

FIGURE 10
Schematic diagram of the trade-off between rigorousness and generality in the model revealing the edge of chaos and/or criticality. Quantum logic
automata might break the trade-off.
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Figure 7. It results in 17% of the samples as class II, 5% as class III,
and most of the samples, 78%, as class IV.

Classification with respect to the pattern in appearance seems
not to be arbitrary. The percentage of class IVmight be much higher.
The class II pattern is characterized by locally stable oscillations that
propagate either vertically or diagonally. Because the pattern is
identified with class II, whether the transient time is long or
short, potential class IV might be included in class II. The class
IV pattern is characterized by interactions of multiple propagating
waves that oscillate. Some waves are propagated vertically, and some
are propagated diagonally. The collision of waves leads to a complex
shift in the propagating direction and/or a period of oscillation.
Patterns in which it is not easy to find multiple propagating waves
are identified as class III. Therefore, potential class IV might be
included in class III. The time development of class III shown in
Figure 7 reveals such a property. Although it is difficult to determine,
a pattern consists of waves propagating vertically.

Figure 8 shows examples of a pair of time developments
generated by quantum logic automata and Boolean logic
automata, where the pattern of quantum logic automata shows
class IV. The input‒output table and the method of application are
shown in Figure 5, and u(k), k � 0, 1, ..., 7 is randomly determined
as a bijective map from 0, 1, . . . , 7{ } to 000, 001, . . . , 111{ }. It is easy
to see that there are vertically propagating waves and diagonally
propagating waves that sometimes collide with each other.
Collisions lead to various interferences, such as changes in the
propagating direction, velocity, and/or period of oscillation. A
pattern left and the third from the top and a pattern right and
top in Figure 8 show the velocity change in diagonally propagating
waves after the collision. The right and second patterns from the top
show the shift in the propagating direction of the vertical wave after
the collision. Other various patterns show the change in the period
of oscillation and the amplitude of the waves after the collision.

When a pattern generated by quantum logic automata is
compared to a pattern generated by Boolean logic whose u(k) is
the same as that of quantum logic automata, one can see that the
locally stable oscillation found in a pattern of Boolean logic
automata is propagated diagonally in a pattern of quantum logic
automata. If broad black massive patterns are stable in a pattern of
Boolean logic automata, massive black patterns are found as the
background in which traveling waves are propagated in a pattern of
quantum logic automata. They are illustrated in patterns in the top
left and central, in the second from the top right, and in bottom
central in Figure 8. Periodic oscillations found in a pattern of
Boolean logic automata are found in oscillatory traveling waves
in quantum logic automata, for instance, in patterns located left the
second and fourth from the top and located center the second from
the top in Figure 8. Periodic oscillations found in a pattern of
Boolean logic automata are sometimes found as the background
pattern in a pattern of quantum logic automata and are illustrated in
the patterns located right the third from the top in Figure 8. From
these observations, it is clear that patterns generated by quantum
logic automata are influenced by patterns generated by Boolean
logic automata.

The next question arises regarding the property of critical
phenomena or the edge of chaos. To estimate this property, the
power spectrum of a time series of time development is estimated
here. Because the power-law in a time series is found in class IV

with respect to the time series of the number of state 1 at each
time step, the value, c(t), at each time step of the binary sequence
is defined as

c t( ) � 1
N

∑
N

i�1a
t
i . (35)

For some class IV patterns found in quantum logic automata
that consist of traveling waves and an oscillatory background, binary
sequences are modified by the filter, such as

ati � 1, ati+1 � 1, ati+2 � 0( ) → bti � 0, bti+1 � 0, bti+2 � 0( ), (36)
ati � 0, ati+1 � 1, ati+2 � 1( ) → bti � 0, bti+1 � 0, bti+2 � 0( ). (37)

The modification of values (i.e., filtering [Boccara et al., 1991;
Martinez et al., 2006]) in (36) and (37) never reflects the time
development, and the value at each time step is expressed as

cfileterd t( ) � 1
N

∑
N

i�1b
t
i . (38)

Due to the filtering, a time series of binary sequences is
evaluated to focus on the interactions of oscillatory traveling
waves, which is nothing but a characteristic of the class IV
pattern. The equations of filtering are not universal and must
be defined depending on the background pattern generated by
quantum logic automata.

Figure 9 shows some results of power spectrum analysis for a
filtered time series of binary sequences generated by quantum logic
automata. The input‒output table and the method of application are
given in Figure 5, and u: 0, 1, . . . , 7{ } → 000, 001, . . . , 111{ }, which
is bijective, is randomly determined. In particular, the rule by which
a pattern shown in Figure 9 on the left is expressed as u(0) � 010,
u(1) � 100, u(2) � 000, u(3) � 110, u(4) � 001, u(5) � 011,
u(6) � 101, u(0) � 111. The amplitude of the spectrum, A, shows a
power-law distribution dependent on frequency, ], such that

A∝ ]−α. (39)
In the case of the power spectrum shown on the left-hand side of

Figure 9, α � 1.01 for the low-frequency components. Any other
power spectrum for the time series generated by quantum logic
automata generally shows a power-law distribution if patterns show
class IV behavior. From these observations, one can say that
quantum logic automata generate class IV-like behaviors that are
characterized by complex interactions of oscillatory traveling waves
and display a power-law distribution, which is the essential property
of the edge of chaos or critical phenomena.

4 Discussion

Scale-free properties suggesting critical phenomena and/or the
edge of chaos are generally found in natural biological phenomena,
including brain activity (Fontenele et al., 2018; Lender et al., 2020,
Jannessai et al., 2020, Toker, et al., 2022). Although various attempts
have been made to generalize the idea of the edge of chaos, most
attempts conversely claim that the edge of chaos is so rare that
natural selection essentially plays a role in choosing the natural
biological phenomena at the edge of chaos (Bak et al., 1987; Bak and
Tang, 1989; Bak and Sneppen, 1993; Sneppen et al., 1995; Kauffman
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and Johnsen, 1991;). Since the idea of a wedged landscape and self-
organized criticality is implemented in the form of nonlinear
dynamics, chaotic behavior must be balanced with oscillatory
order through the rugged boundary by which attractors are isolated.

The classification of cellular automata also claims that class IV
cellular automata located at the boundary between classes I and II
(order) and class III (chaos) are very rare and that class IV automata
can be at the critical state of the phase transition (Langton, 1990;
Wolfram, 2002; Barbu, 2013). It has also been verified that a
universal Turing machine can be implemented by class IV
elementary cellular automata (Cook, 2004), which suggests that
class IV cellular automata have high computability. While class IV
cellular automata might be relevant for self-organized criticality, a
power-law distribution was discovered very recently.

While the idea of the edge of chaos or self-organized criticality is
specific but displays the power-law distribution, the ideas of
homeochaos and/or Markov blanket do not show power-law
distribution, notwithstanding claiming that it is proposed as a
general theory. On the other hand, the newly defined Markov
blanket (Friston et al., 2021) might not be generalized as the
interface connecting the external environment and empirical world
due to the specific recurrent structure. In that sense, while it shows
scale-free connectivity, it is too specific to claim general theory.

Figure 10 shows a schematic diagram of various theories relevant
for the interface between chaos and order. Various theories are plotted
in the phase space, where the horizontal line represents generality and
the vertical line represents rigor.While the idea of the edge of chaos and
self-organized criticality is rigorously constructed in the form of
nonlinear dynamics to show the power-law distribution, they lose
generality. That is why they are located at high rigor plotted against
low generality. In contrast, homeochaos andMarkov blanket are located
at low rigor plotted against high generality in the phase space, as shown
in Figure 10. In that sense, onemight see the trade-off between the rigor
and generality of the theories relevant for the behavior in which order
and chaos coexist. That trade-offmight be found in the “normal” idea of
complex systems. The term “normal” suggests synchronous updating in
discrete dynamics and nonlinear dynamics isolated from perturbation.

One of the potential candidates breaking the trade-off is
asynchronous cellular automata. In asynchronously updated
automata, various ways of updating are proposed such that only
some randomly determined cells are updated at each step (Fatès
et al., 2006; Fatès, 2014), the order of updating is randomly
determined at each time step (Gunji, 1990; Gunji and Uragami,
2020), and the two kinds of updating interact with each other (Gunji,
2015; Uragami and Gunji, 2018; Gunji and Uragami, 2021; Uragami
and Gunji, 2022). The third implementation is called
asynchronously tuned automata. Due to asynchronous updating,
multiple rules are mixed up as the transition rule, even if the
transition rule is uniquely determined. This results in various
rules appearing randomly in time and space. In that sense,
dynamics itself contains the interface of chaos and order. Indeed,
even if some transition rules show various behaviors such as classes
I, II, and III, the devices of asynchronous updating entail class IV
behavior, accompanied by the power-law distribution. This suggests
that asynchronous cellular automata might break the trade-off to
some extent.

From these considerations, one can say that quantum logic
automata break the trade-off between rigor and generality. Figure 7

shows the percentage of order, chaos, and critical behavior of
quantum logic automata. If quantum logic automata show
similar tendencies of elementary cellular automata, class IV
behaviors are destined to be rare. However, most of the rules in
the quantum logic automata defined by Figure 5 show class IV
behavior, which is characterized by the collision and interactions
among oscillatory traveling waves. Indeed, quantum logic automata
showing class IV behavior show a power-law distribution in the
form of 1/f noise. These observations show that quantum logic
automata are located at high rigor against high generality in the
phase space of rigor and generality (Figure 10).

Although quantum logic automata are variously defined, the
whole behavior of quantum logic automata is still unclear. Only one
input‒output table revealing traumatic relations is discussed in this
paper. There are various traumatic relations that are to be estimated
as quantum logic automata. Even if the input‒output table is
uniquely given, there are many methods of applications since
there are various ways assigning the states of neighbors into the
output. We used only one method of application in this paper.

How is the traumatic relation generated entailing quantum
logic? We previously showed that inverse and/or excess Bayesian
inference can lead to a traumatic structure. The traumatic structure
consists of multiple diagonal relations and the related background
surrounding the diagonal relations. Each diagonal relation
corresponds to a Boolean lattice reflecting the empirical
individual world resulting from Bayesian inference, and the
related background corresponds to the interface connecting
multiple Boolean lattices. In that sense, a traumatic relation itself
can correspond to the Markov blanket. Inverse and/or excess
Bayesian inference might result in quantum logic automata
as dynamics.

Our research could be related to bipolar dynamic logic (BDL)
and bipolar quantum cellular automata (BQCA). BDL consists of
bipolar elements, (−1, 1), (−1, 0), (0, 1), and (0, 0). In ignoring the
symbol “−,”the corresponding Hasse diagram shows 22-Boolean
lattice. While binary operations defined in a lattice are only join
and meet, various operations are defined in BDL. The operations &
and ⊕ normally correspond to the meet and the join, respectively, as
if the symbol “−” was ignored. The operations ⊗ and ∅ are newly
defined to show a variety of operations (Zhang, 2013; Zhang, 2021).

Quantum mechanics has specificity compared to classical
mechanics with respect to both the operand and operator.
Normal lattice theory focuses on the operand, and the operator is
constrained only to the join and meet. Diversity of the operand is
expressed as specific elements revealing “entanglement.” Boolean
lattice whose number of atoms is n consists of any possible unions of
atoms, and then, the number of elements is 2n. The orthomodular
lattice (i.e., quantum logic) consists of some Boolean sublattices
overlapping each other. In other words, there exist elements
belonging to multiple Boolean sublattices that reveal the
entanglement. That is why orthomodular lattice reveals the
specificity of quantum mechanics with respect to the operand.

In contrast, BDL focuses on operators. The strategy focusing on
the operator is also found in modal logic. Notwithstanding the
22-Boolean lattice, closure operation is added and defined to extend
the Boolean algebra. Similarly, notwithstanding 22-Boolean lattice,
&, ⊕, &−, ⊕−, ⊗,∅, ⊗−, and∅− are defined, and that leads to show the
richness of quantummechanics with respect to the operator. Bipolar
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quantum linear algebra is naturally extended by replacing
−1, 0{ } × 0, 1{ } with [−∞, 0 ] × [0,+∞]. These extensions can
make it possible to define tensor multiplication and addition. In
that sense, a variety of operators are added.

By using a rough set lattice, our approach shows how an
orthomodular lattice results from combining Boolean lattices.
Boolean lattice corresponds to classical logic and/or classical
mechanics, and it is clear to see how orthomodular lattice and
Boolean lattice are unified. Indeed, our approach is related to the
dynamical system in terms of cellar automata and shows that the
orthomodular lattice entails irreversible complex behavior or a non-
equilibrium system, and the Boolean lattice entails reversible simple
behavior or an equilibrium system.

Our approach claims that multiple Boolean lattices are connected
via the “entanglement,” and the time development of quantum cellular
automata transients from one Boolean lattice to another and vice versa.
A single Boolean lattice (i.e., classical mechanics) implies a dynamical
system, revealing one-to-one mapping, and that implies order (classes I
and II) in terms of cellular automata. Therefore, quantum cellular
automata could transient from one Boolean lattice to multiple Boolean
lattices via entanglement, which implies one-to-many type mapping.
Thus, quantum cellular automata can reveal the intermediate dynamics
consisting of order and disorder or class IV behavior in terms of cellular
automata. Our approach is consistent with bipolar quantum geometry
and can focus on the operand compared to the bipolar quantum
approach focusing on the operator.

5 Conclusion

While a diagonal relation entails Boolean logic, a traumatic relation
consisting of multiple diagonal relations and related background entails
quantum logic. On one hand, the conflict between Boolean logic and
quantum logic reveals the conflict between quantum cognition and the
free energy principle in cognitive and brain science. On the other hand,
it reveals the conflict of open-ended dynamics and steady-state
dynamics. Although open-ended dynamics can be strongly relevant
for the idea of the edge of chaos, self-organized criticality, and a power-
law distribution, no theory of quantum cognition has been proposed to
reveal a power-law distribution.

To clarify the relationship between quantum logic and the edge
of chaos, we propose quantum logic automata. The binary relation
used as the input‒output table entails quantum logic; if the binary
relation is applied to a binary sequence, then the time development
of the binary sequence is generated. The method of application is
defined by a deterministic rule and a stochastic rule. In particular, we
discuss the behaviors of quantum logic automata implemented by
deterministic rules in which one of the possible multiple outputs is
deterministically determined depending on the state of neighbors.

Here, we show that most quantum logic automata reveal class
IV-like behavior characterized by the interactions of oscillatory

traveling waves and reveal a power-law distribution in the form
of 1/f noise. This suggests that quantum logic as a dynamical system
features chaotic transitions among multiple attractors and that the
idea of self-organized criticality and/or the edge of chaos can be
generalized through quantum logic or quantum theory.
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