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We present the class of projection methods for community detection that
generalizes many popular community detection methods. In this framework,
we represent each clustering (partition) by a vector on a high-dimensional
hypersphere. A community detection method is a projection method if it can
be described by the following two-step approach: 1) the graph is mapped to a
query vector on the hypersphere; and 2) the query vector is projected on the set
of clustering vectors. This last projection step is performed by minimizing the
distance between the query vector and the clustering vector, over the set of
clusterings. We prove that optimizing Markov stability, modularity, the likelihood
of planted partition models and correlation clustering fit this framework. A
consequence of this equivalence is that algorithms for each of these methods
can be modified to perform the projection step in our framework. In addition, we
show that these differentmethods suffer from the same granularity problem: they
have parameters that control the granularity of the resulting clustering, but
choosing these to obtain clusterings of the desired granularity is nontrivial. We
provide a general heuristic to address this granularity problem, which can be
applied to any projection method. Finally, we show how, given a generator of
graphs with community structure, we can optimize a projection method for this
generator in order to obtain a community detection method that performs well
on this generator.
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1 Introduction

In complex networks, there often are groups of nodes that are better connected
internally than to the rest of the network. In network science, these groups are referred
to as communities. These communities often have a natural interpretation: they correspond
to friend groups in social networks, subject areas in citation networks, or industries in trade
networks. Community detection is the task of finding these groups of nodes in a network.
This is typically done by partitioning the nodes, so that each node is assigned to exactly one
community. There are many different methods for community detection (Fortunato, 2010;
Fortunato and Hric, 2016; Rosvall et al., 2019). Yet, it is not easy to say which method is
preferable in a given setting.

Most existing methods in network science detect communities by maximizing a quality
function that measures howwell a clustering into communities fits the network at hand. One
of the most widely-used quality functions is modularity (Newman and Girvan, 2004), which
measures the fraction of edges that are inside communities, and compares this to the
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fraction that one would expect in a random graph without
community structure. One of the main advantages of modularity
maximization is that it does not require one to specify the number of
communities that one wishes to detect. However, this does not mean
that modularity automatically detects the desired number of
communities: it is known that in large networks, modularity
maximization is unable to detect communities below or above a
given size (Fortunato and Barthélemy, 2007). This problem is often
referred to as the resolution limit, or the granularity problem, of
modularity maximization. This problem is often ameliorated by
introducing a resolution parameter (Reichardt and Bornholdt, 2006;
Traag et al., 2011), which allows one to control the range of
community sizes that modularity maximization is able to detect.

One of the most popular algorithms for modularity
maximization is the Louvain algorithm (Blondel et al., 2008).
This algorithm performs a greedy maximization and is able to
find a local maximum of modularity in linear time (empirically)
in the number of network edges.

Community detection is closely related to the more general
machine learning task of data clustering, as we essentially cluster the
nodes based on network topology. In data clustering, the objects to
be clustered are typically represented by vectors, and one uses
methods like k-means (Jain, 2010) or spectral clustering (Von
Luxburg, 2007) to find a spatial clustering of these vectors so
that nearby vectors are assigned to the same cluster. Community
detection can be considered as an instance of clustering, where the
elements to be clustered are network nodes.

In this study, we unify several popular community detection and
clustering methods into a single geometric framework. We do so by
describing a metric space of clusterings, where we represent each
clustering C by a binary vector b(C) indexed over the node pairs,
i.e., b(C) ∈ R(n2), where n is the size of the network. We say that a
community detection method is a projection method if it is
equivalent to the following two-step approach: firstly, the graph
is mapped to a query vector q ∈ R(n2). Secondly, this query vector is
projected to the set of clustering vectors. That is, we search for the
clustering vector b(C) that minimizes the distance to q.

It turns out that many community detection methods fit this
framework. In Gösgens et al. (2023a), we prove that modularity
maximization is a projection method. In this work, we additionally
show that several other popular community detection methods are
projection methods. In Section 3, we show that Correlation
Clustering (Bansal et al., 2004), the maximization of Markov
stability (Delvenne et al., 2010; Lambiotte et al., 2014) and
likelihood maximization for several generative models
(Avrachenkov et al., 2020) are projection methods. We
emphasize that in this paper, we establish equivalences between
community detection methods in the strictest mathematical sense.
As such, our analytical results are much stronger than merely
pointing out that methods are similar or related. Specifically,
when we say that two methods are equivalent, we mean that
their quality functions f1 and f2 define the exact same rankings of
clusterings, so that for all clusterings C1, C2, f1(C1) ≥ f1(C2) holds if
and only if f2(C1) ≥ f2(C2).

Some relations between existing community detection methods
were already known (Veldt et al., 2018; Newman, 2016). The novelty
of this work is that we unify many community detection methods
into a single class of projection methods, and uncover the geometric

structure that is baked into each of these methods. Furthermore, we
demonstrate the following advantages of this geometric perspective.

Firstly, we show that any community detection method that
maximizes or minimizes a weighted sum over pairs of vertices is a
projection method. This unifies many well-known methods
[Correlation Clustering (Bansal et al., 2004), Markov Stability
(Delvenne et al., 2010), modularity maximization (Newman and
Girvan, 2004), likelihood maximization (Avrachenkov et al., 2020)],
and any other current or future method that can be presented in this
form. Importantly, the hyperspherical geometry comes with natural
measures for clustering granularity (the latitude) and the similarity
between clusterings (the correlation distance). These measures are
additionally related to the quality function (the angular distance) by
the hyperspherical law of cosines, as we explain in Section 2.

Secondly, this geometric framework yields understanding that all
community detection methods that are generalized by the projection
method, suffer from the same granularity problem. That is, these
methods require parameter tuning to produce communities of the
desired granularity. In Section 5.2 we use the hyperspherical geometry
to derive a general heuristic that addresses this problem. We
demonstrate that this heuristic, obtained in our earlier work
Gösgens et al. (2023b), can be applied to any projection method.

Thirdly, projection methods can be combined by taking linear
combinations of their query vectors. In Section 5.3, we demonstrate
how we can efficiently find a linear combination that performs well
in a given setting.

As a side remark, we note that in network science, the term
“clustering” is also used to refer to the abundance of triangles in real-
world networks, which is often quantified by the clustering coefficient
(Watts and Strogatz, 1998;Newman, 2003). The presence of communities
usually goes hand in handwith an abundance of triangles (Peixoto, 2022).
We emphasize that in the present work, we use the term “clustering” to
refer to data clustering, and not to the clustering coefficient. Nevertheless,
the global clustering coefficient can be expressed in terms of our
hyperspherical geometry (Gösgens et al., 2023a).

1.1 Outline

The remainder of the paper is organized as follows: in Section 2,
we describe the projection method and the hyperspherical geometry
of clusterings. In Section 3, we prove that several popular
community detection methods are projection methods and
discuss the implications of these equivalences. In Section 4, we
discuss algorithms that can be used to perform the projection step in
the projection method. Finally, Section 5 presents methodology for
choosing a suitable projection method in given settings. In
particular, Section 5.2 discusses how to modify a query mapping
in order to obtain a projection method that detects communities of
desired granularity, while Section 5.3 demonstrates how we can
perform hyperparameter tuning within the projection method. Our
implementation of the projection method and the experiments of
Section 5 is available on Github1.

1 The code is available at https://github.com/MartijnGosgens/

hyperspherical_community_detection.
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1.2 Notation

This paper discusses the relations between several different
community detection methods, that each come with their own
notations. We aim to keep notation as consistent as possible, and
here we list the most common notation that we will use throughout
the paper.

We represent a graph by an n × n adjacency matrix A with node
set [n] = {1, . . . , n} and m edges. We denote the degree of node i by
di. We write∑i<j to denote a sum over all node pairs i, j ∈ [n] with i <
j. We denote the number of node pairs by N � (n2). For a clustering
C, we define Intra(C) as the set of intra-cluster node pairs, i.e., pairs
of nodes i < j that are part of the same cluster according to C.
Similarly, we define Inter(C) as the set of node pairs that are part of
different clusters according to C. We define mC = |Intra(C)| as the
number of intra-cluster pairs. For two functions f, g, we write f(C) ≡
g(C) and say that optimizing f is equivalent to optimizing g if, for
each pair of clusterings C1, C2, the inequality f (C1) ≥ f (C2) holds if
and only if g (C1) ≥ g (C2). We denote vectors by bold letters x, y and
we denote the inner product between two vectors by 〈x, y〉. The
Euclidean length of a vector is given by ‖x‖ � �����

〈x, x〉
√

.

2 The projection method

In this section, we describe the hyperspherical geometry that the
projection method relies on. For more details, we refer to Gösgens
et al. (2023b). We consider a graph with n nodes and define a
clustering as a partition of these nodes. For a clustering C, we define
the clustering vector b(C) as the binary vector indexed by the node-
pairs, given by

b C( )ij � 1, if i and j are in the same cluster,
−1, if i and j are in different clusters.

{
Note that the dimension of this vector is N � (n2), and that the

Euclidean length of each clustering vector is
��
N

√
, so that they are all

located on a hypersphere of radius
��
N

√
around the origin. Because of

this, it is natural to consider the geometry induced by the angular
distance, given by

da x, y( ) � arccos
〈x, y〉
‖x‖ · ‖y‖( ). (1)

The vector representation b(C), together with the angular
distance, defines a hyperspherical geometry of clusterings.

2.1 Clustering granularity and latitude

The clustering into a single community corresponds to the all-
one vector b(C) = 1, while the clustering into n singleton
communities corresponds to b(C) = −1. These two vectors form
opposite poles on the hypersphere. The extent to which a clustering
resembles the former or latter is referred to as its granularity: fine-
grained clusterings consist of many small communities, while
coarse-grained clusterings consist of few and large communities.
We measure clustering granularity by the latitude of the clustering
vector. For x ∈ RN, the latitude is defined as ℓ(x) = da (x, − 1). For a

clustering vector b(C), this is given by ℓ(b(C)) � arccos(1 − 2mC
N ),

wheremC = |Intra(C)| is the number of intra-cluster pairs of C. Note
that the number of intra-cluster pairs is related to the sum of the
cluster sizes: let s1, . . . , sk be the sizes of the clusters of C. Then

mC � ∑k
i�1

si
2

( ) � 1
2
∑k
i�1

s2i −
n

2
.

Thus, quantifying clustering granularity by the latitude is
equivalent to quantifying it by the sum of squared cluster sizes.

2.2 Parallels and meridians

Borrowing more terminology from geography, for λ ∈ [0, π], we
define the parallel Pλ as the set of vectors with latitude λ. In
particular, we refer to Pπ/2 as the equator, which corresponds to
the set of vectors perpendicular to 1. For a vector x that is not a
multiple of 1, we define the parallel projection Pλ(x) as the
projection of x onto Pλ, and it is given by

Pλ x( ) � sin λ( ) · ��
N

√
x − 〈x,1〉

N

���� ���� · x − 〈x, 1〉
N

( ) − cos λ( ) · 1. (2)

Similarly, we define the meridian of x as the one-dimensional
line {Pλ(x): λ ∈ (0, π)}.

2.3 Correlation distance and clustering
similarity

For three vectors x, y, r, we can measure the angle on the surface
of the hypersphere that the line from x to rmakes with the line from
y to r. This angle ∠(x, r, z) is given by the hyperspherical variant of
the law of cosines:

cos∠ x, r, y( ) � cos da x, y( ) − cos da x, r( )cos da y, r( )
sin da x, y( )sinda y, r( ) . (3)

In particular, when we take r = −1, this angle corresponds to the
angle between the meridians of x and y. This angle turns out to have
an interesting interpretation, as stated in Theorem 1:

Theorem 1. (Gösgens et al., 2023a). For two vectors x and y that are
not multiples of 1, the angle that their meridians make is equal to the
arccosine of the Pearson correlation between x and y.

Because of Theorem 1, we call this angle the correlation distance
between x and y. Note that da (x, − 1) = ℓ(x), so that the correlation
distance is given by

dρ x, y( ) � arccos
cos da x, y( ) − cos ℓ x( )cos ℓ y( )

sin ℓ x( )sin ℓ y( )( ), (4)

and the Pearson correlation between vectors x and y is thus
given by cos dρ(x, y). The correlation coefficient between two
clustering vectors b(C), b(T) turns out to be a useful quantity for
measuring the similarity between clusterings C and T (Gösgens et al.,
2021). There exist many measures to quantify the similarity between
two clusterings, but most of these measures suffer from the defect
that they are biased towards either coarse- or fine-grained
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clusterings (Vinh et al., 2009; Lei et al., 2017). The Pearson
correlation between two clustering vectors does not suffer from
this bias, and additionally satisfies many other desirable properties
(Gösgens et al., 2021). Because of that, we will use the Pearson
correlation to measure the similarity between clusterings. For
clusterings C and T, the Pearson correlation is given by

ρ C, T( ) � cos dρ b C( ), b T( )( ) � mCT ·N −mC ·mT��������������������������
mC · N −mC( ) ·mT · N −mT( )√ ,

(5)

where mC = |Intra(C)|, mT = |Intra(T)| and mCT = |Intra(C)
∩Intra(T)|. In cases where C and T correspond to the detected
and planted (i.e., ground-truth) clusterings, we use ρ(C, T) as a
measure of the performance of the community detection.

2.4 Query mappings

Above, we have defined the hyperspherical geometry of
clusterings. This geometry comes with natural measures for
clustering granularity (the latitude ℓ) and similarity between
clusterings (the correlation ρ). The idea behind the projection
method is that we map a graph to a point in this same geometry,
and then find the clustering vector that is closest to that point. For a
graph with adjacency matrix A, we denote the vector that it is
mapped to by q(A) ∈ RN, and refer to it as the query vector of A. We
refer to q (·) as the query mapping. The name ‘query’ comes from the
fact that in the second step of the projection method, we search for
the clustering vector b(C) that minimizes da (q(A), b(C)). That is,
among the set of clustering vectors, we find the one that is nearest to
q(A). In short, we arrive at the following definition of the
projection method:

Definition 1. A community detection method is a projection method
if it can be described by the following two-step approach: (1) the graph
with adjacency matrix A is first mapped to a query vector q(A); and
(2) the query vector is projected to the set of clustering vectors by
minimizing da(q(A), b(C)) over the set of clusterings C.

There exist infinitely many ways to map graphs to query vectors.
One of the simplest ways is to simply turn the adjacency matrix into
a vector like q(A)ij � 1

2 (Aij + Aji), where the average is taken in
case A is directed. In general, we define the half-vectorization of a
matrix X ∈ Rn×n by

v X( )ij � 1
2

Xij +Xji( ).
The vector v (Ar) counts the number of paths of length r between

each pair of vertices. In particular, v(A2)ij corresponds to the
number of neighbors that the nodes i and j share.

There are many more ways in which we can construct a query
vector based on A. For example, the entry q(A)ij can also depend on
the degrees of i and j or even the length of the shortest path between
i and j.

Finally, because we are minimizing the angular distance, the length
of q(A) is not relevant. It may be natural to normalize all vectors to a
Euclidean length

��
N

√
so that they have the same length as clustering

vectors, but we will not do so to avoid cluttering the notation.

In summary, the hyperspherical geometry comes with three key
measures: firstly, the angular distance da (q(A), b(C)) is the quality
measure that weminimize in order to detect communities. Secondly,
the latitudemeasures the granularity of a clustering. That is, ℓ(b(T))
measures the granularity of the planted clustering, while ℓ(b(C))
measures the granularity of the detected clustering. Thirdly, the
correlation distance between the planted and detected communities
dρ(b(C), b(T)) [or its cosine, ρ(C, T) = cos dρ(b(C), b(T))] measures
the performance of the detection. In Section 5.2, we will additionally
see that dρ(q(A), b(T)) is a useful measure. The angular distance,
correlation distance and latitude are related by the hyperspherical
law of cosines, given in (4).

3 Equivalences to other community
detection methods

In this section, we will prove that the class of projection methods
generalizes several community detection methods. We prove that
the class of projection methods is equivalent to correlation
clustering, and we prove that the remaining methods are
subclasses of the class of projection methods. For each of the
related clustering and community detection methods, we will
provide the query mapping of the corresponding projection
method. The relations between the methods that are discussed
here are illustrated in Figure 1.

3.1 Correlation clustering

Correlation clustering (Bansal et al., 2004) is a framework for
clustering where pairwise similarity and dissimilarity values w+

ij and
w−

ij are given for every pair of objects i, j. The objective is to
maximize the similarity within the clusters and the dissimilarity
between the clusters. Such agreement of a clustering C with weights
w±

ij is expressed as

CorClustmax C;w+, w−( ) � ∑
ij∈Intra C( )

w+
ij + ∑

ij∈Inter C( )
w−

ij.

Correlation clustering solves the maximization problem

max
C

CorClustmax C;w+, w−( ). (6)

Equivalently, one can express the disagreement of a clustering C
with weights w±

ij as

CorClustmin C w+, w−( );w+, w−( )
� ∑

ij∈Intra C( )
w−

ij + ∑
ij∈Inter C( )

w+
ij

� ∑
i<j

w+
ij + w−

ij( ) − CorClustmax C w+, w−( );w+, w−( ).

Then (6) can be stated as a minimization problem

min
C

CorClustmin C;w+, w−( ). (7)

Somewhat counter-intuitively, the equivalent formulations (6)
and (7) lead to different approximation results. Indeed, for
minimization problems (7), an α-approximation guarantee means
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that for a given α > 1, an optimization algorithm C satisfies
the condition

CorClustmin C w+, w−( );w+, w−( )
≤ α · CorClustmin C*;w+, w−( ), for anyw+, w−,

(8)

where C* solves (7). On the other hand, for the maximization
problem (6), a β-approximation guarantee means that for a given
β < 1, the optimization algorithm C satisfies the condition

CorClustmax C w+, w−( );w+, w−( )
≥ β · CorClustmin C*;w+, w−( ), for anyw+, w−.

(9)

Now, suppose, we have found an α-approximation in (8). Then

CorClustmax C w+, w−( );w+, w−( )
� ∑

i<j
w+

ij + w−
ij( ) − CorClustmin C w+, w−( );w+, w−( )

≥ ∑
i<j

w+
ij + w−

ij( ) − α · CorClustmin C*;w+, w−( )

� α · CorClustmax C*;w+, w−( ) − α − 1( ) ·∑
i<j

w+
ij + w−

ij( ),
which gives some approximation guarantee for the maximization

problem, but not of the same multiplicative form as (9).
The motivation for correlation clustering originates from the

setting where we are given a noisy classifier that, for each pair of
objects, predicts whether they should be clustered together or apart
(Bansal et al., 2004). This leads to the simple ±1 version of
correlation clustering, where w+

ij, w
−
ij ∈ {0, 1} and w+

ij + w−
ij � 1 (or

equivalently, w+
ij − w−

ij � ± 1) holds for each pair ij. The best known
approximation guarantee for the minimization formulation of the
±1 variant is 2.06, which is achieved by rounding the solution from
an LP relaxation (Chawla et al., 2015).

For the general case where the weights are unconstrained, it is
known that maximizing agreement is APX-hard (Charikar et al.,
2005), which means that any constant-factor approximation is NP-
hard. The same authors do provide a 0.7666-approximation
algorithm by rounding the semi-definite programming solution.
Note that this does not contradict the APX-hardness result, as semi-
definite programming is also NP-hard.

We now prove that correlation clustering corresponds to a
projection method:

Lemma 1. Correlation clustering with similarity and dissimilarity
values w+ � (w+

ij)i< j, w− � (w−
ij)i< j is equivalent to a projection

method with query vector q(CC) given by

q CC( )
ij � w+

ij − w−
ij.

Proof. Minimizing da (q(CC), b(C)) is equivalent to maximizing
〈q(CC), b(C)〉 � ‖q(CC)‖ · ��

N
√ · arccosda(q(CC), b(C)). We prove

that this, in turn, is equivalent to maximizing CorClustmax (C;
w+, w−) w.r.t. to the given values (w+

ij)i< j and (w−
ij)i< j:

〈q CC( ), b C( )〉 � ∑
ij∈Intra C( )

w+
ij − w−

ij( ) + ∑
ij∈Inter C( )

w−
ij − w+

ij( )
� 2 · ∑

ij∈Intra C( )
w+

ij + ∑
ij∈Inter C( )

w−
ij

⎛⎝ ⎞⎠ −∑
i<j

w+
ij + w−

ij( )
� 2 · CorClustmax C;w+, w−( ) −∑

i<j
w+

ij + w−
ij( ).

The last term does not depend on C, so we obtain that indeed
maximizing 〈q(CC), b(C)〉 is equivalent to maximizing CorClustmax

(C; w+, w−), as required. □

FIGURE 1
A schematic overview of the equivalences between the community detection and clusteringmethods that are described in Section 3. The projection
method is completely equivalent to correlation clustering, while modularity, PPM-likelihood and Markov stability are subsets. For certain parameter
choices, these latter three methods are equivalent.
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It is easy to see that any query vector q can also be turned into a
correlation clustering objective by taking w+

ij � max {0, qij} and
w−

ij � max{0,−qij}. This tells us that correlation clustering and
projection methods are equivalent, in the sense that any
correlation clustering instance can be mapped to a query vector
and vice versa. Note, however, that both classes come with different
invariances: correlation clustering is invariant to applying the same
linearly increasing transformation f(x) = a + bx to all values w+

ij and
w−

ij, where a, b ∈ R and b > 0. Similarly, projection methods are
invariant to multiplying the query vector by any positive constant,
due to the hyperspherical geometry.

The equivalence between correlation clustering and
projection methods gives a new interpretation for correlation
clustering in terms of hyperspherical geometry, and allows one to
transfer hardness results from correlation clustering to
projection methods.

Correlation clustering vs. community detection
While the fields of community detection and correlation

clustering are similar, the focus of the two fields is notably
different: correlation clustering studies clustering from an
algorithmic viewpoint, where the goal is to design algorithms
with provable optimization guarantees with respect to the
correlation clustering quality function. In contrast, community
detection focuses mainly on the choice of the quality function,
with the aim to obtain a meaningful clustering into communities.
In this context, ‘meaningful’ can mean either statistically significant,
or similar to some ground truth clustering. In summary, community
detection asks “What quality function to optimize?” while
correlation clustering asks “What algorithm is best for optimizing
the correlation clustering quality function?.”

Veldt et al. (2018) introduced an interesting variant of
correlation clustering methods known as LambdaCC, and showed
that it is related to Sparsest Cut, Normalized Cut and Cluster
Deletion. They additionally introduce a degree-corrected variant
of LambdaCC and prove that it is equivalent to CL-modularity,
which we discuss in Section 3.3.

3.2 Markov stability

The Markov stability (Delvenne et al., 2010) of a clustering with
respect to a network quantifies how likely a random walker is to find
itself in the same community at the beginning and end of some time
interval. When communities are clearly present in a network, then a
random walker will tend to stay inside communities for long time
periods and travel between communities infrequently. Markov stability
can be defined for various types of discrete- or continuous-time random
walks (Lambiotte et al., 2014). Let P(t)ij be the probability that the
random walker is at node j at time t if it was at node i at time 0, and
denote byP(t) � (P(t)ij) ∈ Rn×n the t-transitionmatrix of the random
walk. For simplicity, in this paper, we only consider discrete time t = 0, 1,
. . . , thus P(t) = Pt, where P = P (1). We assume that P is irreducible and
aperiodic, so that the random walk has a unique stationary distribution
s ∈ Rn, which is the unique solution to s = sP, such that all elements of s
sum up to one. We consider a random walker starting from the initial
state sampled from s, and compare the distribution of its location at time
t, to another location sampled from the stationary distribution. Markov

stability measures the covariance between the community label
indicators before and after the interval t.

Formally, let C be a clustering and let the clusters be numbered 1, 2,
. . . , k, where k is the number of clusters inC.We denote byH(C) the n×
k indicator matrix of the clustering C, whereH(C)ia = 1 if node i belongs
to the a-th cluster, and H(C)ia = 0 otherwise. Markov stability is
defined as

MarkovStability C, P t( )( ) � Trace H C( )⊤ diag s( )P t( ) − s⊤s( )H C( )( ). (10)

For more details on the definition of Markov stability and its
variants, we refer to Delvenne et al. (2010) and Lambiotte and
Schaub (2021). We show that maximizing Markov stability is a
projection method with respect to the query vector

q MS( )
t � v diag s( )P t( ) − s⊤s( ), (11)

where v(X) ∈ RN is the half-vectorization of the matrix X, defined
by v(X)ij � 1

2 (Xij +Xji) for i < j. We show that for any matrix
X ∈ Rn×n, maximizing Trace (H(C)⊤XH(C)) is a projection method:

Lemma 2. For any matrix X ∈ Rn×n, maximizing the trace

Trace H C( )⊤XH C( )( ) (12)

over the set of all clusterings C is equivalent to minimizing
da(v(X), b(C)).

Proof. The trace is written as

Trace H C( )⊤XH C( )( ) � ∑
a

H C( )⊤XH C( )[ ]aa.
We write

H C( )⊤XH C( )[ ]aa � ∑
i

∑
j

H C( )iaXijH C( )ja. (13)

Now, note that H(C)iaH(C)ja = 1 whenever i and j are both in
community a, andH(C)iaH(C)ja = 0 otherwise. Therefore, summing over
a, we get∑aH(C)iaH(C)ja = 1 if ij ∈ Intra(C), ji ∈ Intra(C) or i = j. Hence,

Trace H C( )⊤XH C( )( ) � ∑
a

H C( )⊤XH C( )[ ]aa
� ∑

ij∈Intra C( )
Xij +Xji( ) + ∑

i∈ n[ ]
Xii.

Note that the sum ∑i∈[n]Xii does not depend on C, so that
omitting it will not affect the optimization. In addition, we can
subtract 12∑i<j(Xij +Xji), which is also constant w.r.t. C. We obtain

Trace H C( )⊤XH C( )( ) ≡ ∑
ij∈Intra C( )

1
2

Xij +Xji( )
− ∑

ij∈Inter C( )

1
2

Xij +Xji( )
� 〈v X( ), b C( )〉.

To conclude, trace maximization is equivalent to maximizing
〈v(X), b(C)〉, which is equivalent to minimizing da (v(X), b(C)) over
the set of clusterings C. □

It is known (Delvenne et al., 2010) that for a discrete-time Markov
chain and t = 1, Markov stability is equivalent to CL-modularity
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maximization with γ = 1, which we define in Section 3.3. The time
parameter t controls the granularity of the detected communities. When
t = 0, we get communities of size 1, because P0 = I, so that
(diag(s)Pt − s⊤s)ij � −sisj < 0 for all i ≠ j, therefore (10) is
maximized when in (13) we have HiaHja = 0 for all a. Furthermore,
Delvenne et al. (2010) show that in the limit t→∞, Markov stability
in continuous time and with normalized Laplacian instead of the
matrix P, divides the network in two communities,
corresponding to the positive and the negative coordinates of
the Fiedler vector, that is the eigenvector corresponding to the
second smallest eigenvalue of the normalized Laplacian.

Matrix vs. vector representation
Note that the vector and matrix representations of clusterings

are related by b(C) = 2v (H(C)H(C)⊤) − 1. This relation makes it
possible to re-define the hyperspherical geometry from Section 2
entirely in terms of n × n matrices instead of (n2)-dimensional
vectors. However, we refrain from doing so, because we believe
that in most cases, the vector representations are easier to work with.
To illustrate, the matrix formulation of projection methods amounts
to replacing the query vector q with a query matrix Q ∈ Rn×n. Note
that Q has n2 entries i, j ∈ [n], while q has only (n2) entries i < j, but
these extra entries do not carry any additional information. Indeed,
concerning the off-diagonal elements i > j, it does not matter
whether Q is symmetric or not, because Trace(H(C)⊤QH(C)) �
1
2 Trace(H(C)⊤(Q + Q⊤)H(C)) for any Q ∈ Rn×n. Furthermore, the
diagonal entries i = j play no role because adding any diagonal
matrix diag(y), for y ∈ Rn, to Q, does not affect the optimization:

Trace H C( )⊤ Q + diag y( )( )H C( )( )
� Trace H C( )⊤QH C( )( ) + ∑

i∈ n[ ]
yi ≡ Trace H C( )⊤QH C( )( ).

The vector representation has the advantage that it omits
these unimportant values, which is why we use query vectors
instead of query matrices. Nevertheless, the matrix
representation allows for an easier analysis in some settings.
For example, in Liu and Barahona (2018), the spectral properties
of Markov stability are leveraged to create an
optimization algorithm.

3.3 Modularity

Modularity maximization is one of the most widely-used
community detection methods (Newman and Girvan, 2004).
Modularity measures the excess of edges inside communities,
compared to a null model; a random graph model without
community structure. This null model is usually either the Erdős-
Rényi (ER) model or the Chung-Lu [CL, Chung and Lu (2001)]
model. Modularity comes with a resolution parameter that controls
the granularity of the detected clustering. For the ER and CL null
models, modularity is given by

CLM C;A, γ( ) � 1
2m

∑
ij∈Intra C( )

Aij − γ
didj

2m
( ),

ERM C;A, γ( ) � 1
2m

∑
ij∈Intra C( )

Aij − γ
m

N
,

where we recall that di is the degree of node i, m � 1
2∑i∈[n]di is the

number of edges, and N � (n2) is the number of node pairs.
In Gösgens et al. (2023b), we have proven that modularity

maximization is a projection method. In addition, the
equivalence between modularity maximization and correlation
clustering was already proven by Veldt et al. (2018). Hence,
Lemma 1, too, establishes that modularity maximization is a
projection method. Finally, Newman (2006) shows that
modularity can be written in a similar trace-maximization form
as (12), which additionally allows one to use Lemma 2 to prove that
modularity maximization is a projection method. Either way, we get
the following query vectors:

q Mod( )
CL A, γ( ) � v A( ) − γ · d A( ), q Mod( )

ER A, γ( ) � v A( ) − γ
m

N
1,

where v(A) is the adjacency vector (the half-vectorization of the
adjacency matrix); m is the number of edges; and d(A)ij � 1

2mdidj.
For a fixed null model, the vectors that are obtained by varying γ

have the following geometric interpretation (Gösgens et al.,
2023a): because the query vector q(Mod)

ER is a linear combination
of v(A) and 1with coefficients depending on γ, it can be shown that
q(Mod)
ER (A, γ) lies on the meridian of v(A) for every value of γ. The
latitude of this modularity vector is related to the resolution
parameter by

tan ℓ q Mod( )
ER A, γ( )( ) �

���
N−m
m

√
γ − 1

. (14)

The vector q(Mod)
CL (A, γ) does not lie on a single meridian and its

latitude does not allow for such an elegant formula. However, the set

FIGURE 2
Illustration of the geodesics formed by varying the resolution
parameter of the modularity vector for a fixed null model. The ER-
modularity vectors lie on a single meridian, in contrast to the CL-
modularity vectors.
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(q(Mod)
CL (A, γ))γ≥ 0 does correspond to a geodesic on the hypersphere,

which is the spherical analogue to a straight line in Euclidean
geometry. This geodesic runs from v(A) to −d(A). In general, let
N be a null model and let pN (A) be the corresponding vector of
expected edge probabilities for the null model N , then the set
(q(Mod)

N (A, γ))γ∈[0,∞] corresponds to the geodesic between v(A)
and −pN (A). In Figure 2, we illustrate the geodesics formed by
the modularity vectors for the ER and CL null models.

The granularity problem of modularity
maximization

It is well-known that modularity maximization is unable to
detect communities that are either too large or too small (Fortunato
and Barthélemy, 2007). This behavior is often demonstrated by the
ring of cliques, a graph consisting of k cliques of size s each, where
each clique is connected to the next one by a single edge. Let us
denote the adjacency matrix of this ring of cliques by Ak,s, and let Tk,s

denote its natural clustering into k cliques. For fixed γ and s and
sufficiently large k, modularity-maximizing algorithms will merge
neighboring cliques. Geometrically, this problem can be understood
as follows: because N = Θ(k2) and m = Θ(k), (14) tells us that
tan ℓ(q(Mod)

ER (Ak,s, γ)) � Θ( �
k

√ ) if γ ≠ 1 and tan ℓ(q(Mod)
ER (Ak,s, γ)) �

+∞ if γ = 1. Thus, for any fixed γ > 0, we have ℓ(q(Mod)
ER (Ak,s, γ)) → π

2

as k → ∞. However, the clustering Tk,s has |Intra (Tk,s)| = Θ(k), so
that ℓ(b(Tk,s)) � arccos(1 − 2 · |Intra(Tk,s)|/N) → arccos(1) � 0.
Now, by the inverse triangle inequality, we have

da q Mod( )
ER , b Tk,s( )( )≥ |da q Mod( )

ER ,−1( ) − da −1, b Tk,s( )( )|
� |ℓ q Mod( )

ER( ) − ℓ b Tk,s( )( )|→ π

2
.

Note that half of the hypersphere lies within a distance π
2

from the vector q(Mod)
ER . And indeed, it can be shown that the

clustering consisting of pairs of neighboring cliques is closer to
q(Mod)
ER than b (Tk,s), so that modularity-maximizing algorithms
will prefer such clusterings over the natural clustering
into cliques.

Note that by (14), the latitude of the ER-modularity vector is a
monotone function of the resolution parameter γ. Thus, choosing
the resolution parameter is equivalent to setting the latitude of the
query vector λ � ℓ(q(Mod)

ER ). The hyperspherical geometry suggests
two ways to choose λ. The first approach is to choose λ to minimize
the angular distance da(q(Mod)

ER , b(Tk,s)). Note that changing the
query latitude λ does not affect the correlation distance
dρ(q(Mod)

ER , b(Tk,s)). This allows us to use the law of cosines (3),
to express cos da(q(Mod)

ER , b(Tk,s)) as a function of λ, λT = ℓ(b (Tk,s)),
and θ � dρ(q(Mod)

ER , b(Tk,s)) as

cos da q Mod( )
ER , b Tk,s( )( ) � cos λ · cos λT + cos θ · sin λ · sin λT.

Minimizing da(q(Mod)
ER , b(Tk,s)) as a function of λ yields tan λ =

cos θ tan λT, i.e., λ ~ cos(θ)λT as λT → 0. The second approach for
choosing λ is to simply equate the query latitude to the latitude of
Tk,s, so λ = λT. Both approaches yield λ→ 0 as k→∞, so that by the
triangle inequality the distance between Tk,s and the modularity
vector with latitude λ vanishes as

da q Mod( )
ER , b Tk,s( )( )≤ da q Mod( )

ER ,−1( ) + da −1, b Tk,s( )( ) � λ + λT → 0.

In terms of the resolution parameter γ, both these approaches
yield γ = Θ(k). Moreover, it can be shown that for both of these
approaches, merging neighboring cliques does not decrease
da(q(Mod)

ER , b(Tk,s)). This demonstrates that these two approaches
effectively address the granularity problem for the ring of cliques. Let
us note that both these approaches heavily rely on the hyperspherical
geometry, and that they cannot be applied to the modularity
function directly. Indeed, the first approach does not work
because maximizing ERM(T; A, γ) as a function of γ yields the
trivial solution γ = 0, while the second approach is ill-defined
without the notion of latitude.

While these two approaches effectively address the granularity
problem of modularity for this ring of cliques network, they do not
work well in general. We provide a better and more universal
approach in Section 5.2.

3.4 Likelihood of generalized planted
partition models

The Planted Partition Model (PPM) is one of the simplest
random graph models that incorporates community structure. In
this model, we assume there is some planted clustering into
communities (the ground truth partition) and that nodes of the
same community are connected with probability pin, while nodes of
different communities are connected with probability pout < pin. The
likelihood of the PPM was derived in Holland et al. (1983). For an
adjacency matrix A, the likelihood that it was generated by a PPM
with clustering C, is given by

PPM − Likelihood A|C, pin, pout( )
� ∏

ij∈Intra C( )
p
Aij

in 1 − pin( )1−Aij ∏
ij∈Inter C( )

p
Aij
out 1 − pout( )1−Aij .

In this standard PPM, we see that the adjacency matrix has
binary entries. In Avrachenkov et al. (2020), the PPM is generalized
to allow for pairwise interactions in any measurable set I . That is, we
require Aij ∈ I for all i < j. For example, by taking I � R, we get a
weighted undirected graph, while directed graphs can be modeled by
I � R2, so that each interaction corresponds to the tuple of weights
wij andwji. Furthermore, this generalization also allows one tomodel
temporal and multilayer networks. Similarly to the binary PPM, it is
assumed that the distribution of the interaction between i and j only
depends on whether i and j are in the same community. That is,
there are likelihood functions fin, fout that measure the likelihood of
an interaction Aij ∈ I resulting from an intra- or inter-community
interaction. Importantly, we require the interactions to be pairwise
independent. This allows us to express the likelihood of the
interaction matrix A as the product of these pairwise likelihoods:

GenPPM − Likelihood A|C, fin, fout( )
� ∏

ij∈Intra C( )
fin Aij( ) ∏

ij∈Inter C( )
fout Aij( ).

After taking the logarithm, it is easy to see that this is equal to the
maximization variant of correlation clustering with w+

ij �
logfin(Aij) and w−

ij � logfout(Aij), so that, by Lemma 1, it is a
projection method with query vector
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q PPM( )
ij � log

fin Aij( )
fout Aij( ). (15)

The standard binary PPM is recovered for fin(a) �
pa
in(1 − pin)1−a and fout(a) � pa

out(1 − pout)1−a.

3.4.1 The granularity bias of likelihood
maximization

It has been observed that likelihood maximization methods
for community detection have a bias towards communities of
sizes close to log n (Zhang and Peixoto, 2020; Peixoto, 2021;
Gösgens et al., 2023b). This can be understood by linking
likelihood maximization to Bayesian inference (Peixoto,
2021): Bayesian community detection methods (Peixoto,
2019) assume a prior distribution over the set of clusterings
and then find the clustering with the highest posterior
probability. Bayes’ rule reads

Posterior C|A( ) � Likelihood A|C( ) · Prior C( )∑C′Likelihood A|C′( ) · Prior C′( ).
Note that the denominator is constant w.r.t. C. If we were to

assume a uniform prior, i.e., Prior(C) ∝ 1, then we get Posterior
(C|A) ≡Likelihood (A|C). This tells us that likelihood maximization
is equivalent to Bayesian inference under the assumption of a
uniform prior. The uniform distribution over clusterings has
been studied in the field of combinatorics for decades (Harper,
1967; Sachkov, 1997). For example, it is known that, asymptotically
as n → ∞, almost all clusters will have sizes close to log n. This
explains why likelihood maximization methods have a bias towards
clusterings of this granularity.

3.5 Which methods are not
projection methods?

Not every community detection method fits our hyperspherical
framework of community detection. A community detection
method is not a projection method if the quality function cannot
be monotonously transformed to a sum over intra-cluster pairs.
Also, in projection methods, the contribution of a node-pair ij to the
sum may depend on the input data (e.g., the graph), but not on the
clustering C. In this section, we give a few examples of methods that
do not fit this framework.

3.5.1 Other inferential methods
In Section 3.4 we saw that some likelihood methods fit our

hyperspherical framework. However, not all inferential
methods are projection methods. For example, suppose we
take a PPM where the intra-community density is such that
each node has λ intra-community neighbors in expectation.
Then, if i and j are in a community of size s, they should be
connected with probability λ/(s − 1). Hence, the likelihood
function fin in (15) would depend on s, which requires the
query vector q(PPM) to depend on C. Our hyperspherical
framework does not allow for this. Similarly, the Bayesian
stochastic blockmodeling inference from Peixoto (2019) does
not fit our hyperspherical framework because the contribution

of each node pair ij depends on the size (and label) of the
communities of i and j in an intricate way that cannot be
captured by a query vector.

3.5.2 k-means clustering
The k-means algorithm is arguably the oldest and most well-

studied clustering method (Jain, 2010). The aim of k-means is to
divide given vectors x1, . . . , xn ∈ Rd into k clusters. For each cluster,
we compute the center as the arithmetic mean of the vectors inside
this cluster. The k-means algorithm iteratively computes the centers
and re-assigns each vector to its nearest center until convergence. In
Dhillon et al. (2004) it is shown that k-means is equivalent to
maximizing

Trace Ĥ C( )⊤XĤ C( )( ), (16)

where X ∈ Rn×n is defined by Xij = 〈xi, xj〉, and
Ĥ(C) � H(C)(H(C)⊤H(C))−1/2 ∈ Rn×k. That is, Ĥ(C)ia � s−1/2a

if node i is part of the community with label a and size sa. Note
that this form resembles the trace-maximization of Markov stability.
A straightforward computation shows that

Ĥ C( )⊤XĤ C( )( )
aa
� 1
sa

H C( )⊤XH C( )( )aa.
Therefore, the contribution of each community is again
normalized by its size, which is not allowed in our
hyperspherical framework.

Another clustering method closely related to k-means is spectral
clustering (Von Luxburg, 2007). In spectral clustering, we are given
an affinity matrix X ∈ Rn×n and consider its leading eigenvectors.
These leading eigenvectors define coordinates for the n objects,
which are then clustered using spatial clustering methods like k-
means. Spectral clustering differs from other clustering and
community detection methods in the sense that it does not
explicitly optimize a quality function. However, when using k-
means for the final clustering step, one could consider it to be
optimizing something of the form of (16), withX replaced by its low-
rank approximation. Therefore, spectral clustering also does not fit
our framework of projection methods.

4 Projection algorithms

The previous section shows that many community detection
methods fit our definition of projection methods. A consequence of
this is that the same optimization algorithms can be used for each of
them. However, it is known that this optimization is NP-hard, and in
some forms even APX-hard.

4.1 Exact optimization

The general problem of correlation clustering (Bansal et al.,
2004) and the subproblem of maximizing modularity (Brandes
et al., 2007; Meeks and Skerman, 2020) are known to be NP-
complete. However, modularity maximization is known to be
Fixed-Parameter Tractable (FPT) when parametrized by the size
of the minimum vertex cover of the graph (Meeks and Skerman,
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2020). Nevertheless, it has been shown that modularity
maximization (Dinh et al., 2015) and the maximization variant
of correlation clustering (Charikar et al., 2005) are APX-hard,
meaning that approximating it to any constant factor is NP-hard.
This tells us that for large graphs, it may be prohibitively expensive
to compute the clustering that minimizes da (q, b(C)) over the set
of clusterings C, for a general query vector q.

Nevertheless, there are some approaches that are able to
optimize some of the objectives from Section 3 with surprising
efficiency. In particular, the Bayan algorithm (Aref et al., 2022) for
modularity maximization is able to find the exact modularity
maximum in graphs of up to several thousands nodes within
hours. This approach relies on an Integer Linear Programming
(ILP) formulation. Similar ILP formulations exist for the general
problem of correlation clustering (Bansal et al., 2004). These can be
converted to the following general ILP formulation of the projection
method: in the projection step, we maximize

∑
i<j

qijb C( )ij,

subject to b(C)ij ∈ {−1, 1} for all i < j and the constraints

bij + bik − bjk ≤ 1,

for all i, j, k ∈ [n].

4.2 Approximate optimization

There are many approximate maximization algorithms that are
able to quickly find clusterings with high modularity. The Louvain
(Blondel et al., 2008) and Leiden (Traag et al., 2019) algorithms are
perhaps the most well-known heuristics for modularity
maximization. These algorithms iterate over the nodes and
make use of the network sparsity to find the greedy relabeling
of a node. For a node i, finding this greedy relabeling has
complexity O(di). The Louvain algorithm terminates when it
achieves a local maximum. Since it is non-trivial to bound the
number of iterations needed to reach a local maximum, there are
no theoretical guarantees for the complexity. However, the
running time empirically scales linearly with the number of
edges. While these algorithms often attain values close to the
global optimum, they rarely find the exact global optimum
(Aref et al., 2023).

The algorithms proposed in the field of correlation clustering
come with theoretical approximation guarantees. Due to the
equivalence established in Lemma 1, these algorithms can be
applied to modularity maximization. Conversely, modularity
maximization algorithms like the Louvain algorithm can be
applied to the correlation clustering quality function, allowing for
comparisons between these algorithms. Interestingly, while there
exist no optimization guarantees for the Louvain algorithm, it does
seem to outperform correlation clustering algorithms in such
comparisons (Veldt et al., 2018). The Louvain algorithm can be
modified to minimize da (q, b(C)) with similar performance.
However, the computational complexity may depend on the
particular query vector q (Gösgens et al., 2023a). More precisely,
our modification of Louvain assumes a query vector of the form
q = v (S + L), where S ∈ Rn×n is a sparse matrix and L ∈ Rn×n is a

low-rank matrix. This way, finding the greedy relabeling for a
node i has linear complexity in terms of the number of non-zero
entries of S adjacent to i. We observe that the running time of
this re-implementation of Louvain is proportional to the
number of elements in non-zero elements in S (Gösgens
et al., 2023b).

We denote by L(q) the clustering vector that results from
minimizing da (q, b(C)) over the set of clusterings C by the
Louvain algorithm.

4.3 Do we need the global optimum?

The modularity landscape is known to be glassy (Good et al.,
2010), which means that there are many local maxima with values
close to the global maximum. It is likely that for a general query
vector q, the landscape of da (q, b(C)) suffers from a similar
glassiness, which explains why its exact minimization is
computationally expensive, while its approximate minimization is
computationally cheap.

However, the ultimate goal of community detection is not to
minimize the distance to some query vector, but to obtain a
meaningful clustering of the network nodes. In settings where we
have a generative model, like the PPM, the popular LFR benchmark
(Lancichinetti et al., 2008), or the more recent ABCD benchmark
(Kamiński et al., 2021), a meaningful clustering is a clustering that is
similar to the planted clustering. However, there is no guarantee that
the planted clustering corresponds to the global (or even a local)
optimum. Most prominently, in sparse network models, it is highly
unlikely that a locally optimal clustering corresponds to the planted
clustering. A simple argument for this is that a sparse network model
contains isolated nodes with high probability, and these nodes will
not be assigned to their true community in any locally optimal
clustering.

Moreover, when applying the Louvain algorithm to graphs from
generators, it has been observed that the obtained modularity often
exceeds the modularity of the planted clustering. This tells us that
simple greedy optimization algorithms like Louvain already result in
a clustering vector L(q) that is nearer to q than the planted
clustering vector b(T), i.e., da(q,L(q))≤da(q, b(T)).

In the experiments for this paper, we have applied the Louvain
algorithm 4,150 times for different combinations of query mappings
and networks. In most of these cases, we chose a query vector using a
heuristic, which will be explained in Section 5.2, that is designed to
ensure da(q,L(q)) ≈ da(q, b(T)). However, in all these
4,150 applications of the Louvain algorithm, we have only
observed 253 cases where da(q,L(q))> da(q, b(T)).
Furthermore, most of these might be attributed to numerical
errors because there are only 10 instances where da (q, b(C)) is
more than 1% larger than da (q, b(T)) and no instances where it is
more than 2% larger. This tells us that approximate optimization
algorithms like Louvain easily find clusterings with higher quality
[i.e., lower da (q, b(C))] than the planted clustering.

The important conclusion from these observations is that better
optimization algorithms do not necessarily result in more
meaningful clusterings. Instead, it seems more important to
choose the query vector so minimizers of da (q, b(C)) are close
to the ground truth clustering vector b(T).
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5 Choosing the query vector: heuristics
and open problems

In the previous section, we have seen that the choice of the
quality function (or equivalently, the query vector) may have a
bigger impact on the performance of a community detectionmethod
than the choice of the optimization algorithm.

Choosing a quality function is difficult because it is hard to
compare two quality functions in a meaningful way. However,
when restricting to the set of projection methods, the
hyperspheric geometry provides us with additional tools to
compare the query vectors: for example, we can compute the
latitude of the query vector and distances between query vectors.
This provides us with some information about the relative
position of the query vectors. In addition, these query vectors
define a vector space, so that linear combinations of query vectors
also correspond to community detection methods. In this section,
we discuss several ways to choose a query mapping, which maps
graphs to a query vectors q.

5.1 Graph generators

We assume that we are given some generator, which produces a
tuple (A, T) of an adjacency matrix and a planted clustering (the
ground truth). This generator defines a joint distribution on (A, T).
In our experiments, we make use of several different generators:

5.1.1 The planted partition model (PPM)
The standard (not generalized) PPM from Section 3.4 is the

simplest random graph model with community structure. In this
model, there is a planted clustering (partition) of the nodes, and
nodes of the same community are more likely to connect to each
other than nodes of different communities. We discuss three
different variants of the PPM. The first one is a random graph
model with homogeneity in both the degree and the community size
distribution. We consider k equally sized communities of size n/k
(assuming k divides n), and assume that each node has (in
expectation) the same number of neighbors inside and outside its
community, given by λin and λout, respectively. We then set the
connection probabilities as

pin � λin
s − 1

, and pout � λout
n − s

.

This way, each node’s degree follows the same distribution,
which is a sum of two binomially distributed random variables,
which can be approximated by a Poisson distribution with mean
λin + λout.

5.1.2 The heterogeneously-sized PPM (HPPM)
The second variant of the PPM has homogeneous degrees

(again, approximately Poisson distributed), but has heterogeneity
in the community-size distribution. We draw k community sizes
from a power-law distribution with some power-law exponent δ,
meaning that the probability of obtaining a size s decays as s−δ. We
make sure that each node has on average λin intra-community
neighbors and λout neighbors outside of its community, by setting

pin s( ) � λin
s − 1

for nodes in communities of size s, and

pout � nλout
2 · N −mT( ),

where mT is the number of intra-community pairs in the planted
clustering T.

5.1.3 The degree-corrected PPM (DCPPM)
To obtain a graph generator with degree heterogeneity

and homogeneous community sizes, we assign a weight θi > 0
to each node and use the PPM parametrization that was
proposed in Prokhorenkova and Tikhonov (2019). We
consider k equally-sized communities of size n/k (again,
assuming k divides n). We denote the sum of weights inside
the a-th community by Θa and denote the total weight by
Θ � ∑k

a�1Θa. Nodes i and j that are both in the a-th
community are connected with probability

pin θi, θj,Θa( ) � λin
λin + λout

θiθj
Θa

+ λout
λin + λout

θiθj
Θ ,

and nodes from different communities are connected with
probability

pout θi, θj( ) � λout
λin + λout

θiθj
Θ .

With these parameters, a node has on average approximately λin
neighbors inside its community and λout neighbors outside its
community. In addition, the expected degree of a node i is
approximately equal to its weight θi. To obtain a degree
distribution with power-law exponent τ, we draw the weights
from a distribution with this same power-law exponent.

5.1.4 The artificial benchmark for community
detection (ABCD)

The Artificial Benchmark for Community Detection (ABCD) is
a graph generator that incorporates heterogeneity in both the degree
and community-size distribution in order to generate graphs that
resemble real-world networks (Kamiński et al., 2021). This is done
by generating a sequence of community sizes and degrees with
power-law exponents δ and τ. Then, it performs a matching process
to assign degrees to nodes inside communities. The generator has a
parameter ξ that controls the fraction of edges that are inter-
community edges.

5.1.5 Parameter choices in our graph generators
We set the parameters of the graph generators as follows: we

consider graphs with n = 1,000 nodes andmean degree λin + λout = 8.
We choose the parameters of these generators so that each node has
(in expectation) λout = 2 neighbors outside its community. For
DCPPM and ABCD, we set the power-law exponent of the degree
distribution to τ = 2.5. We generate the planted partitions as follows:
For PPM and DCPPM, we consider k = 50 communities of size s =
20 each. For ABCD, we set ξ � 1

4.
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5.2 A heuristic for controlling the granularity
of the detected clustering

Modularity and Markov stability both have a parameter that
controls the granularity of the detected clusterings. Modularity
comes with a resolution parameter γ, and increasing γ typically
results in detecting communities of smaller sizes. However, it is
unclear how this resolution parameter should be chosen in order to
detect clusterings of the desired granularity. With ‘desired’, we mean
that the granularity of the detected clustering is similar to the granularity
of the planted clustering in cases where the graph is drawn from a graph
generator. For ER-modularity, there is a particular value of γ(pin, pout)
for which maximizing ER-modularity is equivalent to maximizing the
likelihood of a PPMwith parameters pin, pout. However, asmentioned in
Section 3.4, it is known that maximizing this likelihood is biased
towards communities of logarithmic size. Markov stability comes
with a time parameter t which controls the granularity of the
detected clustering. Increasing t results in detecting larger
communities. Again, it is unclear how this time should be chosen in
order to detect communities of the desired granularity.

Within the framework of projection methods, a natural measure
of the granularity of a clustering C is the latitude ℓ(b(C)) of the
corresponding clustering vector. Hence, in cases where the graph is
drawn from a generator with a planted clustering T, a clustering with

‘desired’ granularity is a clustering C with ℓ(b(C)) ≈ ℓ(b(T)). In turn,
the desired ℓ(b(C)) can be obtained by choosing the right latitude of
a query vector. How tomake this choice is the topic of the remainder
of this Section 5.2.

The simplest way to change a query vector in order to detect
clusterings of coarser granularity, is to add amultiple of 1. That is, a new
query vector q′ = q + c ·1 for some c > 0. The vectors q′ and q lie on the
same meridian, i.e., dρ(q, q′) = 0, while q′ is further away from −1, so
that ℓ(q′)> ℓ(q). Hence, adding c ·1 is equivalent to projecting the vector
q to a different latitude, i.e., q′ � Pλ(q) for some λ ∈ (ℓ(q), π]. Similarly,
the simplest way to change a query vector in order to detect clusterings
of finer granularity, is to subtract a multiple of 1, i.e., q′ = q − c ·1, which
is equivalent to q′ � Pλ(q) for λ ∈ [0, ℓ(q)). Hence, the question
becomes: given a query vector q, how should λ be chosen such that
q′ � Pλ(q) results in a clustering with similar granularity as b(T),
i.e., such that ℓ(L(q′)) ≈ ℓ(b(T))?

In Gösgens et al. (2023a), we proposed a general heuristic that
prescribes this latitude as a function of λT = ℓ(b(T)) and θ = dρ(q,
b(T)). This granularity heuristic prescribes

λ* λT, θ( ) � arccos
cos λT cos θ

1 + sin λT sin θ
( ) (17)

We denote the query vector obtained by applying the granularity
heuristic, by q*(q) � Pλ*(λT,θ)(q), where q can be any query vector.

FIGURE 3
For 50 graphs drawn from the Planted Partition Model (PPM), we evaluate Markov stability with time t ∈ [5], and compare the clusterings that are
obtainedwith andwithout applying the granularity heuristic. q*(·) denotes the heuristic. A positive granularity error indicates that the detected clustering is
coarser than the planted clustering. ρ(C, T) = cosdρ(b(C), b(T)) is the Pearson correlation between the clustering vectors, whichwewish tomake close to 1.
We see that q*(q(MS)

t ) strongly outperforms q(MS)
t . (A)Granularity errors of Markov stability on PPM networks. (B) Performance of Markov stability on

PPM networks.
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The latitude in (17) is chosen so that da (q*, b(T)) = θ. We have
observed that this leads to da(q*,L(q*)) ≈ θ and dρ(q*,L(q*)) ≈ θ.
Whenever these approximations are valid, it can be shown that
ℓ(L(q*)) ≈ ℓ(b(T)).

We briefly illustrate how solving da (q*, b(T)) = θ leads to (17): we
use (4) to express cos θ in terms of λT, λ* and da (q*, b(T)) like

cos θ � cos da q*, b T( )( ) − cos λT · cos λ*
sin λT · sin λ* .

Squaring both sides and making the substitutions cos da (q*,
b(T)) = cos θ and sin2λ* = 1 − cos2λ* yields

cos2 θ � cos2 θ + cos2λT · cos2λ* − 2 cos θ · cos λT · cos λ*
sin2λT · 1 − cos2λ*( ) .

This can be rewritten to the following quadratic equation in cosλ*:

1 − sin2 θ sin2λT( )cos2λ* − 2 cos θ · cos λT · cos λ* + cos2 θ · cos2λT
� 0,

which has solutions

cos λ* �
2 cos θ · cos λT ±

�������������������������������������������
4 cos2 θ · cos2λT − 4 · 1 − sin2 θ sin2λT( )cos2 θ · cos2λT√

2 · 1 − sin2 θ sin2λT( )
� cos θ · cos λT · 1 ± sin θ sin λT

1 − sin2 θ sin2λT

� cos θ · cos λT
1 ∓ sin θ sin λT

.

This gives two possible solutions for λ*, one of which
corresponds to (17). We refer to Gösgens et al. (2023b) for the
remaining details of the derivation and the experimental validation
of this heuristic.

Note that cos θ is the Pearson correlation coefficient between q
and b(T), and can be considered a measure of how much
information q carries of the clustering T. As a special case, note
that cos θ = 1 implies that q and b(T) lie on the same meridian, and
we can see that λ*(λT, 0) = λT, so that q* = b(T). In the other extreme,
where q is not correlated with b(T) (i.e., θ = π/2), we have λ*(λT, π/
2) = π/2, so that the resulting query vector lies on the equator (just
like the modularity vector for γ = 1). For θ ∈ (0, π/2), the heuristic
latitude λ*(λT, θ) is between λT and π/2.

To compute the heuristic latitude choice in (17), we need
estimates of λT and θ, which requires some knowledge of the

FIGURE 4
For 50 graphs drawn from a Heterogeneously-sized Planted Partition Model (HPPM), we evaluate Markov stability with time t ∈ [5], and compare the
clusterings that are obtained with and without applying the granularity heuristic. q*(·) denotes the heuristic. A positive granularity error indicates that the
detected clustering is coarser than the planted clustering. ρ(C, T) = cosdρ(b(C), b(T)) is the Pearson correlation between the clustering vectors, which we
wish to make close to 1. We see that q*(q(MS)

t ) strongly outperforms q(MS)
t . (A) Granularity errors of Markov stability on HPPM networks. (B)

Performance of Markov stability on HPPM networks.
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planted clustering T. It might seem that requiring this
knowledge of the planted clustering defeats the purpose of
community detection. However, requiring partial knowledge
of the planted clustering is not uncommon in other community
detection methods, such as likelihood-based methods
(Newman, 2016; Prokhorenkova and Tikhonov, 2019).
Moreover, when we have access to the graph generator, we
can use this to estimate the means of λT and θ, and use these
estimates in (17).

In Gösgens et al. (2023a), we have shown that this granularity
heuristic works well for several query vectors q, including
modularity vectors. In this section, we demonstrate that this
heuristic also works well for Markov stability vectors. For t ∈ {1,
. . . , 5}, we consider the projection method with query mapping
q(MS)
t from (11), which is equivalent to maximizing the Markov
stability for a discrete-time random walk with time t. We compare
this method to the projection method with query mapping
q*(q(MS)

t ), which corresponds to applying our granularity
heuristic to the Markov stability vector.

To quantify the quality of the approximation ℓ(b(C)) ≈ ℓ(b(T)),
we define the relative granularity error as ℓ(b(C))/ℓ(b(T)) − 1, which
we want to be close to 0. Positive values indicate that the detected
clustering is more coarse-grained than the planted clustering, while
negative values indicate that the detected clustering is too fine-
grained. We measure the similarity between the detected and
planted communities by the correlation coefficient ρ(C, T) =
cos dρ(b(C), b(T)). Values close to 1 indicate that the clusterings
are highly similar, while values close to zero indicate that C is not
more similar to T than a random relabeling of C.

For the PPM, HPPM, DCPPM and ABCD graph generators, the
results are shown in Figures 3–6. For each generator, we generate
50 graphs and show boxplots of the outcomes for each of the
query mappings.

5.2.1 Effect of the heuristic
In Figures 3a, 4a, 5a, 6a, we see that the granularity heuristic

indeed leads to detecting clusterings with granularity closer to the
granularity of the planted clustering. For almost all cases, we see that

FIGURE 5
For 50 graphs drawn from the Degree-Corrected Planted Partition Model (DCPPM), we evaluate Markov stability with time t ∈ [5], and compare the
clusterings that are obtained with and without applying the granularity heuristic. q*(·) denotes the heuristic. A positive granularity error indicates that the
detected clustering is coarser than the planted clustering. ρ(C, T) = cosdρ(b(C), b(T)) is the Pearson correlation between the clustering vectors, which we
wish to make close to 1. We see that q*(q(MS)

t ) strongly outperforms q(MS)
t . (A) Granularity errors of Markov stability on DCPPM networks. (B)

Performance of Markov stability on DCPPM networks.
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the median relative granularity error after applying the heuristic is
closer to zero than before applying the heuristic. The only exception
is t = 1 for the HPPM generator. We see that overall, the granularity
heuristic results in clusterings that are slightly more fine-grained
than the planted clustering.

In addition, Figures 3b, 4b, 5b, 6b show that the granularity
heuristic typically leads to an increased similarity to the planted
clustering. The only two exceptions are HPPM and ABCD for t =
1, where the granularity heuristic results in slightly lower
performance. For the PPM generator, Figure 3B shows that for
each of the values of t, the detection is near-perfect (all
similarities are higher than ρ = 0.97). For the HPPM and
DCPPM generators, Figures 4B, 5B show that the
heterogeneity in the community sizes and degrees result in
slightly lower performance on these generators.

5.2.2 Markov stability time and granularity
Figures 3a, 4a, 5a, 6a show that for the query vector q(MS)

t

(without applying the heuristic), larger values of t indeed lead to
detecting more coarse-grained clusterings. However, t = 1
already results in clusterings that are more coarse-grained

than the planted clustering. We see similar outcomes in
Figures 4a, 5a and (to a lesser extent) Figure 6A. Since we
are using a discrete-time Markov chain, we cannot consider
times t ∈ (0, 1). For a continuous-time Markov chain, this
is possible.

5.2.3 Sparsity and computation time
Note that the running time of the Louvain algorithm for

Markov Stability vectors depends on the sparsity of the
transition matrix P(t). To illustrate: for t = 1, the transition
matrix has the same number of positive entries as the adjacency
matrix, and (our implementation of) the Louvain algorithm runs
in around 5 s. In contrast, for t = 5, we have P (5)ij > 0 for each
pair of nodes that is connected by a path of length 5, which leads
to a much denser matrix, and the Louvain algorithm takes
roughly 200 s per instance. While the continuous-time variant
of Markov stability may be able to detect clusterings of finer
granularity, the corresponding transition matrix satisfies P(t)ij >
0 whenever i and j are connected by any path. This leads to a
much denser matrix, so that the Louvain algorithm will take
even more time.

FIGURE 6
For 50 graphs drawn from the Artificial Benchmark for Community Detection (ABCD), we evaluateMarkov stability with time t ∈ [5], and compare the
clusterings that are obtained with and without applying the granularity heuristic. q*(·) denotes the heuristic. A positive granularity error indicates that the
detected clustering is coarser than the planted clustering. ρ(C, T) = cosdρ(b(C), b(T)) is the Pearson correlation between the clustering vectors, which we
wish to make close to 1. We see that q*(q(MS)

t ) outperforms q(MS)
t for t ≠ 1. (A) Granularity errors of Markov stability on ABCD networks. (B)

Performance of Markov stability on ABCD networks.
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5.3 Tuning a projection method to a
graph generator

In Section 3, we have seen that the class of projection methods
contains many interesting community detection methods. A further
advantage of projection methods is that we can combine different
community detection methods by taking linear combinations of
their query mappings. On the one hand, this yields infinitely many
community detection methods, and gives a lot of flexibility. On the
other hand, this begs the question how to choose a suitable query
mapping for a task at hand. For instance, are there preferable choices
for a particular graph generator? In this section, we will partially
address this question by showing how one can tune a projection
method to a graph generator, in order to maximize the performance
on graphs sampled from this generator.

We assume that we are given a generator that produces graphs
with their community assignments. We consider linear
combinations of a few query mappings and perform a grid search

to find the coefficients that yield the best query vector. A grid search
is a standard approach for hyperparameter tuning, where we
discretize each of the parameter intervals and evaluate all
possible combinations. To avoid overfitting, one usually generates
two different sets of graphs: a training set and a validation set. The
training set is used to find the best hyperparameter combination,
while the validation set is used to get an unbiased estimate of the
performance of the obtained hyperparameters values.

To demonstrate this method, we show how we can optimize a
projection method for the ABCD graph generator from the previous
section. To allow for comparison with this previous section, we
consider the same 50 ABCD graphs as the validation set. For the
training set, we generate 15 new ABCD graphs from this
same generator.

We consider query vectors that are linear combinations
of four vectors: the constant vector 1 (to control granularity),
the adjacency vector v(A), the degree-product vector
d(A) and the Jaccard vector j(A). The latter is defined as

FIGURE 7
A heatmap of the median performance (similarity between the detected and planted clusterings, as measured by ρ(C, T)) for different linear
combinations of query mappings. The medians are computed over 10 samples of ABCD graphs, with the same parameters as in the experiments of
Section 5.2. The best performance is marked with a white triangle.

TABLE 1 The performance of several projection methods on a set of 50 ABCD graphs (the same set of graphs as in Figure 6).

Markov stability Likelihood Grid search

t = 1 t = 2 t = 3 t = 4 t = 5 PPM DCPPM

Median ρ(C, T) 0.912 0.830 0.746 0.689 0.646 0.809 0.801 0.973

Median ℓ(b(C))/ℓ(b(T)) − 1 0.094 0.196 0.325 0.428 0.522 −0.132 −0.180 −0.022

Note thatMarkov stability with t =1 is equivalent to CL-modularity. The likelihood-basedmethods correspond to ER- and CL-modularity with the resolution parameter value for which they are

equivalent to maximizing the PPM- and DCPPM-likelihood respectively (Newman, 2016). Grid search corresponds to the projection method obtained in Section 5.3.
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follows: let N(i) denote the neighborhood of i. We follow
the convention that i ∈ N(i) for all i ∈ [n]. Then j(A)ij
is the Jaccard similarity between the neighborhoods of
i and j:

j A( )ij � |N i( ) ∩ N j( )|
|N i( ) ∪ N j( )|.

We consider query vectors that are linear combinations
of these four vectors, q = c1 ·1 + cA ·v(A) + cd ·d(A) + cj ·j(A).
Since in the hyperspherical geometry, the length of the
query vector does not affect the detected clustering, we can
reduce the number of hyperparameters by one. Assuming
that the best combination has cA > 0, we set cA = 1, thereby
making the grid search more efficient. Moreover, for
most values of the coefficient c1, the detection method will
result in clusterings of a wrong granularity. Thus, instead of
fitting c1, we use the granularity heuristic from Section 5.2.
Then we are left with the following parametrization of
query vectors:

q A; cj, cd( ) � q* v A( ) + cj · j A( ) + cd · d A( )( ).
This leaves two hyperparameters to be tuned by the grid search.

Note that the vector d(A) is a correction term for the degrees.
Because of that, the best performance is likely to be found for cd ≤ 0.
We choose the interval cd ∈ [−6, 0], which we discretize in steps of 12.
For the parameter cj, we discretize the interval [0,1] into steps of
size 1

10.
The results are shown in Figure 7. We see that there is a large

region where the method performs well. In particular, the best-
performing coefficients are cd � −5

2 and cj � 1
2 with a median

performance of ρ = 0.993 on the training set2. We apply this
query mapping to the validation set and a median performance
of ρ = 0.973, which is slightly lower than the performance on the
training set, as expected due to selection bias.

Table 1 compares the performance of the trained projection
method to other projection methods. We see that Markov stability
with time t = 1 performs best among Markov stability methods
(without the granularity heuristic), and also outperforms PPM- and
DCPPM-likelihood maximization (Newman, 2016). Note that
Markov stability with t = 1 is equivalent to CL-modularity
maximization with γ = 1. This query mapping achieved a median
performance of ρ = 0.912, which is good, but significantly lower than
the performance of our optimized query mapping. In addition, we
see that the optimized projection method outperforms the other
projection methods in terms of latitude error due to the latitude
heuristic. This is despite the fact that the likelihood-based methods
require comparable knowledge about the generative process as our
latitude heuristic.

In this demonstration, we have kept the setup relatively simple
by taking combinations of only 4 vectors, reducing this to two
coefficients. We did this for simplicity and so that we can visualize
the performance on the training set by a two-dimensional

heatmap. This already led to strong performance. It is likely that
we can improve performance even further by including a larger
number of query vectors, and using a grid search instead of the
granularity heuristics to determine the coefficient c1. The obvious
downside is that optimization for a larger number of parameters
becomes computationally more demanding, and one must increase
the size of the training set to avoid overfitting.

To conclude, we have shown that the class of projection
methods unifies many popular community detection methods
and is expressive enough to fit realistic benchmark generators like
ABCD. This work paves the way to many follow-up research. On
the one hand, there are many algorithmic questions: what
projection algorithms work well for what query vectors? Are
there sets of query vectors for which the minimization of da (q,
b(C)) is not NP-hard? On the other hand, there are also several
methodological questions: how do the best-performing
coefficients of the linear combination depend on the network
properties? For example, how does the best-performing
coefficient cd depend on the mean and variance of the degree
distribution?
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