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We survey the coevolutionary dynamics of network topology and group
interactions in opinion formation, grounded on a coevolving nonlinear voter
model. The coevolving nonlinear voter model incorporates two mechanisms:
group interactions implemented through nonlinearity in the voter model and
network plasticity demonstrated as the rewiring of links to remove connections
between nodes in different opinions. We show that the role of group interactions,
implemented by the nonlinearity can significantly impact both the dynamical
outcomes of nodes’ state and the network topology. Additionally, we review
several variants of the coevolving nonlinear voter model considering different
rewiring mechanisms, noise of flipping nodes’ state, and multilayer structures. We
portray the various aspects of the coevolving nonlinear votermodel as an example
of network coevolution driven by group interactions, and finally, present the
implications and potential directions for future research.
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1 Introduction

The structures of complex networks that govern interactions between individuals have
an essential impact on the dynamics of those agents (Boccaletti et al., 2006; Newman, 2018).
The network structures not only affect the dynamical processes taking place within the
system, but they themselves also evolve under the influence of individual states (Dorogovtsev
and Mendes, 2002; Holme and Saramäki, 2012). In this regards, the integration of the
dynamics of individual states and network structures has received much attention from
physics, social science, and network science communities (Zimmermann et al., 2001;
Zimmermann et al., 2004; Gross et al., 2006; Holme and Newman, 2006; Gross and
Blasius, 2008; Vazquez et al., 2008; Gross and Sayama, 2009). Researchers have explored
the coevolutionary dynamics of complex networks in various contexts by integrating the
evolution of networks’ topology and the dynamics of nodes (Gross and Sayama, 2009). There
have beenmany studies on coevolving or adaptive networks, such as coevolving voter models
(Holme and Newman, 2006; Nardini et al., 2008; Vazquez et al., 2008; Durrett et al., 2012;
Carro et al., 2014; Diakonova et al., 2014; Diakonova et al., 2015; Saeedian et al., 2019),
coevolving spin systems (Biely et al., 2009; Mandrá et al., 2009; Raducha et al., 2018a; Korbel
et al., 2023), coevolutionary opinion dynamics (Kimura and Hayakawa, 2008; Yi et al., 2013;
Liu et al., 2023), language evolution and competition (carro et al., 2016), adaptive epidemic
models (Gross et al., 2006; Shaw and Schwartz, 2008; Marceau et al., 2010; Demirel et al.,
2014; Scarpino et al., 2016; Saeedian et al., 2017; Achterberg et al., 2020; Choi andMin, 2023),
cultural evolution models (Centola et al., 2007; Vazquez et al., 2007), game theoretical
models (Ebel and Bornholdt, 2002; Eguíluz et al., 2005; Perc et al., 2013; González Casado
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et al., 2023), and biological evolutions (Drossel et al., 2001; Liu and
Bassler, 2006; Fialkowski et al., 2023). Owing to the feedback
inherent in adaptive systems where the network structure
influences the node dynamics and vice versa, these studies have
revealed intriguing properties such as the dynamical organization of
network structures and diverse phase transitions (Vazquez et al.,
2007; Vazquez et al., 2008; Yi et al., 2013; Liu et al., 2023).

The majority of existing research on coevolving networks has
largely focused on systems that change dynamically according to
pair-wise interactions (Gross et al., 2006; Holme andNewman, 2006;
Gross and Blasius, 2008; Vazquez et al., 2008; Gross and Sayama,
2009). However, in various social, neural, biological, and ecological
systems, however, group or collective interactions are commonly
observed (Schelling, 1973; Granovetter, 1978; Centola and Macy,
2007; Centola, 2010; Levine et al., 2017; Monsted et al., 2017; Min
and San Miguel, 2018a; Min and San Miguel, 2018b; Centola, 2018;
Hébert-Dufresne et al., 2020; Battiston et al., 2021) Group
interaction refers to a process where more than two nodes
participate simultaneously, rather than interactions occurring
solely between pairs (Battiston et al., 2020). Such group
interactions can either be composed of collections of pair-wise
interactions or have the form of many-body interactions that
cannot be reduced to mere pair-wise interactions (Battiston et al.,
2020; Battiston et al., 2021). Understanding the group interactions is
vital to predict and to control the behavior of complex systems
(Watts, 2002; Hébert-Dufresne et al., 2020; Battiston et al., 2021).

While these group interactions are common in reality, there is a
gap addressing the coevolutionary dynamics driven by group
interactions, pointing to the need for further examination in this
area. Despite the initial research on the coevolutionary dynamics on
networks based on group interactions for evolutionary games (Perc
et al., 2013; Alvarez-Rodriguez et al., 2021), spin models (Mandrá
et al., 2009), contagion dynamics (Lambiotte and González-Avella,
2011; Min and San Miguel, 2023), and voter models (Min and
Miguel, 2017), there remain several issues for more extensive and
thorough studies to grasp its full implications. An interesting
example of coevolutionary dynamics with group interactions
would be a coevolving nonlinear voter model (CNVM) (Min and
Miguel, 2017; Kureh and Porter, 2020). This model is an extension of
a voter model which is a well established model based on pair-wise
interactions (Holme and Newman, 2006; Vazquez et al., 2008), to
include group interactions (Castellano et al., 2009; Schweitzer and
Behera, 2009; Jędrzejewski, 2017; Peralta et al., 2018).

In this review article, we explore the dynamical consequences of
the CNVM as a case study of combining group interactions and
coevolutionary dynamics. We begin with the background of the
CNVM, review its fundamental results, and also explore several
variants of the model (Raducha et al., 2018b; Min and Miguel, 2019;
Jędrzejewski et al., 2020; Raducha and SanMiguel, 2020). This paper
aims to provide an example for analyzing the effect of group
interactions in coevolving networks and deepens our
understanding within the broader landscape of coevolutionary
dynamics.

The paper is organized as follows. First, as a benchmark for
comparison, we introduce the coevolving voter model with pair-wise
interactions in Sec. II. Next, we present the coevolving “nonlinear”
voter model encoded with group interactions, outlining its
fundamental results in Sec. III. We then sequentially introduce

several variants of this model with incorporating triadic closure,
rewire-to-random mechanism, noise, and multilayer coevolution in
Sec. IV. Finally, summary and outlook are presented in Sec. V.

2 Coevolutionary dynamics of the voter
model

The coevolving voter model is a compelling framework for
understanding the coevolution of node states and network
topology. This simple yet insightful model describes the evolution
of node states under voter dynamics and the concurrent
reorganization of the network through link rewiring (Vazquez
et al., 2008). That is, unlike the classical voter model that
assumes static connections among individuals, the coevolving
voter model takes into account the change of social ties under
the influence of the state of nodes.

The coevolving voter model consists of two dynamical processes:
copying and rewiring (Holme and Newman, 2006; Vazquez et al.,
2008; Durrett et al., 2012). A node can adopt the opinion of one of its
neighbors chosen randomly. Concurrently, the connections between
voters can be rewired, depending on the agreement or disagreement
of states between two connected voters. The specific rule of the
coevolving voter model is as follows: Initially, each node can be one
of two states, called up or down, on a network. In this paper, we
denote the state of node i as σi, and thus σi ∈ {−1, 1} where −1 and 1,
respectively corresponds to down and up state. At each update step,
we choose one node, say i, at random. Then with a complementary
probability 1 − p, node i copies the state of one of its neighbors, for
instance j, that is selected at random. With a probability p, if the
states of node i and j are different, node i cuts its connection to node j
and establishes a new connection to a node that has the “same” state
with node i. The procedures continue until the system reaches a
steady state.

The parameter p, called as network plasticity, represents the
ratio between the link rewiring and copying processes, thereby
determining the time scale between them. Depending on the
value of p, there are two distinct phases, an active to a frozen
phases, in the steady state. At a critical point pc, the generic
absorbing phase transition occurs from the active to the frozen
phase (Vazquez et al., 2008). The active phase corresponds to a
connected network at a steady state in the thermodynamic limit, and
is characterized by a non-zero density of active links. On the other
hand, the frozen phase corresponds to a fragmented network where
each component is in a consensus state. The fragmentation
transition between active and fragmented phases is a peculiar
characteristic of the coevolving voter model.

3 Coevolving nonlinear voter model

The coevolving voter model provides an important insight into
many interesting phenomena, such as polarization or consensus in
society (Vazquez et al., 2008) and language competition (carro et al.,
2016). In addition, there have been many variants of the coevolving
voter model for more realistic modeling, i.e., incorporating noise in
the flipping of opinions (Diakonova et al., 2015), multilayer
coevolution (Diakonova et al., 2014; Klimek et al., 2016), and
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signed interactions (Saeedian et al., 2019). Along the studies on the
coevolving voter models, it is steadily assumed that the dynamical
processes are governed by dyadic interactions where the state of a
node or network topology change based on the influence of pairs
(Carro et al., 2014; Diakonova et al., 2014; Diakonova et al., 2015;
Saeedian et al., 2019). However, this simple approach fails to capture
the complexity of real-world social dynamics where multiple agents
collectively influence an individual (Schelling, 1973; Granovetter,
1978; Centola, 2010; Levine et al., 2017; Monsted et al., 2017;
Battiston et al., 2021). This suggests that an agent engages in
“nonlinear” interactions with its neighbors, to implement group
interactions in the voter model (Castellano et al., 2009; Schweitzer
and Behera, 2009; Peralta et al., 2018).

To address the limitations of pairwise interactions in coevolving
voter models, a coevolving nonlinear voter model that combines
evolutionary dynamics of networks with nonlinear interactions
between agents was proposed (Min and Miguel, 2017). The
CNVM is an extension on coevolving networks of a nonlinear
voter model (Castellano et al., 2009; Nyczka et al., 2012; Mobilia,
2015; Peralta et al., 2018). The dynamical rules of the CNVM are as
follows (Figure 1). At each time step, we choose a node, say i, at
random. Next, we measure the fraction πi of active links of node i to
its degree as

πi � ai
ki
, (1)

where ai represents the number of active links of node i. Here, active
links means links that connect a pair of two nodes with different
opinions.We then choose at random an active link to a neighbor, say
j with a probability, πq

i , where q is the degree of nonlinearity. And,
with the complementary probability 1 − πq

i , nothing happens. Upon
selecting nodes i and j, we proceed coevolutionary dynamics with
network plasticity p. Specifically, with a probability p, node i
disconnects its link to j and establishes a new link with another
node that shares the same opinion as node i. Conversely, with a
probability of 1 − p, node i changes its state to imitate the state of
node j. This process continues until the system reaches an active

steady state or an absorbing state. Note that the network structure
changes over time while maintaining a constant link density of
network, that is a constant average degree 〈k〉.

In the CNVM, there are two important parameters: network
plasticity p and nonlinearity q. The network plasticity p represents
the rate of link rewiring. The degree of nonlinearity q is a parameter
newly introduced in the CNVM to represent group interactions. To
understand the role of this parameter, consider the following
scenario. Suppose a voter, rather than asking a single neighbor,
inquires about the opinions of multiple neighbors, specifically q
neighbors. And, if all these q neighbors have the same opinion, then
the voter does change its opinion. To be more precise, our model
corresponds to the scenario when a voter randomly chooses one out
of the neighbors q times, allowing repetition. If we mathematically
describe it, we arrive at the introduced term πqi . Unlike the ordinary
voter model, it reflects group interactions because it requires
convergence of the opinions of multiple neighbors.

Let us examine the effect of q qualitatively. For the linear case,
when q = 1, it corresponds to selecting an active link randomly,
which is exactly the same as the ordinary coevolving voter model. If
q > 1, the ratio between the probability of following the majority
opinion and minority opinion among neighbors is higher compared
to the linear voter model. Conversely, when q < 1, the probability of
following with the minority opinion becomes relatively higher. The
empirical evidences of the nonlinear interactions can be found in
social impact theory (Nowak et al., 1990), language competition, and
extinction (Nettle, 1999; Abrams and Strogatz, 2003). While it is
observed that q < 1 in social impact theory (Nowak et al., 1990) and
language evolution (Nettle, 1999), it was found to q = 1.3 in language
extinction processes (Abrams and Strogatz, 2003).

Introducing the nonlinearity q as an additional dimension, the
CNVM exhibits a rich variety of phenomena. As shown in
Figure 2A, depending on the values of network plasticity p and
nonlinearity q, there are three possible phases that can reach in the
steady state: consensus, fragmentation, and coexistence. In the
consensus phase, all nodes arrive at the same state, either up or
down. This is an absorbing state, meaning that once reached the

FIGURE 1
Schematic illustration of dynamical rules of the coevolving nonlinear voter model. Nodes are either up (red circle) or down (blue square). Dashed
lines are active links while solid ones represent inactive links. At each step, we randomly select node i, then a neighbor j connected through an active link
with probability (aiki)q, where ai is the number of active links. With probability p, node i removes its connection with j and forms a new link with a node that
has the same opinion as i. On the other hand, with probability 1− p node i changes its state to imitate that of node j.
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system remains in this phase permanently. The fragmentation
phase, on the other hand, represents a situation where a network
breaks into multiple components of localized consensus. In this
phase, agents within a particular component share the same opinion,
but this opinion may differ from component to component. Finally,
the coexistence phase is characterized by the persistent presence of
both opinions throughout the system without the formation of
disconnected components. This phase is a dynamically active
state where two different opinions exist in the same component
and continuously interact each other.

The three phases can be characterized by the quantities: the size
of the largest component S, the absolute value of magnetization |m|,
and the density of active links ρ. The magnetization m refers to the
average value of the state of nodes, defined by

m � 1
N

∑
i

σ i, (2)

whereN is the total number of nodes and σi ∈ {−1, 1}. The consensus
phase corresponds to (S, |m|, ρ) ≈ (1, 1, 0) since there is a single
component with the same state of nodes. The fragmentation phases
corresponds to (1/2, 0, 0), meaning that there are two separated
components where agents within a component share the same

opinion. Finally, the dynamically active coexistence phase is
characterized by (1, 0, ρ*) where ρ* is a finite value of density of
active links. In the coexistence phase, nodes with opposite opinions
exist in the same component. Here we assume that the dynamics
starts from neutral magnetization, m = 0.

The CNVM shows a fragmentation transition between
connected and disconnected networks but with different
mechanisms depending on the nonlinearity q. The transitions
to fragmentation with increasing p are qualitatively illustrated in
Figure 2B, which shows the transitions from consensus to
fragmentation phases for q = 2, and in Figure 2C, which
shows the transition from coexistence to fragmentation phases
for q = 0.5. Figures 2 (D, E) shows the numerical results for the
characteristics of phase transitions for (a) q = 2 and (b) q = 0.5.
The size of the largest component S, absolute value of
magnetization |m|, and the density of active links ρ* at the
steady state are shown together. For q > 1 there is a transition
between consensus and fragmentation phases as shown in
Figure 2D for q = 2. Since the transition occurs between two
absorbing states, it is different from the continuous absorbing
transition observed in the coevolving linear voter model.
However, for q < 1 the system undergoes a continuous

FIGURE 2
(A) Phase diagram of the CNVM with respect to p and q contains consensus, coexistence, and fragmentation phases. The diagram was obtained
numerically from degree regular networks with 〈k〉= 8,N= 104, and initially neural magnetizationm=0. (B,C) Schematic illustrations of phase transitions:
(B) transitions from consensus to fragmentation phases for q=2 and (C) transitions from coexistence to fragmentation phases for q=0.5. (D,E)Numerical
results of the size of the largest component S, the absolute value of magnetization |m|, and the density of active links ρ as a function of p are shown
together: (D) q = 2 and (E) q = 0.5, on degree regular networks with 〈k〉 = 8, N = 104, and initially neural magnetization m = 0.
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transition between a dynamically active phase and a
fragmentation phase [Figure 2E], similar to the linear case.

The behaviors of the CNVM can be understood by the coupled
differential equations of the magnetization m and density of active
links ρ. Based on the pair approximation, the coupled equations on a
random network with average degree 〈k〉 can be derived as (Min
and Miguel, 2017).

dm

dt
� 2 1 − p( ) −n+ ρ

2n+
( )

q

+ n−
ρ

2n−
( )

q

[ ], (3)

dρ

dt
� 2
〈k〉 −p n+

ρ

2n+
( )

q

+ n−
ρ

2n−
( )

q

[ ]{
+ 1 − p( ) n+

ρ

2n+
( )

q

〈k〉 − 2q − 2 〈k〉 − q( ) ρ

2n+
( )[

+n− ρ

2n−
( )

q

〈k〉 − 2q − 2 〈k〉 − q( ) ρ

2n−
( )]}, (4)

where n+ = (1 + m)/2 and n− = (1 − m)/2. In this approximation, a
homogeneous structure of networks is assumed. The rationale of
each term in the equations is following. If we select node iwith state s
where s ∈ { + 1, − 1}, the probability that its connected neighbor has a
different state can be estimated by ρ/(2ns), where ns stands for the
fraction of nodes in state s and s can be either +1 or −1. In addition, if
node i in state s is selected for an update to be a different state with a
probability of [ρ/(2ns)]q, then it is estimated that q of its neighbors
are in a different state. Thus, the remaining neighbors, denoted as
〈k〉 − q, will have a different state with a probability of ρ/(2ns) (Min
and Miguel, 2017).

The coupled equations based on the pair approximation provide
a phenomenological explanation for the phases and phase
transitions observed in the CNVM model (Min and Miguel,
2017). Based on the approximation, the transition point pc is
predicted as

pc � 〈k〉 − 2q
1 + 〈k〉 − 2q

. (5)

For p > pc, the fragmented phase (m, ρ) = (0, 0) is a stable solution
across all q values. On the other hand, for p < pc, the system shows a
dynamic active phase or an absorbing phase with a connected
network structure, depending on the value of q. When q < 1, the
solution (0, ρ*) becomes stable, suggesting a dynamically active
phase. Conversely, when q > 1 the solutions (−1, 0) and (1,0) become
stable, indicating an absorbing consensus phase.

4 Variants of coevolving nonlinear voter
model

The “nonlinearity” in the CNVM model offers the group
interactions that governs the change of state and network
structure, beyond pair-wise interactions. For more realistic
approaches, there have been several extensions in the CNVM.
Among the generalized models, we focus on the effect of the
triadic closure, rewire-to-random mechanism, noise, and
multilayer coevolution. Triadic closure stands for the mechanism
forming new connections with the neighbors of one’s neighbors, a
departure from the standard random rewiring approach. Next, we
discuss the difference between the rewire-to-same and rewire-to-

random mechanism when we find a new neighbor during link
rewiring. Noise in the CNVM means that individuals can
randomly flip their opinions, irrespective of their neighbors’
states, introducing an unpredictable element to the dynamics.
Finally, multilayer coevolution represents the coevolutionary
dynamics within networks composed of multiple layers,
examining how interactions between layers affect the dynamical
consequences. In the following sections, we discuss the variations of
the CNVM focusing on the difference to the ordinary CNVM.

4.1 Coevolving nonlinear voter model with
triadic closures

It is common in social systems to form ties locally when
seeking new connections (Newman and Park, 2003; Lee et al.,
2010; Klimek and Thurner, 2013). Triadic closure is aptly
captured by the local evolution of network structures. In other
words, when individuals are on the look for new connections,
they tend to connect with the neighbors of their current
neighbors, to form a triangle. A natural and straightforward
extension of the CNVM is to implement this triadic closure
mechanism in link rewiring (Raducha et al., 2018b).
Specifically, a node attempts to find a new neighbor among
the neighbors of their current neighbors during link rewiring
(Malik et al., 2016; Raducha et al., 2018b). This rewiring pattern
reflects many real-world networks, especially social networks
where acquaintances of acquaintances often become directly
connected (Newman and Park, 2003; Lee et al., 2010).

A peculiar phenomenon with triadic closures compared to
the CNVM is a shattered phase, which appears when q < 1 and p <
pc (Raducha et al., 2018b). In this phase, the system remains an
active phase with zero magnetization, |m| = 0, like the coexistence
phase in the CNVM. However, the structure of networks consists
of a large active component alongside numerous isolated nodes,
so called shattered phase. It implies for q < 1 with triadic closure
that as p decreases a network, initially characterized by two
separated components with opposite opinions, evolves into
many isolated nodes and an active component, so called a
shattering transition. In addition, the clustering coefficient
shows values that are not close to zero, while it consistently
approaches zero for all parameter sets for random link rewiring
in the ordinary CNVM.

4.2 Coevolving nonlinear voter model with
rewire-to-random mechanism

In the CNVM, when searching for new neighbors through
rewiring, a new link is established with a neighbor in the same
state. However, in real-world social systems, one may not precisely
identify the opinions or states of other agents. Therefore, it may be
natural to rewire with any random node from the entire network,
regardless of its state (Durrett et al., 2012; Jędrzejewski et al., 2020).
The specific model is as follows: A node i is randomly selected, and
its state or link is changed depending on the nonlinearity q, similar
to the previous model. However, when rewiring, a new neighbor is
randomly chosen from the entire network, irrespective of its current
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state. Therefore with the modification a newly connected neighbor
can have a different opinion.

The effect of the rewire-to-randommechanism was examined
using the pair approximation and numerical simulations
(Jędrzejewski et al., 2020). The modified model produces two
dynamically active phases, symmetric and asymmetric, in
addition to consensus and fragmentation. The active
symmetric phase exhibits the same number of nodes in two
states, indicating no preferred state in the network.
Conversely, the active asymmetric phase shows a dominance
of nodes in one state, meaning that a majority opinion appears via
spontaneous symmetry breaking. While the symmetric active
phase appears also in the CNVM with the rewire-to-same
mechanism (Min and Miguel, 2017), the asymmetric active
phase happens exclusively with the rewire-to-random
mechanism. It implies that the nonlinearity along with the
variation can produce a new phase and phase transition, with
the slight modification in the details of the model.

4.3 Coevolving nonlinear voter model with
noise

In social systems, noise is an inescapable factor. It arises from
various aspects, such as the unpredictable nature of human interactions
and the inherent randomness in individual choices. This stochasticity
implies the possibilities to change the individual’s state irrespective of
their neighbors’ states (Diakonova et al., 2015). In this respect, the
coevolutionary dynamics combining both nonlinearity and inherent
noise was studied (Raducha and SanMiguel, 2020). In this model, each
node can change its state autonomously with a probability ϵ, in addition
to the dynamical rules of the CNVM. This probability produces a noise
in coevolutionary dynamics.

In the CNVM with noise, there are three distinct phases
similar to the original CNVM: consensus, coexistence, and
fragmentation. However, noise prevents an absorbing or
frozen state, turning the fragmentation and consensus states
into dynamical states. That is, the consensus and
fragmentation states are no longer absorbing states but
become dynamically steady states. The similar patterns are
observed in the coevolving linear voter model with noise
(Diakonova et al., 2015).

In addition, the coexistence phases can be further divided into
two distinct subclasses. In the coexistence phase for q < 1, there is a
clear divide between a fully-mixing phase and a structured
coexistence phase. The fully-mixing phase is the same phase as a
coexistence phase observed in the ordinary CNVM However, the
structured coexistence phase shows significantly lower the density of
active link due to the existence of two large communities that shows
highly homogeneous opinions internally.

In the consensus phase for q > 1, there are also two distinct
subclasses: a strong consensus where most nodes in the system
remain in the same state and an alternating consensus where the
majority opinion switches in time. When the CNVM is integrated
with noise, the resulting network structure and node states can be
highly diverse. It implies that the noise can be a source of the
diverse patterns in the structure and opinion evolution of social
networks.

4.4 Coevolving nonlinear voter models on
multilayer networks

Many real-world complex systems, from living organisms and
human societies to transportation networks and critical
infrastructures, function through multiple layers of interacting
networks (Kivelä et al., 2014; Lee et al., 2015). Additionally, the
synergy between these layers is vital to understand and control the
function of networked systems (Min et al., 2014; Min and Goh,
2014). Networks with multiple layers can also influence the opinion
dynamics, leading to emergent phenomena that can better reflect
real-world systems. Therefore, some studies have been presented
that extends the coevolutionary dynamics of opinion dynamics from
a single layer to multilayer networks (Diakonova et al., 2014; Klimek
et al., 2016; Min and Miguel, 2019).

Among these, there is a model of multilayer coevolution of the
nonlinear voter model with synchronization of nodes’ state between
different layers (Min andMiguel, 2019). In this model, at each step a
layer and a node in the chosen layer are selected at random. Let us
call it node i. Then, the coevolutionary rule is the same as the CNVM
on a single layer (Min and Miguel, 2017). In addition, if the copying
process has occurred, a node in the other layer that is interconnected
to node i via an inter-link between layers also changes its state to
become the same state as node i. This synchronization step ensures
the same state for nodes connected across different layers. In this
model, in addition to the network’s plasticity p and nonlinearity q
that already exist in the CNVM, another parameter K has been
introduced to represent the density of interlinks.

When the two layers have the same plasticity p, the
fragmentation transition occurs with a larger value of p
compared to that on a single layer. As the density of interlink K
increases, the location pc at which the fragment transition occurs
becomes delayed. It means that multiple layer structures delay and
suppress the fragmentation of networks. In addition, an asymmetric
fragmented phase for q > 1 and an active shattered phase for q < 1
appear when two layers of networks have different values of
plasticity, which does not exist in the CNVM in a single layer.
The asymmetric fragmented phase represents the both layers
undergo fragmentation but the sizes of largest components for
different layers are different each other. And, the active shattered
phase represents a state where the network becomes shattered into
many isolated nodes, but the value of magnetization remains at zero.
Such non-trivial results demonstrate that the introduction of
multiple layers can give rise to new types of complex structures
and dynamics, enriching our understanding of coevolutionary
dynamics.

5 Summary and outlook

In this paper, we have explored the coevolving nonlinear voter
models from various perspectives as a representative of
coevolutionary dynamics with group interactions. The
“nonlinearity” in the model represents an interaction where a
node engages as a group with all of its neighbors, rather than
pair-wise interactions. We have examined several variants of the
CNVM incorporating the rewiring with the triadic closure, rewire-
to-randommechanism, noise of flipping nodes’ state, and multilayer
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structures in coevolutionary dynamics. Integrating the group
interactions and the various factors, we have found a rich variety
of phases and phase transitions for both network structure and
nodes’ state.

In addition to the approach discussed in this paper, group
interactions have been studied from various contexts in network
science, such as complex contagions in social and biological systems
(Watts, 2002; Kook et al., 2021; Lee et al., 2023), cooperative epidemics
(Chen et al., 2013; Cai et al., 2015;Min and Castellano, 2020), or higher-
order representations of networked systems (Battiston et al., 2020;
Battiston et al., 2021; Majhi et al., 2022). Despite the advances in
understanding group interactions, there is a still gap in exploring group
interactions within the framework of coevolving dynamics. Therefore, it
underlines an imperative need for further research in this area, given
coevolutionary dynamics is one of the key factors in complex systems
(Bianconi et al., 2023). As a representative, the series of research related
to the CNVM can provide a guide for further studies on coevolutionary
dynamics considering diverse forms of group interactions.

Finally, we discuss a few recent advancements and future
outlook on issues that are related to coevolutionary dynamics of
group interactions. One active line of research related to group
interaction is higher-order networks (Battiston et al., 2020; Battiston
et al., 2021; Majhi et al., 2022). Therefore, a straightforward
extension of a coevolving model incorporating group interactions
is adaptive dynamics on higher-order networks such as simplicial
complexes (Horstmeyer and Kuehn, 2020) and hypergraphs
(Papanikolaou et al., 2022; Golovin et al., 2023). There are still
more topics that need further research with the CNVM including
multi-opinion versions (Shi et al., 2013), dynamics in directed links
(Zschaler et al., 2012), and aging effects (Peralta et al., 2020), to name
a few. From a broader perspective, the CNVM is a specific
realization of coevolutionary dynamics with group interactions.
The general effects of group interactions on coevolutionary
dynamics, if any, still remain an open question. The CNVM
offers a valuable framework for understanding coevolutionary
dynamics, the research of group interactions combining
coevolutionary dynamics presents vast opportunities for further
exploration and refinement.
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