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The social brain hypothesis posits that species with larger brains tend to have
greater social complexity. Various lines of empirical evidence have supported the
social brain hypothesis, including evidence from the structure of social networks.
Cooperation is a key component of group living, particularly among primates, and
theoretical research has shown that particular structures of social networks foster
cooperation more easily than others. Therefore, we hypothesized that species
with a relatively large brain size tend to form social networks that better enable
cooperation. In the present study, we combine data on brain size and social
networks with theory on the evolution of cooperation on networks to test this
hypothesis in non-human primates. We have found a positive effect of brain size
on cooperation in social networks even after controlling for the effect of other
structural properties of networks that are known to promote cooperation.
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1 Introduction

The social brain hypothesis states that, among primates, brain size is positively
associated with social complexity (Dunbar, 1998). Group size, in terms of the number
of individuals, is one aspect of social complexity (Kappeler et al., 2019). Studies have found a
positive association between brain size and the typical sizes of defined social units (Dunbar,
1992; Dunbar, 1998) as well as more focused subgroups, such as the number of regular social
contacts an individual maintains (Kudo and Dunbar, 2001; Bickart et al., 2011; Lewis et al.,
2011; Kanai et al., 2012). However, some studies have found stronger relationships between
brain size and other behaviors, such as diet (DeCasien et al., 2017), or found the relationship
between brain size and group size to be relatively weak (Street et al., 2017) or inconsistent
across data sets (Powell et al., 2017).

Although group size is the most studied potential correlate of brain size in the social
brain hypothesis literature, it is not the only one (Dunbar and Shultz, 2017). Patterns of
behavior between individuals in differentiated pairwise interactions can also be thought of
as an important component of social complexity (Dunbar and Shultz, 2017; Kappeler et al.,
2019; Shultz and Dunbar, 2022). Such pairwise interactions can be represented as social
networks. Network science is a common tool for studying complex systems, and researchers
have investigated several network indices in relation to the social brain hypothesis.
Examples include the number of connections an individual maintains (also known as
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the node’s degree) (Kudo and Dunbar, 2001; Bickart et al., 2011;
Kanai et al., 2012), the number of different types of connections
(Bickart et al., 2011), the number of individuals in a subgroup who
can connect to each other by a sequence of edges (i.e., the size of
strongly connected components) (Kudo and Dunbar, 2001), the
number of observed connections normalized by the number of
possible connections (called the network density) (Lehmann and
Dunbar, 2009), and more sophisticated measures of network
structure (Lehmann and Dunbar, 2009; Pasquaretta et al., 2014).
The results of all of these network-based studies are largely
consistent with the social brain hypothesis.

Social networks have both benefits and costs that make them
relevant to the evolution of sociality. The structure of animal social
networks has been suggested to affect, for example, the speed of
diffusion of information, mating behavior, predator avoidance,
communication efficiency, and group movement (Pasquaretta
et al., 2014; Pinter-Wollman et al., 2014; Kruase et al., 2015;
Brask et al., 2021). On the other hand, network structure
determines disease transmission potential and epidemic outcomes
in populations, because a pathogen can only spread if the relevant
form of contact exists between two individuals. Networks with high
degree heterogeneity (i.e., high variation in the number of contacts
among individuals) have increased transmission potential due to the
presence of superspreaders which cause rapid, explosive outbreaks
of disease in a population (Bansal et al., 2007). Animal social
networks that we observe today may therefore be a result of
evolutionary processes in which more advantageous network
structures have proliferated at the expense of less advantageous
structures under restrictions imposed by the environment and
trade-offs between different objectives.

One function for which social networks are particularly relevant
is cooperation. Individuals of various animal species cooperate with
each other, even cooperating with non-kin and in social dilemma
situations in which non-cooperation is more lucrative than
cooperation (Smith, 1982; Kappeler and Van Schaik, 2006; Noë,
2006; Cheney, 2011; Croft et al., 2015; McAuliffe and Thornton,
2015; Gokcekus et al., 2021) (but see Clutton-Brock (2009), Cheney
et al. (2010), and Cheney (2011), which point out that empirical
evidence of cooperation in animal groups remains relatively scarce).
Although cooperation under social dilemmas is an evolutionary
puzzle, theoretical research has suggested various mechanisms
enabling cooperation, such as direct reciprocity (i.e., repeated
interaction) and indirect reciprocity (specifically, reputation-based
mechanisms) (Fudenberg and Levine, 1998; Nowak, 2006a).
Signaling, including symbolic communication, has been proposed
as another mechanism that can enable cooperation (Smith, 2010),
and recent theory has suggested that structured populations may
facilitate the spread of cooperation in the presence of symbolic
communication when compared to well-mixed populations
(Salahshour, 2020). The structure of social networks is itself one
mechanism that may promote cooperation, a concept known as
network reciprocity (Nowak, 2006a; Szabó and Fáth, 2007; Perc
et al., 2013; Perc et al., 2017; Takács et al., 2021). Specifically, a
relatively small node degree (i.e., the number of neighboring
individuals per individual) (Ohtsuki et al., 2006; Allen et al.,
2017) and heterogeneity among individuals in the network in
terms of the degree (Santos and Pacheco, 2005; Santos et al.,
2006) can both promote cooperation compared to well-mixed

populations depending on the assumptions underlying the
evolutionary process models. In addition, it has long been known
that clustering of the network (i.e., abundance of short cycles such as
triangles and squares) promotes cooperation, which is often referred
to as spatial reciprocity (Nowak and May, 1992; Hauert, 2001;
Nowak, 2006a).

The purpose of the present study is to investigate the link
between the social brain hypothesis and cooperation in social
networks. While cooperation occurs in various animal taxa (Noë,
2006; Croft et al., 2015), here we focus on non-human primates
because both brain size and social network data are available for
many primate species. Recently developed mathematical theory
enables us to quantify the extent to which a network itself
supports the spread of cooperation (Allen et al., 2017). We use
this theory and test whether species with larger brains form social
networks that foster cooperation to a greater extent than networks
for other species.

Specifically, using game theory and the properties of random
walks on networks, Allen et al. (2017) derived an expression which
predicts, for an arbitrary weighted and undirected network, how
much larger the benefit b of cooperating must be, when compared to
its cost c, in order to favor the spread of cooperation. The theory by
Allen and colleagues relies on a death-birth process which, given an
invading cooperator and assuming no mutation, leads to fixation of
either cooperation or defection (Figure 1; see Section 2 for details).
For a given network, cooperation fixates with a higher probability
when b/c is larger in general. In particular, cooperation fixates with a
probability larger than a baseline probability when b/c is larger than
a threshold value, denoted (b/c)*, and the (b/c)* value depends on
the network structure (see Section 2 for mathematical details).
Because a small (b/c)* value implies that cooperation fixates
relatively easily for a relatively small value of b/c, networks with
a small (b/c)* value favor the spread of cooperation. Our hypothesis
is that nonhuman primate species with larger neocortex ratios are
associated with social networks that have lower (b/c)* values.

2 Materials and methods

2.1 Evolutionary game dynamics and the
derivation of (b/c)*

In this section, we explain the derivation of (b/c)* for any given
network under the weak selection limit, following Allen et al. (2017).

2.1.1 Networks and discrete-time random walk
We assume connected and undirected networks with N nodes.

For each pair of nodes i, j ∈ {1, . . ., N}, we denote the edge weight by
wij ≥ 0. We set wij = 0 if there is no edge (i, j). We allow self-loops,
i.e., the case of wii > 0 (Allen et al., 2017). The weighted degree of
node i, also referred to as node strength, is given by si � ∑N

j�1wij.
We start with explaining discrete-time random walks on networks

because they are necessary for describing both the evolutionary game
dynamics and the derivation of (b/c)*. By definition, a discrete-time
random walk on the network is simple if the walker located on the ith
node moves to any jth node in a single time step with probability
proportional to wij, i.e., with probability pij = wij/si. The transition
probability matrix P = (pij) of the simple random walk is given by P =
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D−1W, where D = diag(s1, . . ., sN), i.e., the diagonal matrix whose
diagonal entries are equal to s1, s2, . . ., sN, andW = (wij) with i, j ∈ {1, . . .,
N} is the weighted adjacency matrix. Let π = (π1, . . ., πN) be the
stationary probability vector of the random walk with transition
probability matrix P. Vector π is the solution of πP = π satisfying∑N

i�1πi � N. The following Eq. 1 holds true for undirected networks
that (Aldous and Fill, 2002; Masuda et al., 2017):

πi � si∑N
ℓ�1sℓ

, i ∈ 1, . . . , N{ }. (1)

2.1.2 Gift-giving game and evolutionary dynamics
under the death-birth updating rule

We use the gift-giving game, also called the donation game,
which is a subtype of the prisoner’s dilemma game. In the gift-
giving game, which is a two-player game, one player, called the
donor, decides whether or not to pay a cost c (>0). If the donor pays
c, which we refer to as cooperation, then the other player, called the
recipient, receives benefit b, which we assume to be larger than c. If
the donor decides not to pay c, which we refer to as defection, then
the donor does not lose anything, and the recipient does not gain
anything. We assume that each player plays the game with each
neighbor once as donor and another time as recipient in a single
round of evolutionary dynamics. Then, the payoff matrix of
the gift-giving game between a pair of players is given by the
following Eq. 2:

C D
C
D

b − c −c
b 0

( )
(2)

where C and D represent cooperation and defection, respectively,
and the payoff values represent those for the row player.

We set xi = 0 or xi = 1 when the ith player is defector or
cooperator, respectively. Then, the state of the entire network is
specified by a binary vector x = (x1, . . ., xN) ∈ {0,1}N. The payoff of
the ith node averaged over all its neighbors is given by the following
Eq. 3:

fi x( ) � −cxi + b∑N
j�1

pijxj. (3)

We set the reproductive rate of node i in state x by the following
Eq. 4:

Ri x( ) � 1 + ηfi x( ), (4)
where η (≥0) represents the strength of natural selection.When η→ 0,
the payoff, fi(x) only weakly impacts the selection, which is called the
weak selection regime. A justification of weak selection is that, in
reality, many different factors may contribute to the overall fitness of
an individual, and the prisoner’s dilemma game may be just one such
contributor (Ohtsuki et al., 2006; Allen et al., 2017).

We assume evolutionary dynamics of the gift-giving game
driven by the death-birth process with selection on birth
(Ohtsuki et al., 2006; Allen et al., 2017). By definition, we first
select a node to be updated (i.e., die), denoted by i, uniformly at
random. Second, we select one of the neighbors of the ith node,
denoted by j, for reproduction (i.e., give birth), with the probability
proportional to wijRj(x). Third, i copies the type (i.e., defection or
cooperation) of j. These three steps constitute a single round of the
evolutionary dynamics; see Figure 1 for a schematic.

2.1.3 Fixation probability for cooperation and the
expression of (b/c)*

Because we omittedmutation, the death-birth process in any finite
network eventually terminates in the state in which all individuals are
uniformly cooperators or defectors. We call these final states fixation
of cooperation or defection. According to a standard convention, we
assume that the initial state contains one cooperator node and N − 1
defector nodes and that each node is the unique initial cooperator with
the equal probability 1/N. We denote by ρC the probability that
cooperation fixates. Defection fixates with probability 1 − ρC. We say
that natural selection favors cooperation if ρC > 1/N (Nowak et al.,
2004; Nowak, 2006b; Ohtsuki et al., 2006; Allen et al., 2017).

Allen et al. showed that (Allen et al., 2017)

ρC � 1
N

+ η

2N
−cτ2 + b τ3−τ1( )[ ] + O η2( ), (5)

where

τk � ∑N
i�1

∑N
j�1

πip
k( )
ij tij, (6)

FIGURE 1
A single round of the death-birth process with selection on birth. (A) Each player gains an averaged payoff by interacting with all its neighbors. We
denote cooperator and defector by C and D, respectively. (B)We select a node to be updated uniformly at random. In our example we choose the node
denoted by i. Then, one of i’s neighbors, denoted by j, whose payoff value is shown, will replace i. We select as j each neighbor of i with probability
proportional to its expected payoff; the probability to select this j is given by [1 + η(b/2 − c)]/[1 + η(−c) + 1 + η(b/2) + 1 + η(b/3) + 1 + η(b/4 − c) + 1 + η(b/
2 − c)] = [12 + 6η(b − 2c)]/[60 + η(19b − 36c)], where η≪ 1 denotes the selection strength, b denotes the benefit from cooperating, and c denotes the cost
of cooperating. (C) In this example, j is a cooperator and replaces the defector on the ith node.
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p(k)
ij is the (i, j)th entry of matrix Pk, which implies that

p(1)
ij � pij, and

tij �
0 if i � j,

1 + 1
2
∑N

k�1 piktjk + pjktik( ) otherwise.

⎧⎪⎨⎪⎩ (7)

Eq. 7 implies that tij = tji is the mean coalescence time of two
random walkers when one walker is initially located at the ith
node and the other walker is initially located at the jth node.
Note that p(k)

ij is the k-step transition probability of the random
walk from the ith to the jth node. Therefore, τk, given by Eq. 6, is
the expected value of tij when j is the node at which the random
walker arrives after k steps starting at the ith node under the
stationary distribution (Allen et al., 2017). Eq. 5 implies that the
natural selection favors cooperation (i.e., ρC > 1/N) under weak
selection if and only if

b

c
( )> b

c
( )* ≡ τ2

τ3 − τ1
. (8)

It should be noted that the right-hand side of Eq. 8 only depends on
the adjacency matrix of the network, W. Therefore, the network
structure determines whether and how much natural selection
favors cooperation in the present model. Note that (b/c)* is a
threshold value: cooperation is predicted to fixate with a
probability larger than 1/N when the ratio of benefit b to cost c
of a particular cooperative behavior is larger than (b/c)*. Thus,
cooperation spreads more easily on networks with lower (b/c)*.

We calculated (b/c)* for each network using our in-house code
in Python 3.10, which implements the procedures described in
(Allen et al., 2017); the code is available at https://github.com/
ngmaclaren/cooperation-threshold.

2.2 Data

The data for this study come from the Animal Social Network
Repository (ASNR) (Sah et al., 2019; Collier et al., 2021). The ASNR
contains 770 non-human social networks from eight animal classes and
69 species. For each network in this data set, nodes represent an
individual animal. Edges represent a specific type of contact between
two animals, such as grooming in primates and trophallaxis in ants, as
well as more general contact such as group membership and
spatial proximity.

There are 114 non-human primate social networks in the ASNR,
including 60 grooming networks, 31 spatial proximity networks,
10 mating networks, and 13 networks with other contact types. Most
sampled populations are free-ranging (84), with some captive (18)
and some semi-freeranging (7) populations, as well as five
populations for which the type was not recorded. There are
99 catarrhine primate networks, 13 platyrrhine networks, and
2 strepsirrhine networks. Sampling of the different contrasts
represented in the ASNR is thus somewhat unbalanced but
reflects the sampling effort present in the literature.

To test our hypothesis we require that, to the best extent
possible, the edges represent prosocial contacts between
individuals. Other contact types, such as dominance or mating,
may reflect motives that are not relevant to the spread of cooperative

behaviors, and proximity-based networks may reflect individuals
who are co-located by chance or interest in a common resource
rather than for social interaction. We therefore used the ASNR
networks with the interaction types labeled “grooming,” “physical
contact,” and “overall mix”; the “overall mix” category captures one
additional network that recorded grooming behavior. We thus
obtained 67 possible networks, which we regarded as undirected
weighted networks.

Thirteen out of the 67 networks yielded negative (b/c)* values,
which imply that spiteful behavior evolves instead of cooperation
(Allen et al., 2017; Su et al., 2022). We discarded these networks
because we are interested in cooperation under social dilemma
situations, and because the qualitatively different interpretation of
a unit change for (b/c)* values above and below zero (i.e., a unit
change in the positive direction below zero means that spite evolves
more easily, whereas a similar change above zero means that
cooperation evolves less easily) violates regression modeling
assumptions. Additionally, we discarded one network that was
composed of two disconnected dyads and used the remaining
53 connected networks for our analysis. Most species had a
single network in the repository. The exceptions were Papio
cynocephalus (which had 23 networks), Macaca fascicularis (2),
M. fuscata (4), M. mulatta (9), and M. radiata (2). For these
species we computed the median of the (b/c)* and network-based
explanatory variable (explained in Section 2.3) values; we used these
values in further analysis to prevent a few species, such as P.
cynocephalus and M. mulatta, from dominating the set of
networks to be analyzed. In this manner, we reduced the
53 networks to observations on 17 species for further
analysis (Table 1).

We used the species-level neocortex ratio (NCR) estimate from
Kudo and Dunbar (2001) for all but one species, Colobus guereza; a
species-level NCR estimate was not available in Kudo and Dunbar
(2001), so we used the genus-level NCR estimate from Dunbar
(1992). Additionally, we used the brain mass data from Smaers et al.
(2021) for all species except Papio papio, for which the data is not
present. For Papio papio, we used the data of the closely related
species P. cynocephalus (Newman et al., 2004). Because the size of
several regions of the brain may correlate with social complexity
(Bickart et al., 2011; Lewis et al., 2011; Kanai et al., 2012), we
included overall brain mass as a relatively simple measure, when
compared to the NCR, of species’ neurological complexity
(DeCasien et al., 2017) that may also correlate with sociality
(Smaers et al., 2019). These two measures (i.e., brain mass and
NCR) are highly correlated with each other (see Section 3). Given
the unbalanced sampling mentioned above, we did not include
controls for phylogeny, social system, foraging behavior, whether
the group was free-ranging or captive, or type of behavior captured
by the network. See Section 4 for further discussion of this
limitation.

2.3 Analysis

Data analysis was conducted in R (R Core Team, 2022); the code
is available at https://github.com/ngmaclaren/cooperation-
threshold. We used the “MuMIn” package (Bartoń, 2022) to
implement the model selection procedure described below.
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We fitted generalized linear models (GLMs) to test whether
NCR and other variables were associated with the difficulty of
cooperation, (b/c)*, which we used as the dependent variable. We
considered seven explanatory variables: NCR, brain mass in grams,
and five network indices. The five network indices are the number of
nodes in the network, denoted by N, the average degree over the N
nodes, 〈k〉, the average node strength (i.e., the average of the
weighted degree over the N nodes), 〈s〉, the clustering coefficient,
C, and the weighted clustering coefficient, ~Cw. The clustering
coefficient is the average over all nodes of the local clustering
coefficient; the local clustering coefficient for the ith node is the
number of triangles (i.e., (i, i′), (i, i″), and (i′, i″) are edges of the
network) divided by the number of possible triangles involving the
ith node (i.e., ki(ki − 1)/2, where ki is the node i’s degree)
(Wasserman and Faust, 1994; Newman, 2018). The weighted
clustering coefficient is calculated similarly to the unweighted
version except that it uses the geometric mean of the edge
weights instead of a count of edges (Fagiolo, 2007). We include
these network indices because each of these indices can affect (b/c)*
regardless of the potential relationship between brain size and (b/c)*
(Allen et al., 2017). Because brain mass, body mass, 〈s〉, and ~Cw are
positive and obey right-skewed distributions, we used the natural
logarithm transform of each of these variables.

We began our modeling process from a position of relative
ignorance, including these seven explanatory variables as predictors.
By design, our outcome variable, (b/c)*, is positive and continuous,
suggesting a model with gamma-distributed errors. To test our
choice, we built five different models, each with all seven

explanatory variables, with different error models and link
functions (i.e., gamma and Gaussian distributions with both
inverse and log links, and a quasi-Poisson model) and calculated
the deviances of each (Faraway, 2016). As expected, the gamma
models fit well (χ2 test with d.f. = 8; p = 0.968 and 0.991 for the
inverse and log links, respectively), whereas the other models did not
(p ≤ 0.001 for each). The residual deviances associated with both
gamma-based models are small (inverse link: 2.90, log link: 2.01)
relative to the remaining models (quasi-Poisson: 27.61, Gaussian
inverse link: 236.09, Gaussian log link: 374.50), further suggesting
good fit (Faraway, 2016). Because the model with gamma-
distributed errors and the log link had the minimum residual
deviance, we used that model for further analysis (Faraway, 2016).

The number of explanatory variables (i.e., seven) is relatively
large given the number of observations (i.e., 17). Therefore, we ran
an AIC-based model selection, as follows. First, we evaluated all
possible models—excluding any model with both brain mass and
NCR as predictor variables—and calculated the AICc for each
model. AICc is a modification of the Akaike Information
Criterion (AIC) that is preferred for model selection when data
sets are relatively small (Burnham and Anderson, 2002). Specifically,
AICc is defined as AIC+(2k2 + 2k)/(n − k − 1), where k is the degrees
of freedom of the model and n is the number of observations. When
n is small, AICc values increase more with each additional model
parameter than the traditional AIC does; the difference between the
twometrics becomes small when n is large. Model selection based on
AICc thus tends to support fewer model parameters at small n than
traditional AIC. A recommended rule is to use AICc when n/k < 40

TABLE 1 Properties of primate social networks returned by our selection procedures, sorted by (b/c)*. Values are medians of all the networks for Papio
cynocephalus,Macaca fasicularis,M. fuscata,M.mulatta, andM. radiata. NCR: neocortex ratio,N: number of nodes, 〈k〉: average node degree, 〈s〉: average
node strength, C: clustering coefficient, ~Cw: weighted clustering coefficient.

Species (b/c)* Neocortex ratio Brain mass N 〈k〉 〈s〉 C ~Cw

Sapajus apella 12.59 2.25 66.63 12 7.17 7.17 0.69 0.08

Macaca arctoides 18.63 2.43 100.7 20 10.62 17.13 0.62 0.08

Cercopithecus campbelli 34.46 2.21 57.39 15 7.87 7.87 0.66 0.05

Papio cynocephalus 4.30 2.68 163.19 11 2.56 3.56 0.16 0.07

Macaca fascicularis 2.18 2.6 63.98 10.5 3.86 5.89 0.35 0.02

Macaca fuscata 12.98 2.45 102.92 9 6.52 92.53 0.91 0.06

Ateles geoffroyi 10.02 2.35 105.09 15 6 6 0.53 0.09

Colobus guereza 8.76 2.32 74.39 8 4.5 4.5 0.59 0.10

Ateles hybridus 11.81 2.35 103.05 17 8.47 794.47 0.81 0.09

Macaca mulatta 8.10 2.6 88.98 78 14.3 41.33 0.29 0.02

Pan paniscus 5.04 3.22 341.29 19 5.79 5.79 0.46 0.06

Papio papio 4.88 2.76 163.19 25 7.76 7.76 0.41 0.03

Erythrocebus patas 8.13 2.96 97.73 19 5.16 5.16 0.56 0.07

Macaca radiata 28.22 2.28 74.87 18 9.86 15.74 0.70 0.11

Macaca sylvanus 3.08 2.37 93.2 8 7 26.97 1 0.02

Macaca tonkeana 24.12 2.6 93.7 25 14.48 14.48 0.62 0.07

Pan troglodytes 11.42 3.22 368.35 24 8.58 8.58 0.65 0.08
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(Burnham and Anderson, 2002); for a model in this study with three
predictor variables, an intercept, and an error parameter, we obtain
n/k = 17/5 = 3.4 ≪ 40. We sorted all evaluated models by AICc: the
models with minimal AICc values realize the best fit to the data with
the fewest variables.

3 Results

We show the sorted AICc values for all 96 models which met our
initial selection criteria in Figure 2. Figure 2 shows that the best and
second-best models are fairly similar in terms of AICc, but the third-
best model has somewhat poorer AICc. Setting a cutoff at ΔAICc =
3, where ΔAICc means the absolute difference in the AICc value
relative to the smallest value, allows us to focus on two models that
are similar in terms of AICc but clearly better than any other
alternatives. We summarize these two models in Table 2. These
two models are superior to the full model in terms of AICc (full
model AICc: 132.39, Model 1: 106.91, Model 2: 108.01) and
collinearity (maximum variance inflation factor for the full
model: 5.08, Model 1: 1.03, Model 2: 1.02) without a substantial
reduction in variance explained (full model McFadden’s pseudo-R2:
0.77, Model 1: 0.73, Model 2: 0.72).

The two best models both include a measure of brain
size—overall brain mass in Model 1 and NCR in Model 2—and
two network features: average node degree 〈k〉 and the weighted
clustering coefficient ~Cw (Table 2). As is expected given the
correlation between brain mass and NCR in this data (r = 0.843,
mentioned above), coefficient estimates for the two models are
similar: the coefficients on both brain size variables are both

negative, whereas the coefficients on average node degree and
weighted clustering are positive. Thus, we find that, when
average degree and weighted clustering are held constant, brain
size is inversely associated with (b/c)* in this data: primates with
larger brains are associated with social networks that favor the
spread of cooperation. We visualize the association between NCR
and (b/c)*, controlling for average degree and weighted clustering,
in Figure 3.

Although overall trends in the data support the social brain
hypothesis, there is substantial uncertainty in the coefficient
estimates (see Table 2). We visualize this uncertainty in Figure 4,
which shows the point estimate for each coefficient (open markers)
in both models (indicated by color and marker shape) along with the
profile likelihood 95% confidence intervals (horizontal lines). The
confidence intervals are all relatively wide compared with the
magnitude of the coefficient, suggesting that the size and
noisiness of our data inhibit our ability to make precise estimates
of the relationship between brain size and (b/c)*.

Finally, we note that neither of the best two models has more than
three explanatory variables, suggesting that adding more explanatory
variables would not be useful in better explaining (b/c)* across the
different networks. This observation indicates that our data do not
support differentiating between the effects of brain mass and neocortex
ratio by, for example, including one as a control on the other in a

FIGURE 2
Akaike Information Criterion adjusted for small samples (AICc) for
all possible models. Possible models are generalized linear models
with gamma-distributed errors, a natural logarithm link function, and
zero or more of the following explanatory variables: neocortex
ratio, brain size, number of nodes, average node degree, average node
strength, clustering coefficient, and weighted clustering coefficient.

TABLE 2 The best two models, i.e., the models with ΔAICc <3. The
dependent variable is (b/c)*. All models are generalized linear models with
gamma-distributed errors and a natural logarithm link. A negative
coefficient indicates that a larger value of the predictor is associated with a
smaller value of (b/c)*, suggesting that cooperation spreads more easily on
a network. SE stands for the standard error; CI stands for confidence
interval; 〈k〉 and ~Cw represent average degree and the weighted clustering
coefficient, respectively.

95% CI

Model 1 Estimate SE Lower Upper

Intercept 6.398 1.503 3.469 9.277

Brain mass −0.522 0.256 −0.958 −0.051

〈k〉 0.138 0.041 0.050 0.230

~Cw 0.944 0.243 0.390 1.460

AICc 106.910

Deviance 2.353

Pseudo-R2 0.73

95% CI

Model 2 Estimate SE Lower Upper

Intercept 5.809 1.329 3.134 8.479

Neocortex ratio −0.827 0.437 −1.590 −0.010

〈k〉 0.135 0.042 0.048 0.228

~Cw 0.844 0.249 0.281 1.361

AICc 108.010

Deviance 2.507

Pseudo-R2 0.72
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regression model. The failure of group size N to appear in the best
models is also notable, which we discuss in Section 4. This finding
suggests that the relationship between brain size and the spread of

cooperative behavior may be independent of group size. Finally, neither
the average weighted degree 〈s〉 nor the unweighted clustering
coefficient C appeared in the five best models.

4 Discussion

Our findings suggest that primate species with larger brains tend
to form networks which, based on results from game theory (Allen
et al., 2017), support the spread of cooperative behaviors. Thus, our
primary results are consistent with the social brain hypothesis. Our
results are also consistent with previous findings on the effect of
network structure on cooperation in primates (Voelkl and
Kasper, 2009).

Group size and NCR are only weakly correlated with each other
in our data (r = 0.203). This result is only marginally consistent with
previous studies, which showed a strong association between group
size, which has been used as a proxy for social complexity (Dunbar
and Shultz, 2017), and NCR; this association is a central result
supporting the social brain hypothesis (Dunbar and Shultz, 2021). A
weak association between group size and NCR in our data may be
due to different definitions of the group size used in our study and
the previous ones. The group size used in this study is the observed
number of individuals in a single group. That group was captive in
some studies, and there may be other constraints on the observed
group size in a particular study that may make the group size value
different from what may be typical in wild populations. This
difference may have depressed the relationship between group
size and the NCR, and also the relationship between group size
and cooperation in the present study. Alternatively, we note that

FIGURE 3
Threshold for cooperation, (b/c)*, as a function of the neocortex
ratio. Each circle represents a primate species. The solid line
represents the predicted (b/c)* given median values for average
degree and weighted clustering coefficient. The dotted lines
indicate twice the standard error of prediction.

FIGURE 4
Coefficient estimates for the two models with ΔAICc <3. Both models are generalized linear models with gamma-distributed errors and a natural
logarithm link function and express the association beteween three explanatory variables and (b/c)*. Each model is represented by a different color and
type of marker. The markers represent the coefficient values. The lines represent the profile likelihood 95% confidence intervals.

Frontiers in Complex Systems frontiersin.org07

MacLaren et al. 10.3389/fcpxs.2023.1344094

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2023.1344094


primate groups may form for a variety of reasons, such as protection
from predators, which neither relate specifically to cooperation nor
necessarily indicate an increased cognitive demand on group
members. By including group size as a potential predictor of the
cooperation threshold, we hypothesized that groups with larger size
will have consistent differences in their cooperation threshold from
groups of smaller size. We found that this is not the case within the
limits of our analysis. Thus, our present findings are orthogonal to
previous tests of the social brain hypothesis.

Our data indicate a notable level of uncertainty in the observed
trends. An important reason for this uncertainty is the relatively
small sample size of our final data set. Additionally, as we described
in Section 2, our models do not control for a variety of factors, such
as phylogeny and study design. Omitting these variables might
account for some of our reported error variance. However, these
factors are represented in a very uneven way in the primate networks
available in the ASNR, limiting our ability to control for them in our
models in a meaningful way. For example, of the 17 species in our
final data set, 11 are cercopithecine primates and of those, seven are
macaques. No lemur or other strepsirrhine species are represented at
all. The situation is even more extreme in the data set prior to
aggregation to the species level, in which 44 of the 53 networks came
from two cercopithecine genera: Papio (23) andMacaca (21). Thus,
although the phylogenetic signal in group size and related variables
has been previously shown to be relatively weak (Kamilar and
Cooper, 2013), we are limited in our ability to control for
phylogenetic effects that may be present in our model. We face a
similar situation in attempting to control for study design, which can
affect the structure of observed networks (Collier et al., 2022): in our
data, most groups were sampled according to social group
membership, none were sampled according to a geographic area,
and the only captive groups were 10 of the 21 macaque networks.
Finally, some uncertainty in our estimates may be due to the brain
mass and NCRmeasurements themselves, which are difficult to obtain
and thus not based on large samples of individuals nor available for all
species (Stephan et al., 1981). Because of these conditions, we have
chosen to simplify our model to accommodate a small sample
(Matuschek et al., 2017), rather than take a maximal approach,
with which we would include as many theoretically important
variables in the model as possible (Barr et al., 2013; McElreath,
2016). We recognize that our decisions reduce both the sample size
and the potential generalizability of our study (Yarkoni, 2022).
Additional data from species more evenly spread across primate
taxa will help address these concerns, as well as support mediation
analysis to better test between competing causal hypotheses.

From a theoretical perspective, our work is also limited by the
assumptions made by Allen et al.’s theory (Allen et al., 2017).
Specifically, their theory assumes fixed, undirected networks and
binary strategies (i.e., cooperation or defection). Such assumptions
do not realistically represent primate social networks, which may be
dynamic, have asymmetric ties (i.e., individual A grooms individual
B more than the reverse), and be characterized by complex
behavioral strategies. This lack of an explicit connection between
models and reality has been recognized as a major challenge in
evolutionary game theory (Jusup et al., 2022). The strength of Allen
et al.’s results and others is in providing insight into the general
mechanisms of the evolution of cooperation (Akçay, 2020). Our
study addresses this gap by showing that predictions from the social

brain hypothesis, based on observations, are in line with those from
evolutionary game theory.

Despite these caveats, the present results allow us to make
several additional observations. For example, we observe that
cooperation spreads less easily on networks in which individuals
tend to have many social partners (i.e., large average degree) or
tend to form clusters (i.e., connected triangles). While the former
observation agrees with the literature (Ohtsuki et al., 2006; Allen
et al., 2017), the latter is apparently inconsistent with the concept
of spatial reciprocity, which states that high clustering in
networks promotes cooperation (Nowak and May, 1992;
Hauert, 2001; Nowak, 2006a). In fact, results supporting
spatial reciprocity have been derived for the fraction of
cooperators in the quasi-stationary state of evolutionary
dynamics in relatively large networks rather than the fixation
probability for the cooperator strategy; we examined the latter
quantity in this study. The effect of clustering on the fixation
probability for cooperation is not systematically known. For
example, some numerical simulations suggest that clustering,
which is present in most empirical networks, does not facilitate
the fixation of cooperation (Ohtsuki et al., 2006; Wu et al., 2014).
Therefore, our results are in fact not contradictory to the known
results for spatial reciprocity, and fixation of cooperation in
clustered networks remains to be investigated.

Cooperative group living is often advantageous in the animal
kingdom because it can provide protection from predators and
increase the efficiency of foraging tactics (Alexander, 1974; Kappeler
and Van Schaik, 2006). However, one of the most commonly cited
disadvantages to cooperative group living is the increase in disease
transmission potential (Alexander, 1974; Freeland, 1976). In fact,
previous work suggests that the average degree is the most important
aspect of network structure in determining the transmission
potential for pathogens on a network (Collier et al., 2022). Our
results show that average degree is negatively associated with the
evolution of cooperation, a finding supported by previous theoretical
work (Ohtsuki et al., 2006). Given that small average degrees are
beneficial for both enhancing cooperation and reducing pathogen
transmission opportunity, cooperation and protection against
disease transmission potential might have coevolved through a
decrease in the average degree of social networks. Maintaining
contacts is also costly for individuals. However, a large average
degree helps robustness of networks against node and edge failures
(Cohen and Havlin, 2010; Brask et al., 2021). We may be able to
further discussion of the evolution of network structure and social
brain hypotheses by simultaneously taking into account multiple
functions of animal society such as cooperation, protection against
infection, robustness, and communication efficiency.

The present work also opens avenues for further work to explore
the intersection between the social brain hypothesis, networks, and
cooperation. For example, most of the social networks in our sample
are grooming networks. However, network structure may vary
according to the type of prosocial contact even for the same
species of animals (Collier et al., 2022). It is not currently known
if differences in network structure associated with different
behaviors also reflect differences in the spread of cooperation or
other indices of social complexity. Furthermore, the spread of spite
on ostensibly prosocial networks is an important possibility, but
insufficiently characterized. Although further comparative work
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along these lines is currently limited by available data (Sah et al., 2019),
various technological and algorithmic developments of automatic data
collection (Krause et al., 2013; Brask et al., 2021) are expected to allow us
to access more data and explore these topics in the near future.
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