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Multilayer networks have permeated all areas of science as an abstraction for
interdependent heterogeneous complex systems. However, describing such
systems through a purely graph-theoretic formalism presupposes that the
interactions that define the underlying infrastructures are only pairwise-based, a
strong assumption likely leading to oversimplification. Most interdependent
systems intrinsically involve higher-order intra- and inter-layer interactions. For
instance, ecological systems involve interactions among groups within and in-
between species, collaborations and citations link teams of coauthors to articles
and vice versa, and interactions might exist among groups of friends from different
social networks. Although higher-order interactions have been studied formonolayer
systems through the language of simplicial complexes and hypergraphs, a systematic
formalism incorporating them into the realmofmultilayer systems is still lacking. Here,
we introduce the concept of crossimplicialmulticomplexes as a general formalism for
modeling interdependent systems involving higher-order intra- and inter-layer
connections. Subsequently, we introduce cross-homology and its spectral
counterpart, the cross-Laplacian operators, to establish a rigorous mathematical
framework for quantifying global and local intra- and inter-layer topological
structures in such systems. Using synthetic and empirical datasets, we show that
the spectra of the cross-Laplacians of a multilayer network detect different types of
clusters in one layer that are controlled by hubs in another layer. We call such hubs
spectral cross-hubs and define spectral persistence as a way to rank them, according
to their emergence along the spectra. Our framework is broad and can especially be
used to study structural and functional connectomes combining connectivities of
different types and orders.
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1 Introduction

Multilayer networks (De Domenico et al., 2013; Boccaletti et al., 2014; Kivelä et al., 2014)
have emerged over the last decade as a natural instrument in modeling myriads of
heterogeneous systems. They permeate all areas of science as they provide a powerful
abstraction of real-world phenomena made of interdependent sets of units interacting with
each other through various channels. The concepts and computational methods they purvey
have been the driving force for recent progress in the understanding of many highly
sophisticated structures such as heterogeneous ecological systems (Pilosof et al., 2017;
Timóteo et al., 2018), spatiotemporal and multimodal human brain connectomes (Griffa
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et al., 2017; Mandke et al., 2018; Pedersen et al., 2018),
gene–molecule–metabolite interactions (Liu et al., 2020), and
interdisciplinary scientific collaborations (Vasilyeva et al., 2021).
This success has led to a growing interdisciplinary research
investigating fundamental properties and topological invariants in
multilayer networks.

Some of the major challenges in the analysis of a multilayer
network are to quantify the importance and interdependence among
its different components and subsystems, and describe the
topological structures of the underlying architecture to better
grasp the dynamics and information flow between its different
network layers. Various approaches extending concepts,
properties, and centrality indices from network science
(Newman, 2003; Fortunato and Hric, 2016) have been developed,
leading to tremendous results in many areas of science (Solá et al.,
2013; Boccaletti et al., 2014; Sánchez-García et al., 2014; Flores and
Romance, 2018; Timóteo et al., 2018; Wu et al., 2019; Liu et al., 2020;
Yuvaraj et al., 2021). However, these approaches assume that inter-
and intra-communications and relationships between the networks
involved in such systems rely solely on node-based interactions. The
resulting methods are, therefore, less insightful when the
infrastructure is made up of higher-order intra- and inter-
connectivities among node aggregations from different layers—as
is the case for many phenomena. For example, heterogeneous
ecosystems are made up of interactions among groups of the
same or different species, social networks often connect groups of
people belonging to different circles, and collaborations and
citations form a higher-order multilayer network made of teams
of co-authors interconnected to articles. Many recent studies have
explored higher-order interactions and structures in monolayer
networks (Benson et al., 2016; Iacopini et al., 2019; Lucas et al.,
2020; Schaub et al., 2020; Bianconi, 2021) using different languages,
such as simplicial complexes and hypergraphs (Shi et al., 2021; Young
et al., 2021; Lotito et al., 2022; Majhi et al., 2022). However, a general
mathematical formalism for modeling and studying higher-order
multilayer networks is still lacking.

Our goal in this study is twofold. First, we propose a mathematical
formalism that is rich enough to model and analyze multilayer
complex systems involving higher-order connectivities within and
in-between their subsystems. Second, we establish a unified
framework for studying topological structures in such systems. This
is performed by introducing the concepts of crossimplicial
multicomplex, cross-homology, cross-Betti vectors, and cross-
Laplacians. Before we dive deeper into these notions, we shall give
the intuition behind them by considering the simple case of an
undirected two-layered network Γ; here, Γ consists of two graphs
(V1, E1) and (V2, E2), where V1, V2 are the node sets of Γ, Es ⊆ Vs × Vs,
s = 1, 2 are the sets of intra-layer edges, and a setE1,2⊆ V1 ×V2 of inter-
layer edges. Intuitively, Γ might be seen as a system of interactions
between two networks. It means that the node set V1 interacts not only
with V2 but also with the edge set E2 and vice versa. Similarly, intra-
layer edges in one layer interact with edges and triads in the other layer,
and so on. This view suggests a more combinatorial representation by
some kind of two-dimensional generalization of the fundamental
notion of simplicial complex from algebraic topology (Mac Lane,
1963; Hatcher, 2000). The idea of crossimplicial multicomplex
defined in the present work allows such a representation. In
particular, when applied to a pairwise-based multilayer network,

this concept allows to incorporate, on one hand, the clique
complexes (Lim, 2020; Schaub et al., 2020) corresponding to the
network layers, and on the other, the clique complex representing
the inter-layer relationships between the different layers into one
single mathematical object. Moreover, Γ can be regarded through
different lenses, and each view displays different kinds of
topological structures. The most naive perspective flattens the
whole structure into a monolayer network without segregating
the nodes and links from one layer or the other. Another viewpoint
is of two networks with independent or interdependent topologies
communicating with each other through the inter-layer links. The
rationale for defining cross-homology and the cross-Laplacians is
to view Γ as different systems, each with its own intrinsic topology
but in which nodes, links, etc., from one system have some
restructuring power that allows them to impose and control
additional topologies on the other. This means that in a
multilayer system, a layer network might display different
topological structures depending on whether we look at it from
its own point of view, from the lens of the other layers, or as a part
of a whole aggregated structure. We describe this phenomenon by
focusing on the spectra and eigenvectors of the lower-degree cross-
Laplacians. We shall, however, remark that our aim here is not to
address a particular real-world problem but to provide broader
mathematical settings that reveal and quantify the emergence of
these structures in any type of multilayer network.

2 Crossimplicial multicomplexes

2.1 General definitions

Given two finite sets, V1 and V2, and a pair of integers k, l ≥−1, a
(k, l)– crossimplex a in V1 × V2 is a subset {v10, . . . , v1k, v20, . . . , v2l } of
Vk+1

1 × Vl+1
2 , where vsi ∈ Vs for s = 1, 2. The point v1i (resp. v

2
j) is the

vertex of a in V1 (resp. V2), and its crossfaces are its subsets of the
form {v10, . . . , v1i−1, v1i+1, . . . , v1k, v20, . . . , v2l } for 0 ≤ i ≤ k and
{v10, . . . , v1k, v20, . . . , v2i−1, v2i+1, . . . , v2l } for 0 ≤ i ≤ l. Note that here
we have used the conventions thatVn

1 × V0
2 � Vn

1 and V
0
1 × Vn

2 � Vn
2.

An abstract crossimplicial bicomplex X (or a CSB) on V1 and V2

is a collection of crossimplices in V1 × V2, which is closed under the
inclusion of crossfaces, i.e., the crossface of a crossimplex is also a
crossimplex. A crossimplex ismaximal if it is not the crossface of any
other crossimplex. V1 and V2 are called the vertex sets of X.

Given a CSB X, for fixed integers k, l ≥ 0, we denote, by Xk,l, the
subset of all its (k, l)-crossimplices. We also use the notations X0,−1 =
V1, X−1,0 = V2, and X−1,−1 =∅. Recursively, Xk,−1 will denote the
subset of crossimplices of the form {v10, . . . , v1k} ⊂ Vk+1

1 , and X−1,l as
the subset of crossimplices of the form {v20, . . . , v2l } ⊂ Vl+1

2 . Such
crossimplices will be referred to as intralayer simplices or horizontal
simplices. We then obtain two simplicial complexes (Hatcher, 2000),
X•,−1 and X−1,•, that we will refer to as the intralayer complexes and
whose vertex sets are V1 and V2, respectively. In particular, X1,−1 and
X−1,1 are graphs with vertex sets V1 and V2, respectively.

The dimension of a (k, l)-crossimplex is k + l + 1, and the
dimension of CSB X is the dimension of its crossimplices of the
highest dimension. The n-skeleton ofX is the restriction ofX to (k, l)-
crossimplices such that k + l + 1 ≤ n. In particular, the 1-skeleton of
CSB is a two-layered network, with X0,0 being the set of inter-layer
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links. Conversely, given a two-layered network Γ formed by two graphs
Γ1 = (V1, E1) and Γ2 = (E2, V2) with the inter-layer edge set E1,2 ⊂ V1 ×
V2, define a (k, l)-clique in Γ as a pair (σ1, σ2), where σ1 is a k-clique in Γ1
and σ2 is an l-clique in Γ2 with the property that (i, j) ∈ E1,2 for every i ∈
σ1 and j ∈ σ2.We define the cross-clique bicomplex X associated with Γ by
letting Xk,l to be the set of all (k + 1, l + 1)-cliques in Γ.

Now, a crossimplicial multicomplex (CSM)X consists of a family
of finite sets Vs, s ∈ S ⊆ N and a CSB X s,t for each pair of distinct
indices s, t ∈ S. It is undirected if the sets of crossimplices in X s,t and
X t,s are in one-to-one correspondence. In such a case, X is
completely defined by the family of CSB X s,t with s < t (see
Figure 2 for a visualization of a three-layered CSM).

2.2 Orientation on crossimplices

The orientation of a (k, l)-crossimplex is an ordering choice over
its vertices. When equipped with an orientation, the crossimplex is
said to be oriented and will be represented as [a] �
[v10, . . . , v1k; v20, . . . , v2l ] if k, l ≥ 0, or [v10, . . . , v1k]
(resp. [v20, . . . , v2l ]) if k ≥ 0 and l = −1 (resp. k = −1 and l ≤ 0).
We shall note that an orientation of crossimplices is just a choice
purely made for computational purposes. Extending geometric
representations from simplicial complexes, crossimplices can be
represented as geometric objects.

Specifically, a (0, −1)-crossimplex is a vertex in the top layer; a
(0,0)-crossimplex is a cross-edge between layers V1 and V2; a (1, −1)-
crossimplex (resp (−1, 1)-crossimplex) is a horizontal edge on V1

(resp. V2); a (0,1)-crossimplex or a (1,0)-crossimplex is a cross-
triangle; a (2, −1)-crossimplex or (−1, 2)-crossimplex is a horizontal
triangle on layer V1 or V2; a (3, −1)-crossimplex or (−1, 3)-
crossimplex is a horizontal tetrahedron on V1 or V2; and a (1,1)-
crossimplex, a (2,0)-crossimplex, or a (0,2)-crossimplex is a cross-
tetrahedron (see Figure 1 for illustrations). On the other hand,
horizontal edges, triangles, tetrahedrons, are just usual simplices
on the horizontal complexes. One can consider a cross-edge as a
connection between a vertex from one layer to a vertex on the other
layer. In the same vein, a cross-triangle can be considered a
connection between a vertex from one layer and two vertices on
the other, and a cross-tetrahedron as a connection between either
two vertices from one layer and two vertices on the other, or one
vertex from one layer to three vertices on the other.

2.3 Weighted CSBs

A weight on CSB X is a positive function w: ⋃k,lXk,l → R+ that
does not depend on the orientations of crossimplices. A weighted
CSB is one that is endowed with a weight function. The weight of a
crossimplex a ∈ X is the number w(a).

3 Topological descriptors

3.1 Cross-boundaries

CSB X defines a bi-simplicial set (Moerdijk, 1989; Goerss and
Jardine, 2009) by considering, respectively, the top and bottom
crossface maps d(1)i|k,l: Xk,l → Xk−1,l and d(2)i|k,l: Xk,l → Xk,l−1 by

d(1)
i|k,l [v10, . . . , v1k; v20, . . . , v2l ]( ) � v10, . . . , v̂

1
i , . . . , v

1
k; v

2
0, . . . , v

2
l[ ]

d(2)
i|k,l [v10, . . . , v1k; v20, . . . , v2l ]( ) � v10, . . . , v

1
k; v

2
0, . . . , v̂

2
i , . . . , v

2
k[ ], (1)

where the hat over a vertex means dropping the vertex. Moreover, for a
fixed l ≥−1, X•,l � (Xk,l)k≥−1 is a simplicial complex. Similarly, Xk,• �
(Xk,l)l≥−1 is a simplicial complex. We observe that if a � {v10, . . . , v1k,
v20, . . . , v

2
l } ∈ Xk,l, then a(1) � {v10, . . . , v1k} ∈ Xk,−1 and

a(2) � {v20, . . . , v2l } ∈ X−1,l. We will refer to a(1) and a(2) as the top
horizontal face and the bottom horizontal face of a, respectively.
Conversely, two horizontal simplices, v1 ∈ Xk,−1 and v2 ∈ X−1,l, are
said to be interconnected in X if they are, respectively, the top and
bottom horizontal faces of a (k, l)-crossimplex a. We then write v1 ~ v2.
This is equivalent to requiring that if v1 � {v10, . . . , v1k} and
v2 � {v20, . . . , v2l }, then {v10, . . . , v1k, v20, . . . , v2l } ∈ Xk,l. If a �
{v10, . . . , v1k, v20, . . . , v2l } ∈ Xk,l, we define its top cross-boundary ∂(1)a
as the subset of Xk−1,l consisting of all the top crossfaces of a, i.e., all the
(k− 1, l)-crossimplices of the form d(1)i|k,l[a] for i = 0, . . . , k. Analogously,
its bottom cross-boundary ∂(2)a ⊆ Xk,l−1 is the subset of all its bottom
crossfaces d(2)i|k,l[a], i � 0, . . . , l.

Now, two (k, l)-crossimplices a, b ∈ Xk,l are said to be as follows:

• top-outer (TO) adjacent, which we write ah(1)b or ah(1)
c b, if

both are top crossfaces of a (k + 1, l)-crossimplex c; in other
words, a, b ∈ ∂(1)c;

• top-inner (TI) adjacent, which we write ag(1)b or agd
(1)b, if

there exists a (k − 1, l)-crossimplex d ∈ Xk−1,l, which is a top
crossface of both a and b, i.e., d ∈ ∂(1)a ∩ ∂(1)b ;

FIGURE 1
Crossimplices. Schematic representation of (A) A (0, −1)-crossimplex (a top vertex), a (1, −1)-crossimplex (top horizontal edge), and a (−1, 2)-
crossimplex (bottom horizontal triangle); (B) (0,0)-crossimplex (a cross-edge); (C) (1,0)-crossimplex (a top cross-triangle); (D) (1,1)-crossimplex (a cross-
tetrahedron); and (E) (0,2)-crossimplex (also a cross-tetrahedron). Notice that cross-edges are always oriented from the vertex of the top layer to that in
the bottom layer. Therefore, cross-edges belonging to a cross-triangle are always of opposite orientations with respect to any orientation of the
cross-triangle. There are two types of cross-triangles: the (1,0)-crossimplices (top cross-triangles) and (0,1)-crossimplices (bottom cross-triangle).
Moreover, there are three types of cross-tetrahedrons: the (0,2)-crossimplices, (2,0)-crossimplices, and (1,1)-crossimplices.
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• bottom-outer (BO) adjacent, which we write ah(2)
b or ah(2)

c b,
if both are bottom crossfaces of a (k, l + 1)-crossimplex c ∈
Xk,l+1; in other words, a, b ∈ ∂(2)c; and

• bottom-inner (BI) adjacent, which we write ag(2)b or ag
d
(2)b,

if there exists a (k, l − 1)-crossimplex f ∈ Xk,l−1, which is a
bottom face of both a and b; i.e., d ∈ ∂(2)a ∩ ∂(2)b.

3.2 Degrees of crossimplices

Given a weight function w on X, we define the following degrees
of a (k, l)-crossimplex a relative to w.

• The TO degree of a is the number:

degTO a( ) � degTO a, w( ) ≔ ∑
a∈∂(1)a′
a′∈Xk+1,l

w a′( ). (2)

• Similarly, the TI degree of a is defined as follows:

degTI a( ) � degTI a, w( ) ≔ ∑
c∈∂(1)a
c∈Xk−1,l

1
w c( ). (3)

• Analogously, the BO degree of a is given as follows:

degBO a( ) � degBO a, w( ) ≔ ∑
a∈∂(2)a′
a′∈Xk,l+1

w a′( ). (4)

• The BO degree of a is as follows:

degBI a( ) � degBI a, w( ) ≔ ∑
c∈∂(2)a
c∈Xk,l−1

1
w c( ). (5)

Observe that in the particular case where the weight function is
equal to one everywhere, the TO degree of a is precisely the number
of (k + 1, l)-crossimplices in X, of which a is the top crossface, while
degTI(a) is the number of top crossfaces of a, which equals to k + 1.
Analogous observations can be made about the BO and BI degrees.

3.3 Cross-homology groups

The space Ck,l of (k, l)-cross-chains is defined as the real vector
space generated by all oriented (k, l)-crossimplexes in X . The top
and bottom cross-boundary operators ∂(1)k,l : Ck,l → Ck−1,l and
∂(2)k,l : Ck,l → Ck,l−1 are then defined as follows by the formula

∂(s)k,l a[ ]( ) ≔ ∑
b∈∂(s)a

sgn b, ∂(s)a( ) b[ ], (6)

for s = 1, 2 and a generator a ∈ Xk,l, where sgn(b, ∂(s)a) is the sign
of the orientation of b in ∂(s)a; in other words, if b � d(1)i|k,l[a], then
sgn(b, ∂(1)a) ≔ (−1)i, and we define sgn(b, ∂(2)a) in a similar
fashion.

It is straightforward to see that in particular

∂(1)k,−1: Ck,−1 → Ck−1,−1, k≥ 0

and

∂(2)−1,l: C−1,l → C−1,l, l≥ 0

are the usual boundary maps of simplicial complexes. For this
reason, we focus more on the mixed case where both l and k are non-
negative. We will often drop the indices and write ∂(1) and ∂(2) to
avoid cumbersome notations. To see how these maps operate, let us
compute, for instance, the images of the crossimplices (b), (c), (d),
and (e) illustrated in Figure 1. We obtain the following:

∂(1)0,0 v10; v
2
0[ ] � v20[ ] ∈ C−1,0

∂(2)0,0 v10; v
2
0[ ] � − v10[ ] ∈ C0,−1;

⎧⎪⎨⎪⎩
∂(1)1,0 w1

0, w
1
1;w

2
0[ ] � w1

1;w
2
0[ ] − w1

0;w
2
0[ ] ∈ C0,0,

∂(2)1,0 w1
0, w

1
1;w

2
0[ ] � w1

0, w
1
1[ ] ∈ C1,−1;

⎧⎪⎨⎪⎩
∂(1)1,1 w1

0, w
1
1;w

2
0, w

2
1[ ] � w1

1;w
2
0, w

2
1[ ] − w1

0;w
2
0, w

2
0[ ] ∈ C0,1,

∂(2)1,1 w1
0, w

1
1;w

2
0, w

2
1[ ] � w1

0, w
1
1;w

2
1[ ] − w1

0, w
1
1;w

2
0[ ] ∈ C1,0;

⎧⎪⎨⎪⎩
∂(1)0,2 z10; z

2
0, z

2
1, z

2
2[ ] � z20, z

2
1, z

2
2[ ] ∈ C−1,2

∂(2)0,2 z10; z
2
0, z

2
1, z

2
2[ ] � z10; z

2
1, z

2
2[ ] − z10; z

2
0, z

2
2[ ]

+ z10; z
2
0, z

2
1[ ] ∈ C0,1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Notice that ∂(1)0,−1 � ∂(2)−1,0 � 0. Moreover, by simple calculations

from (6), it is easy to check that ∂(1)k−1,l∂
(1)
k,l � 0 and ∂(2)k,l−1∂

(2)
k,l � 0,

which allows to define the top and bottom (k, l)-cross-homology
groups of X as the following quotients:

H(1)
k,l X( ) ≔ ker∂(1)k,l /im∂(1)k+1,l, and

H(2)
k,l X( ) ≔ ker∂(2)k,l /im∂(2)k,l+1.

For k ≥ 0 and l ≤ 0, ∂(1)k,−1 and ∂
(2)
−1,l are the usual boundary maps of

simplicial complexes (Hatcher, 2000). Therefore, H(1)
k,−1(X) and

H(2)
−1,l(X) are the usual homology groups (Mac Lane, 1963;

Hatcher, 2000) of the simplicial complexes X•,−1 and X−1,•,
respectively.

3.4 Cross-Betti vectors

The cross-homology groups are completely determined by their
dimensions, the top and bottom (k, l)-cross-Betti numbers
β(s)k,l (X) � dimH(s)

k,l (X), s = 1, 2. In particular, β(1)k,−1 and β(2)−1,l are
the usual Betti numbers for the horizontal simplicial complexes
(Hatcher, 2000). The couple βk,l � (β(1)k,l , β

(2)
k,l ) is the (k, l)-cross-Betti

vector of X and can be computed using basic linear algebra. These
vectors are descriptors of the topologies of both the horizontal
complexes and their inter-connections. For instance, β0,−1 and β−1,0
encode the connectivities within and in-between the 1-skeletons of
the horizontal complexes associated with X. Precisely, β(1)0,−1 is the
number of connected components of the graph X1,−1, and β

(2)
0,−1 is the

number of nodes in V1 with no interconnections with any nodes in
V2. Similarly, β(1)−1,0 is the number of nodes in V2 with no
interconnections with any nodes in V1, while β(2)−1,0 is the number
of connected components of the bottom horizontal graph X−1,1.
Furthermore, β1,−1 simultaneously counts the number of loops in
X1,−1 and the number of its intra-layer links that do not belong to
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cross-triangles formed with the graph X−1,1. Analogous topological
information is provided by β−1,1. In addition, β0,0 measures the
extent to which individual nodes of one complex layer serve as
communication channels between different hubs from the other
layers. More precisely, an element in H(1)

0,0 (X) represents either an
inter-layer one-dimensional loop formed by a path in X1,−1, whose
end-nodes interconnect with the same node in V2, or two connected
components in the top complex communicating with each other
through a node in the bottom complex. β0,0 counts the shortest paths
of length 2 between nodes within one layer passing through a node
from the other layer and not belonging to the cross-boundaries of
cross-triangles; we call such paths cones. In other words, β0,0
quantifies node clusters in one layer that are “controlled” by
nodes in the other layer. Detailed proof of this description is
provided in Methods 7.1.

Now, given a CSM X , its cross-Betti table β⊗k,l is obtained by
computing all the cross-Betti vectors of all its underlying CSBs.
Computation of the cross-Betti table of the CSM of Figure 2 is
presented in Table 1.

To illustrate what the cross-Betti vectors represent, we consider the
simple two-dimensional CSB X of Figure 3. We get β(1)0,−1 � 2, β(1)1,−1 � 1
and β(2)−1,0 � 1, β(2)−1,1 � 0. This reflects the fact the top layer has two
connected components and one cycle, while the bottom one has one
component and no cycles. Moreover, three top nodes are not
interconnected to the bottom complex, six top edges are not top
faces of cross-triangles, two bottom nodes are not interconnected to
the top layer, and five bottom edges are not bottom faces of cross-
triangles. This information is encoded in β0,−1 = (2, 3), β1,−1 = (1, 6),
β−1,0 = (2, 1), and β−1,1 = (5, 0). There are three generating inter-layer
cycles, two of which are formed by an intra-layer path in the bottom
layer and a node in the top layer (v14 and v

1
6), and the other one is formed

by an intra-layer path in the top layer and a node (v21) in the bottom
layer. Moreover, the two nodes v21 and v24 of V2 interconnect the two
separated components of the top layer; they serve as cross-hubs:
removing both nodes eliminates all communications between the
two components of the top layer. Cross-hubs and these types of
inter-layer cycles are exactly what β0,0 encodes. Specifically, by
computing the cross-homology of X, we get β(1)0,0 � 3, which counts
the cycle v12 − v13 − v14 − v21 − v12 and the nodes v24 and v21 that
interconnect v14 to v16, and v12 to v16, β

(2)
0,0 � 2 counting the inter-layer

cycles v14 − v21 − v22 − v23 − v24 − v14 and v
1
6 − v22 − v23 − v24 − v16. In each of

these cycles, the top node allows a shortest (inter-layer) path between
the end-points of the involved intra-layer path.

Using algebraic topological methods to calculate the cross-Betti
vectors for larger multicomplexes can quickly become
computationally heavy. We provide powerful linear-algebraic
tools that not only allow to easily compute βk,ls but also tell
exactly where the topological structures being counted are located
within the multicomplex.

4 Spectral descriptors

4.1 Cross-forms

Ck,l ≔ Ck,l(X,R) denotes the dual space HomR(Ck,l,R) of the
real vector space Ck,l. In other words, Ck,l is the vector space of real

FIGURE 2
Schematic representation of a two-dimensional crossimplicial
multicomplex X with 3 layers and 30 nodes in total; X consists of the
vertex sets V1, V2, and V3 and the three CSBs X 1,2 ,X 1,3 ,X2,3 defined,
respectively, on the products V1 × V2, V1 × V3, and V2 × V3.

TABLE 1 Cross-Betti table. The cross-Betti table for CSM of Figure 2. The table
quantifies the connectedness of the three horizontal complexes, the number of
cycles in each of them, the number of nodes in each layer that are not
connected to the other layers, the number of intra-layer edges not belonging
to any cross-triangles, and the number of paths of length 2 connecting the
nodes in one layer and passing through a node from another layer.

X1,2 X1,3 X 2,3

β⊗0,−1 (1,0) (1,0) (1,0)

β⊗1,−1 (13,21) (13,21) (6,14)

β⊗−1,0 (0,1) (1,1) (0,1)

β⊗−1,1 (17,6) (29,16) (29,16)

β⊗0,0 (11,14) (20,24) (19,23)

FIGURE 3
Cross-Betti vectors. Schematic representation of a two-
dimensional CSB with 14 nodes in total, whose oriented maximal
crossimplices are the intra-layer triangle [v15 , v16 , v17] in X2,−1, the intra-
layer edges [v10, v11], [v11 , v12], [v11 , v13], [v12 , v13] in X1,−1, the bottom
intra-layer triangles [v20 , v21 , v22], [v23 , v24 , v25] in X−1,2, the intra-layer edge
[v22 , v23] in X−1,1, the cross-triangles [v10 , v11; v21 ], [v11 , v12; v21 ] in X1,0,
[v16; v21 , v22], [v16; v24 , v25] in X0,1, and the cross-edges [v14; v21 ], [v14; v24]
in X0,0.

Frontiers in Complex Systems frontiersin.org05

Moutuou et al. 10.3389/fcpxs.2023.1281714

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2023.1281714


linear functional ϕ: Ck,l → R. We will refer to such functionals as (k,
l)-forms or cross-forms on X. In particular, (k, −1)-forms correspond
to k-forms on the simplicial complex X•,−1, and (−1, l)-forms are l-
forms on the complex X−1,•. We have C−1,−1 = 0, and by convention,
we set Ck,l (∅) = 0.

Notice that a natural basis of Ck,l is given by the following set of
linear forms:

ea: Ck,l → R, a ∈ Xk,l{ },
called elementary cross-forms, where

ea b( ) � 1, if a � b,
0, otherwise,

{
which naturally identify Ck,l with Ck,l. Now, the maps

δ(1)k,l : C
k,l → Ck+1,l and δ(2)k,l : C

k,l → Ck,l+1 are defined by the
following equations:

δ(1)k,l ϕ a[ ]( ) � ∑
b∈∂(1)a

sgn b, ∂(1)a( )ϕ b[ ]( ),

δ(2)k,l ϕ c[ ]( ) � ∑
d∈∂(2)c

sgn d, ∂(2)c( )ϕ d[ ]( ), (7)

for ϕ ∈ Ck,l, a ∈ Xk+1,l and c ∈ Xk,l+1. Next, given a weight w on
X, we get an inner product on cross-forms by the following
setting:

〈ϕ,ψ〉k,l ≔ ∑
a∈Xk,l

w a( )ϕ a( )ψ a( ), for ϕ,ψ ∈ Ck,l. (8)

It can been seen that, with respect to this inner product,
elementary cross-forms form an orthogonal basis, and by
simple calculations, the dual maps are given by the following
equation:

δ(1)k,l( )*ϕ a[ ]( ) � ∑
a∈∂(1)a′
a′∈Xk+1,l

w a′( )
w a( ) sgn a, ∂(1)a′( )ϕ a′[ ]( ), (9)

for ϕ ∈ Ck+1,l, a ∈ Xk,l. We also obtain a similar formula for the
dual (δ(2)k,l )*.

4.2 The cross-Laplacian operators

Identifying Ck,l with Ck,l and equipping it with an inner product,
as (21), we define the following self-adjoint linear operators on Ck,l

for all k, l ≥−1:
- the top (k, l)-cross-Laplacian is as follows:

L(T)
k,l ≔ δ(1)k,l( )*δ(1)k,l + δ(1)k−1,l δ

(1)
k−1,l( )*;

- and the bottom (k, l)-cross-Laplacian is as follows:

L(B)
k,l ≔ δ(2)k,l( )*δ(2)k,l + δ(2)k,l−1 δ(2)k,l−1( )*.

Being defined on finite dimensional spaces, these operators can
be represented as square matrices indexed over crossimplices.
Specifically, denoting Nk,l = |Xk,l|, L(T)

k,l can be represented by
positive definite Nk,l × Nk,l matrices (see Methods 7.3).

Moreover, the null spaces, the elements of which we call
harmonic cross-forms, are easily seen to be in one-to-one

correspondence with cross-cycles on X. In other words, we have
the following isomorphisms (see Methods 7.2 for the proof):

H(1)
k,l X( ) � kerL(T)

k,l , H
(2)
k,l X( ) � kerL(B)

k,l .

It follows that in order to compute the cross-Betti vectors, it
suffices to determine the dimensions of the eigenspaces of the zero-
eigenvalues of the cross-Laplacians.

It should be noted that in addition to being much easier to
implement, the spectral method to compute cross-homology has
the advantage of providing a geometric representation of the
cross-Betti numbers through eigenvectors. However, before we
see how this works, let us make a few observations. Notice that
L(T)
0,−1 and L(B)

−1,0 are the usual graph Laplacians of 0 degree for the
horizontal complexes. More generally, L(T)

k,−1 and L(B)
−1,l are the

combinatorial higher Hodge Laplacians (Horak and Jost, 2013;
Lim, 2020; Schaub et al., 2020) of degrees k and l, respectively, for
the horizontal simplicial complexes. Furthermore, L(B)

k,−1
(resp. L(T)

−1,l) detects the k-simplices (resp. l-simplices) in the
top (resp. bottom) layer complex that are not top
(resp. bottom) faces of (k, 0)-crossimplices (resp. (0, l)-
crossimplices). Moreover, one can see that L(B)

k,−1 is the
diagonal matrix indexed over the k-simplices on the top
complex and whose diagonal entries are the BO degrees.
Similarly, L(T)

−1,l is the diagonal matrix whose diagonal entries
are the TO degrees of the l-simplices on the bottom complex. This
is consistent with the interpretation of the cross-Betti numbers
β(2)0,−1 and β(1)−1,0 given earlier in terms of connectivities between the
1-skeletons of the horizontal complexes.

4.3 Harmonic cross-hubs

For the sake of simplicity, it is assumed that X is equipped with
the trivial weight �1. Then, by (26), the (0,0) cross-Laplacians L(T)

0,0

and L(B)
0,0 are, respectively, represented by the N0,0 × N0,0 matrices

indexed on cross-edges ai, aj ∈ X0,0, whose entries are given by the
following equations:

TABLE 2 Harmonic (0,0) cross-forms. The three eigenvectors of the eigenvalue
0 of L(T)

0,0 corresponding to the synthetic CSB of Figure 3. There are two
harmonic cross-hubs, v21 and v24, and their respective harmonic cross-hubness
are 2.6177 and 1.4070.

ω1 ω2 ω3

0.0290 −0.2872 0.2236 [v10; v21]

0.0290 −0.2872 0.2236 [v11; v21]

0.0290 −0.28721 0.2236 [v12; v21]

0.0 0.0 −0.8944 [v14; v21]

0.7035 0.0710 0.0 [v14; v24]

−0.0870 0.8616 0.2236 [v16; v21]

0.0 0.0 0.0 [v16; v22]

−0.7035 −0.0710 0.0 [v16; v24]

0.0 0.0 0.0 [v16; v25]
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L(T)
0,0( )

ai,aj
�

degTO ai( ) + 1, if i � j,
1, if i ≠ j, ai[ ] � v1i ; v

2
k[ ],

aj[ ] � v1j ; v
2
k[ ]

and v1i , v
1
j , v

2
k{ } ∉ X1,0,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(10)

and

L(B)
0,0( )

ai,aj
�

degBO ai( ) + 1, if i � j,
1, if ai[ ] � v1i0 ; v

2
i[ ],

aj[ ] � v1i0 ; v
2
j[ ],

and v1i0 , v
2
i , v

2
j{ } ∉ X0,1,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(11)

Applied to the toy example of Figure 3, L(T)
0,0 has a zero-

eigenvalue of multiplicity 3, generating the three (0,0) cross-
cycles in Table 2.

Each coordinate in the eigenvectors is seen as an “intensity”
along the corresponding cross-edge. Cross-edges with non-zero
intensities sharing the same bottom node define certain
communities in the top complex that are “controlled” by the
involved bottom node. These community structures depend on
both the underlying topology of the top complex and its
interdependence with the other complex layer. We then refer to
them as harmonic cross-clusters, and the bottom nodes controlling
them are considered harmonic cross-hubs (HCHs). The harmonic
cross-hubness of a bottom node is the L1-norm of the intensities of all
cross-edges having it in common. Here, in the eigenvectors of the
eigenvalue 0, there are two subsets of cross-edges with non-zero
coordinates: the cross-edges with v21 in common and those with v24 in
common. We, therefore, have two harmonic cross-hubs (see
illustration in Figure 4), hence two harmonic cross-clusters. The
first harmonic cross-hub is responsible for the top layer cross-cluster

{v10, v11, v12, v14, v16}, while the second harmonic cross-hub controls the
top layer cross-cluster {v14, v16}. The intensity of each involved cross-
edge is the L1-norm of its corresponding coordinates in the three
eigenvectors, and the harmonic cross-hubness is the sum of the
intensities of the cross-edges interconnecting the corresponding
cross-hub to each of the top nodes in the cross-clusters it
controls. For instance, v21 is the bottom node with the highest
harmonic cross-hubness, which is 2.6177. This reflects the fact
that v21 not only interconnects the two connected components of
the top complex (which v24 does as well) but it also allows fast-track
connections between the highest number of nodes that are not
directly connected with intra-layer edges in the top complex. The
same calculations applied to the eigenvectors of the zero-eigenvalues
of L(B)

0,0 yield v16 as the top node with the highest harmonic cross-
hubness with respect to the bottom complex.

4.4 Spectral persistence of cross-hubs

To better grasp the idea of cross-hubness, let us have a closer
look at the coordinates of the eigenvectors of the (0,0) cross-
Laplacians ((10) and (11)) whose eigenvalues are all non-negative
real numbers. Suppose ϕ � (x1, . . . , xN0,0) is an eigenvector for an
eigenvalue λT ofL(T)

0,0 . Then, denoting the cross-edges by ai, i = 1, . . . ,
N0,0, we have the following relations:

xi � 1

λT − degTO ai( ) ∑
j

χ ai, aj( )xj, (12)

where χ is such that χ(ai, aj) = 1 if i = j or if ai and aj are adjacent but
do not belong to a top cross-triangle, and χ(ai, aj) = 0 otherwise. It
follows that the cross-edge intensity |xi| grows larger as degTO (ai)→

FIGURE 4
Cross-Laplacians, harmonic, and principal cross-hubs. (A) and (D)Heat-maps of the top and bottom (0,0) cross-Laplacian matrices for the example
in Figure 3. Both matrices are indexed over the cross-edges of CSB, and the diagonal entries correspond to one added to the number of cross-triangles
containing the corresponding cross-edge. L(T)

0,0 has a zero eigenvalue of multiplicity 3, while L(B)
0,0 has a zero eigenvalue of multiplicity 2. (B) and (E)

Harmonic cross-hubs with respect to the top (resp. the bottom) horizontal complex of X; the intensity of a cross-edge is given by the L1-norm of the
corresponding coordinates in the eigenvectors of the eigenvalue 0. (C) and (F) Principal cross-hubs in the bottom (resp. top) layer with respect to the top
(resp. bottom) layer; by definition, they are the spectral cross-hubs obtained from the largest eigenvalues of the top and bottom (0,0) cross-Laplacians,
respectively.
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λT. In particular, for λT = 0, the intensity is larger for cross-edges that
belong to a large number of cones and to the smallest number of top
cross-triangles. Now, consider the other extreme of the spectrum,
namely, λT � λTmax, to be the largest eigenvalue of L(T)

0,0 . Then, the
intensity |xi| is larger for cross-edges belonging to the largest number
of top cross-triangles and a large number of top cones at the
same time.

Taking the case of a two-layered network, for λT = 0, |xi| is larger
for a cross-edge pointing to a bottom node interconnecting the
largest number of top nodes that are not directly connected with
intra-layer edges; for λT = łmax, |xi| is larger for a cross-edge pointing
to a bottom node interconnecting a large number of top intra-layer
communities both with each other and with a large number of top
nodes that are not directly connected to each other via intra-layer
edges.

More generally, applying the same process to each distinct
eigenvalue, we obtain clustering structures in the top layer that
are controlled by the bottom nodes and that vary along the spectrum
λT1 ≤ λT2 ≤/≤ λTmax of L(T)

0,0 . At every stage, we regroup the cross-
edges with non-zero coordinates in the associated eigenvectors and
pointing to the same nodes, and then sum up their respective
intensities to obtain a ranking among a number of cross-hubs
that we call spectral cross-hubs (SCHs). Intuitively, the intensities
held by cross-edges gather to confer a ‘restructuring power’ onto the
common bottom node, the cross-hub, allowing it to control a cluster
on the top layer. It is clear that, by permuting the top layer with the
bottom layer, the same reasoning applies to L(B)

0,0 . In particular, we
define the principal cross-hubs (PCHs) in the bottom layer with
respect to the top layer as the SCHs obtained from λTmax. The
principal cross-hubness of a bottom PCH is defined as its
restructuring power. In a similar fashion, we define the principal
cross-hubness in the top layer with respect to the bottom layer using
the largest eigenvalue λBmax of L(B)

0,0 . Going back to the bicomplex of
Figure 3, the largest eigenvalue of L(T)

0,0 is λTmax � 5, and the
corresponding eigenvector is represented by Table 3.

There is only one PCH in the bottom layer with respect to the
top layer, which is the bottom node v21, and its principal cross-
hubness is 2.2360.

Interestingly, the number of SCHs that appear for a given
eigenvalue tend to vary dramatically with respect to the smallest
eigenvalues before it eventually decreases or stabilizes at a very low

number (see Figure 5; Figure 6). Some cross-hubs may appear at one
stage along the spectrum and then disappear at a future stage. This
suggests the notion of spectral persistence of cross-hubs. Nodes that
emerge the most often or live longer as cross-hubs along the
spectrum might be seen as the most central in restructuring the
topology of the other complex layers. The further we move away
from the smallest non-zero eigenvalue, the more powerful are the
nodes that emerge as hubs facilitating communications between
aggregations of nodes in the other layer. The emergence of spectral
cross-hubs is represented by a horizontal line—spectral persistence
bar—running through the indices of the corresponding eigenvalues
(Figure 5). The spectral persistence bars corresponding to all SCHs
(the spectral bar codes) obtained from L(T)

0,0 (resp. L(B)
0,0 ) constitute a

signature for all the clustering structures imposed by the bottom
(resp. top) layer to the top (resp. bottom) layer.

5 Experiments on multiplex networks

5.1 Diffusion CSBs

LetM be a multiplex formed byM graphs Γs = (Es, V), s = 1, . . . ,
M. Denoting the vertex set V as an ordered set {1, 2, . . . , N}, we will
write vsi to represent the node i in the graph Γs, following the same
notations we have used for multicomplexes.

For every pair of distinct indices s, t, we define the two-
dimensional CSB Xs→t on V × V such that Xs→t

k,−1 � ∅ for k ≥ 1,

TABLE 3 Principal eigenvector of L(T)
0,0 for the CSB of Figure 3. By definition, this

is the eigenvector associated with the largest eigenvalue.

0.4472 [v10; v21]
0.4472 [v11; v21]

0.4472 [v12; v21]

0.4472 [v14; v21]

0.0 [v14; v24]

0.4472 [v16; v21]

0.0 [v16; v22]

0.0 [v16; v24]

0.0 [v16; v25]

FIGURE 5
Spectral persistence of cross-hubs. Schematic illustrations of the
variations in spectral cross-hubs along the eigenvalues and the
spectral persistence bars codes for the toy CSB of Figure 3: (A) shows
the number of bottom nodes that emerge as spectral cross-hubs
with respect to the top layer as a function of the eigenvalues of L(T)

0,0,
and (B) represents the number of top nodes revealed as spectral
cross-hubs with respect to the bottom layer as a function of the
eigenvalues of L(B)

0,0. (C) and (D) represent the spectral persistence bar
codes forL(T)

0,0 andL(B)
0,0, respectively. For both the top and bottom (0,0)

cross-Laplacians, most of the spectral cross-hubs, hence, spectral
cross-clusters, emerge during the first stages (smallest eigenvalues),
and very few of them survive at later stages; here, only one cross-hub
emerges or survives at the largest eigenvalue (v21 for L(T)

0,0 and v16
for L(B)

0,0).
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and Xs→t
−1,k is the 2-clique complex of the layer indexed by t in the

multiplexM; a pair (vsi , vtj) ∈ V × V, forms a cross-edge if i < j, and
nodes i and j are connected in Γs; and a (0,1) crossimplex is a triple
(vsi , vtj, vtk) ∈ V3 such that i is connected to j and k in Γs, and j and k
are connected in Γt, while Xs→t

1,0 � ∅. We call Xs→t the diffusion
bicomplex of (layer) s onto t. Notice that by construction, the (0,0)
cross-Laplacians of Xs→t are indexed over Es, while the (0,0) cross-
Laplacians of Xt→s are indexed over Et. This shows that X

s→t and Xt→s

are not the same. The diffusion bicomplex Xs→t is a way to look at the
topology of Γs through the topology of Γt; in other words, it diffuses
the topology of the former into the topology of the latter.

5.2 Cross-hubs in air transportation
networks

We used a subset of the European air transportation network
(ATN) dataset (from Cardillo et al., 2013) to construct a three-
layered multiplex M on 450 nodes, each representing a European

airport (Wu et al., 2019). The three layer networks Γ1, Γ2, and Γ3 of
M represent the direct flights served by Lufthansa, Ryanair, and
easyJet airlines, respectively, that is, intra-layer edges correspond to
direct flights between airports served by the corresponding airline.
Considering the respective bottom (0,0) cross-Laplacians of the six
diffusion bicomplexes X1→2, X1→3, X2→1, X3→1, X2→3, and X3→2, we
obtain the spectral persistence bar codes describing the emergence of
SCHs for each airline with respect to the others (see Figure 6). The
induced SCH rankings are presented in Table 4.

6 Discussion and conclusion

We have introduced CSM as a generalization of both the notions
of simplicial complexes and multilayer networks. We further
introduced cross-homology to study their topology and defined
the cross-Laplacian operators to detect more structures that are not
detected by homology. Our goal here was to set up a mathematical
foundation for studying higher-order multilayer complex systems.

FIGURE 6
Spectral persistent cross-hubs. The spectral persistence bar codes of the six diffusion bicomplexes of the European ATN multiplex. The nodes
represent European airports labeled with their ICAO codes (see https://en.wikipedia.org/wiki/ICAO_airport_code). The most persistent cross-hubs
correspond to the airports that provide the most efficient correspondences from the first airline network to the second.
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Nevertheless, through synthetic examples of CSM and applications
in multiplex networks, we have shown that our framework provides
powerful tools to reveal important topological features in multilayer

networks and address questions that would not arise from the
standard pairwise-based formalism of multilayer networks. We
specially focused on the (0,0) cross-Laplacians to show how their

TABLE 4 Ranking of the 10 most persistent SCHs for the diffusion bicomplexes associated with the European air transportation multiplex network.

1. XLufthansa→Ryanair 2. XLufthansa→Easyjet

Airport Rank Airport Rank

Frankfurt Airport 1 Frankfurt Airport 1

Munich Airport 2 Munich Airport 2

Düsseldorf Airport 3 Milan Malpensa Airport 3

Stuttgart Airport 4 Düsseldorf Airport 4

Larnaca Airport 5 Stuttgart Airport 5

Leipzig Halle Airport 5 Larnaca Airport 6

Geneva Airport 5 Leipzig Halle Airport 6

Athens Airport 5 Geneva Airport 6

Amsterdam Airport Schiphol 5 Athens Airport 6

Birmingham Airport 5 Amsterdam Airport Schiphol 6

3. XRyanair→Lufthansa 4. XRyanair→Easyjet

Airport Rank Airport Rank

London Stansted Airport 1 Bergamo Airport 1

Bergamo Airport 2 Dublin Airport 2

Dublin Airport 3 London Stansted Airport 3

Charleroi Airport 4 Madrid Barajas Airport 4

Paris Beauvais Airport 5 Rome Ciampino Airport 5

Porto Airport 6 Palma de Mallorca Airport 6

Tampere Airport 7 Ibiza Airport 7

Kaunas Airport 8 Bologna Airport 8

Zaragoza Airport 9 Girona Airport 9

Göteborg City Airport 10 Moss Airport, Rygge 10

5. XEasyjet→Lufthansa 6. XEasyjet→Ryanair

Airport Rank Airport Rank

Paris Charles de Gaulle Airport 1 Paris Charles de Gaulle Airport 1

London Stansted Airport 2 London Stansted Airport 2

Berlin Brandenburg Airport 3 Milan Malpensa Airport 3

London Luton Airport 4 Berlin Brandenburg Airport 4

Amsterdam Airport Schiphol 5 Belfast International Airport 5

Edinburgh Airport 6 London Luton Airport 6

Manchester Airport 7 Amsterdam Airport Schiphol 7

Rome Fiumicino Airport 8 Edinburgh Airport 8

Athens Airport 9 Newcastle Airport 9

Geneva Airport 10 Lyon-Saint Exupéry Airport 10
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spectra quantify the extent to which nodes in one layer control
topological structures in other layers in a multilayer network.
Specifically, we saw that the spectra of these matrices allow
detection of nodes from one layer that serve as inter-layer
connecting hubs for clusters in the other layer; we referred to
such nodes as SCHs. Such hubs vary in function of the
eigenvalues, and they can be ranked according to their spectral
persistence along the spectra of the cross-Laplacians. SCHs obtained
from the largest eigenvalues (principal cross-hubs or PCHs) are those
that interconnect the most important structures of the other layer.
We should note that a PCH is not necessarily spectrally persistent,
and two SCHs can be equally persistent but at different ranges of the
spectrum. This means that, depending on the applications, some
choices need to be made when ranking SCHs based on their spectral
persistence. It might be the case that two SCHs persist equally long
enough to be considered the most persistent ones, but that one
persists through the first quarter of the spectrum, while the other
persists through the second quarter of the spectrum so that none of
them is PCH.

One can observe that the topological and geometric
interpretations given for L(T)

0,0 and L(B)
0,0 can theoretically be

generalized to the higher-order (k, l) cross-Laplacians as well. In
other words, the spectra of these operators encode the extent to
which higher-order topological structures (edges, triangles,
tetrahedrons, and so on) control the emergence of higher-order
clustering structures in the other layers. However, in practice,
dealing with the higher-order cross-Laplacians could quickly
become computationally heavy or infeasible. It would, however,
be interesting to see how the (0,1) and (1,1) cross-Laplacians
translate in real datasets involving intrinsic intra- and inter-layer
triangles and tetrahedrons.

Finally, many recent advances in structural and functional
neuroimaging and genomics are based on the analysis of
complex network representations of the human brain. The
proposed framework will enable us to analyze the intimate
relationships between the brain structure, genomics, and
functional representations within unified multilayered
structures.

7 Methods

7.1 Cones, kites, and the (0,0) cross-Betti
numbers

Let v2j be a fixed vertex in V2. A kite from V1 to v2j is an ordered
tuple (v1i1 , . . . , v1ip ) of vertices in V1 such that {v1ir , v1ir+1 , v2j} ∈ X1,0 for
r = 1, . . . , p − 1. Such an object is denoted as (v1i0 , . . . , v1ip ← v2j).
Beware that the vertices v1i1 , . . . , v

1
ip

do not need to be pair-wise
connected in V1. We observe the cross-triangles all pointing to v2j
that are pieced together in the form of an actual kite, as shown in
Figure 7. In particular, if v2j is the bottom face of a (1,0) cross-triangle
[v1i , v1k; v2j], then (v1i , v1k ← v2j) is a kite. If (v1i1 , . . . , v1ip ← v2j) is a kite,
its boundary is the triple (v1i1 , v1ip , v2j) ∈ V2

1 × V2. Similarly, given a
fixed vertex v1i ∈ V1, one can define a kite from V2 to v1i by a tuple
(v2j1 , . . . , v2jp′ ) of vertices in V2 satisfying the analogous conditions.
Such a kite will be denoted as (v1i → v2j1 , . . . , v

2
jp′
).

It is worth noting that if (v1i1 , . . . , v1ip ) is a kite fromV1 to v2j , then
so is each tuple (v1ir , v1ir+1 , . . . , v1ir+q ) with 1 ≤ r and r + q ≤ p.

By a cross-chain on a kite, we mean one that is a linear
combination of the triangles composing the kite; in other words,
a cross-chain on the kite (v1i1 , . . . , v1ip ← v2j) is an element a ∈ C1,0(X)
of the form

a � ∑p−1
r�1

γr v1ir , v
1
ir+1 ; v

2
j[ ], (13)

where γ1, . . . , γp−1 ∈ R. In a similar fashion, cross-chains on a kite of
the form (v1i → v2j1 , . . . , v

2
jp′
) are defined.

Now, given a pair (v1i , v1k) of vertices in the layer V1 and the
vertex v2j ∈ V2, we say that the triple (v1i , v1k, v2j) ∈ V2

1 × V2 is a cone
with base (v1i , v1k) and vertex v2j if it satisfies the following conditions:

• v1i ~ v2j and v1k ~ v2j , i.e., [v1i ; v2j], [v1k; v2j] ∈ X0,0;
• the triple (v1i , v1k, v2j) ∈ V2

1 × V2 is not the boundary of a kite
from V1 to v2j .

We also say that (v1i , v1k, v2j) is a cone with the base in V1 and the
vertex in V2. In a similar fashion, one defines a cone with the base in
V2 and the vertex in V1. We refer to Figure 7 for examples of cones.

An immediate consequence of a triple (v1i , v1k, v2j) ∈ V2
1 × V2

being a cone is that the vertices {v1i , v1k, v2j} are not (1,0) crossimplex.
The vertices v1i and v

1
k might, however, be connected by a horizontal

path of some length; when we mean that there might be a sequence
of vertices v1i0 , . . . , v

1
ip
in V1, not all of which form cross-triangles

with v2j , and such that

v1ih
(1)v1i0h

(1)/h(1)v1iph
(1)v1k,

in which case, the cone is said to be closed; it is called open
otherwise.

Cones in a crossimplicial bicomplex are classified by the top and
bottom (0,0)-cross-homology groups of the bicomplex. Specifically,

FIGURE 7
Two-dimensional crossimplicial bicomplex containing kites and
cones. (v10 , v11 , v12) is a kite from V1 to v21 ∈ V2 with boundary
(v10 , v12 , v21 ) ∈ V2

1 × V2, and (v21 , v22 , v23 , v24) is a kite from V2 to v16 ∈ V1 with
boundary (v16 , v21 , v24) ∈ V1 ×∈ V2

2. The tuples (v21 , v22 , v23), (v21 , v22)
and (v22 , v23 , v24) are also kites from V2 to v16. Furthermore, there are
three cones with bases in V1: (v12 , v14 , v21 ) is a closed cone with base
(v12 , v14) ∈ V1 and vertex v21 ∈ V2, and (v14 , v16 , v21 ) is an open cone with
base (v14 , v16) ∈ V2

1 and vertex v21 ∈ V2. In addition, (v14 , v16 , v24) is an open
cone with base (v14 , v16) ∈ V2

1 and vertex v24 ∈ V2, and
(v21 , v24 , v14) ∈ V2

2 × V1 is a closed conewith base (v21 , v24) ∈ V2
2 and vertex

v14 ∈ V1. It follows from Theorem 7.1 that β0,0 = (3, 1).
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we have the following topological interpretation of H(1)
0,0 (X),

H(2)
0,0(X), and hence, the (0,0) cross-Betti numbers.

Theorem 7.1. The (0,0) cross-homology group H(1)
0,0 (X) (resp.

H(2)
0,0(X)) is generated by the cross-homology classes of cones with

bases in V1 and vertices in V2 (resp. with bases in V2 and vertices in
V1). Therefore, the (0,0) cross-Betti number β(t)0,0 counts the cones with
bases in Vt, t = 1, 2.

Here, by the cross-homology class of the cone
(v1i , v1k, v2j) ∈ V2

1 × V2, for instance, we mean the top cross-
homology of the (0,0) cross-chain [v1k; v2j] − [v1i ; v2j] ∈ C0,0(X).

Proof. We prove the theorem for H(1)
0,0 (X) since the same

arguments apply to H(2)
0,0(X). Every cone (v1i , v1k, v2j) defines a

non-trivial (0,0) cross-cycle; in other words, the difference of the
corresponding cross-edges [v1i ; v2j] − [v1k; v2j] ∈ ker∂(1)0,0 . More
generally, suppose we are given p cones
(v1i1 , v1i2 , v2j), (vi2, v1i3 , v2j), . . . , (v1ip−1 , v1ip , v2j) with bases in V1 and all
with the same vertex v2j ∈ V2. Then, for all real numbers α1, . . . , αp
such that ∑p

r�1αr � 0, the cross-chain

b � ∑p
r�1

αr v1ir ; v
2
j[ ] (14)

is clearly a (0,0) cross-cycle with a non-trivial cross-homology
class, i.e., b ∈ ker∂(1)0,0 and b ∉ im∂(1)1,0 . Conversely, let b′ ∈ ker∂(1)0,0 . We
can write

b′ � ∑M
m�1

αm′ v1im ; v
2
im

[ ] ∈ C0,0 X( ),

so that ∂(1)0,0 (b′) � ∑M
m�1αm′ [v2im ] � 0. Then, either all the v2im

values are pair-wise different, in which case b′ is the trivial cross-
cycle; or there exist p + 1 subsets ({mr,1, . . . , mr,Mr})p+1r�1 of {1, . . . ,M}
such that

v2imr,1
� v2imr,2

� / � v2imr,Mr
, for 1≤ r≤p

and

v2imp+1,j
≠ v2imp+1,j′

, for all j ≠ j′, 1≤ j, j′≤Mp+1.

It follows that

∑Mr

j�1
αmr,j′ � 0, for each r � 1, . . . , p (15)

and αmp+1,j′ � 0 for all j � 1, . . . ,Mp+1. Hence, we get the
following general expression of a (0,0) cross-cycle:

b′ � ∑p
r�1

∑Mr

j�1
αmr,j′ v1imr,j

; v2imr,1
[ ], (16)

where the coefficients satisfy (15). Furthermore, it is straightforward
to see that b′ ∈ im∂(1)1,0 if, and only if, for each r = 1, . . . , p, there exists
a permutation τr of {1, . . . , Mr} such that

v1imr,τr 1( )
, . . . , v1imr,τr Mr( )

← v2imr,1
( )

is a kite. In that case, we get b′ � ∂(1)1,0 (a), where

a � ∑p
r�1

∑Mr−1

r�1
γmr,j

v1imr,τr j( )
, v1imr,τr j+1( )

; v2imr,1
[ ], (17)

and where, for r = 1, . . . , p, the coefficients γmr,j
are given by

γmr,1
� −αmr,τr 1( )′

γmr,2
� −αmr,τr 1( )′ − αmr,τr 2( )′
..
.

γmr,Mr−2 � −αmr,τr 1( )′ − αmr,τr 2( )′ −/ − αmr,τr Mr−2( )′
γmr,Mr−1 � αmr,τr M2( )′ .

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(18)

This shows that trivial cross-homology classes in H(1)
0,0 (X) are

given by cross-cycles obtained from cross-chains on kites,
i.e., images of sums of cross-chains in the form of (13).

7.2 Inner product, cross-Laplacians, and
harmonic cross-forms

We define the following maps on cross-forms:

by the following equations:

δ(1)k,l ϕ a[ ]( ) � ∑
b∈∂(1)a

sgn b, ∂(1)a( )ϕ b[ ]( ), and δ(2)k,l ϕ c[ ]( )

� ∑
d∈∂(2)c

sgn d, ∂(2)c( )ϕ d[ ]( ), (19)

for ϕ ∈ Ck,l(X), a ∈ Xk+1,l and c ∈ Xk,l+1.
Now, for each pair of integers (k, l), we choose inner products

〈·,·〉k,l, 〈·,·〉k+1,l and 〈·,·〉k,l+1 on the real vector spaces Ck,l(X),
Ck+1,l(X) and Ck,l+1(X), respectively. The adjoint operators
(δ(1)k,l )*: Ck+1,l(X) → Ck,l(X) and (δ(2)k,l )*: Ck,l+1(X) → Ck,l(X)
are determined by the following relations:

〈δ(1)k,l ϕ,ψ〉k+1,l � 〈ϕ, δ(1)k,l( )*ψ〉k,l,
〈δ(2)k,l ϕ,ψ′〉k,l+1 � 〈ϕ, δ(2)k,l( )*ψ′〉k,l, (20)

for ϕ ∈ Ck,l(X), ψ ∈ Ck+1,l(X), and ψ′ ∈ Ck,l+1(X).
Any weight w on X defines such inner products on cross-forms

by the following setting:

〈ϕ,ψ〉k,l ≔ ∑
a∈Xk,l

w a( )ϕ a( )ψ a( ), for ϕ,ψ ∈ Ck,l X( ). (21)

It can be seen that, with respect to such an inner product,
elementary cross-forms form an orthogonal basis. Moreover, given a
weight function w and such an inner product, we get the following
by simple calculations using (20):

δ(1)k,l( )*ϕ a[ ]( ) � ∑
a∈∂(1)a′
a′∈Xk+1,l

w a′( )
w a( ) sgn a, ∂(1)a′( )ϕ a′[ ]( ), (22)
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for ϕ ∈ Ck+1,l(X), a ∈ Xk,l. In addition, we obtain a similar formula
for (δ(2)k,l )*.

Definition 7.2. We define the following self-adjoint linear
operators on Ck,l(X) for all k, l ≥−1:

• the top-outer (k, l)-cross-Laplacian (or TO-Laplacian of
order (k, l)

L(TO)
k,l ≔ δ(1)k,l( )*δ(1)k,l ,

• the top-inner (k, l)-cross-Laplacian (or TI-Laplacian of
order (k, l)

L(TI)
k,l ≔ δ(1)k−1,l δ

(1)
k−1,l( )*,

• the top (k, l) cross-Laplacian

L(T)
k,l ≔ L(TO)

k,l + L(TI)
k,l ,

• and similarly, the bottom-outer (k, l) cross-Laplacian (BO-
Laplacian of order (k, l))

L(BO)
k,l ≔ δ(2)k,l( )*δ(2)k,l ,

• the bottom-inner (k, l)-cross-Laplacian (BI-Laplacian)

L(BI)
k,l ≔ δ(2)k,l−1 δ(2)k,l−1( )*,

• and the bottom (k, l)-cross-Laplacian

L(B)
k,l ≔ L(BO)

k,l + L(BI)
k,l .

The null spaces of these operators, defined as the following sub-
groups

(s)Hk,l � kerL(s)
k,l � ϕ ∈ Ck,l X( )|L(s)

k,l ϕ � 0{ }, s � T, B,

are called the spaces of harmonic top (resp. bottom) cross-
forms on X.

There is a one-to-one correspondence between cross-cycle
classes and harmonic cross-forms on CSB X. In other words, we
have the following group isomorphisms generalizing (Eckmann,
1944; Horak and Jost, 2013).

Lemma 7.3. For s = 1, 2 and for all k, l ≥−1, we have

H(s)
k,l X( ) � ker L(s)

k,l( ), (23)

where we have used the notations L(1)
k,l � L(T)

k,l and L(2)
k,l � L(B)

k,l .
Proof. Let us prove this result for s = 1 (similar arguments apply

to s = 2). First, notice that from the identification Ck,l(X) = Ck,l(X), we
obtain the following:

H(1)
k,l X( ) � ker δ(1)k,l( )/im δ(1)k−1,l( ) � ker δ(1)k,l( ) ∩ im δ(1)k−1,l( )⊥, (24)

and the analog holds for Hk,l
(2)(X). Moreover, recall from

linear algebra that if E→f F is a linear operator on two vector
spaces equipped with inner products, then ker (f*f) = ker f.
Indeed, we clearly have ker f ⊂ ker (f*f). Next, if x ∈ ker (f*f),

then 〈f*fx, y〉E � 〈fx, fy〉F � 0 for all y ∈ E, which implies that
x ∈ ker f. In our case, we have δ(1)k,l δ

(1)
k−1,l � 0 and (δ(1)k−1,l)*(δ(1)k,l )* � 0;

hence,

im L(TO)
k,l( ) ⊂ im δ(1)k,l( )* ⊂ ker δ(1)k−1,l( )* ⊂ ker δ(1)k−1,l δ

(1)
k−1,l( )*( )

im L(TI)
k,l( ) ⊂ im δ(1)k−1,l( ) ⊂ ker δ(1)k,l( ) ⊂ ker δ(1)k,l( )*δ(1)k,l( ).

Therefore,

kerL(T)
k,l � ker δ(1)k,l( )*δ(1)k,l( ) ∩ ker δ(1)k−1,l δ

(1)
k−1,l( )*( )

� ker δ(1)k,l( ) ∩ ker δ(1)k−1,l( )*
� ker δ(1)k,l( ) ∩ im δ(1)k−1,l( )⊥,

and the isomorphism (23) follows from (24).
It follows that the eigenvectors corresponding to the zero

eigenvalue of the (k, l) cross-Laplacian L(s)
k,l are representative

cross-cycles in the homology group H(s)
k,l (X). Henceforth, we see

that in order to get the dimensions of the cross-homology groups
H(s)

k,l (X), it suffices to find the eigenspaces corresponding to the zero
eigenvalues of L(s)

k,l . In other words,

β(1)k,l � dimkerL(1)
k,l , and β

(2)
k,l � dimkerL(2)

k,l . (25)

7.3 Matrix representations

Since the sets Xk,l are finite, the vector spaces Ck,l(X) and Ck,l(X)
are finite dimensional, and as we have seen, the latter has the
elementary cross-forms ea, a ∈ Xk,l as orthogonal basis with
respect to inner products defined from weight functions. So, the
cross-Laplacian operators L(s)

k,l , s � T, B can be represented as real
square matrices of dimension |Xk,l|×|Xk,l| whose entries are indexed
by elementary cross-forms ea. In order to compute these matrix
representations, we first need to give their formal expressions as
linear operators. Thanks to (22), we get the following for ϕ ∈ Ck,l,
a ∈ Xk,l:

δ(1)k,l( )*δ(1)k,l ϕ a[ ]( ) � ∑
a∈∂(1)a′
a′∈Xk+1,l

w a′( )
w a( ) sgn a, ∂(1)a( ) δ(1)k,l ϕ( ) a′[ ]( )

� ∑
a∈∂(1)a′
a′∈Xk+1,l

w a′( )
w a( ) sgn a, ∂(1)a′( ) ∑

b∈∂(1)a′
sgn b, ∂(1)a′( )ϕ b[ ]( )

� ∑
a∈∂(1)a′
a′∈Xk+1,l

w a′( )
w a( ) sgn a, δ(1)a′( ) sgn a, ∂(1)a′( )ϕ a[ ]( ) + ∑

b∈∂(1)a′,b≠a
sgn b, ∂(1)a′( )ϕ b[ ]( )⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

� ∑
a∈∂(1)a′
a′∈Xk+1,l

w a′( )
w a( ) ϕ a[ ]( ) + ∑

b∈∂(1)a′,a≠b
sgn a, ∂(1)a′( )sgn b, ∂(1)a′( )ϕ b[ ]( )⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

and

δ(1)k−1,l δ
(1)
k−1,l( )*ϕ a[ ]( ) � ∑

c∈∂(1)a

c∈Xk−1,l

sgn c, ∂(1)a′( ) ∑
c∈∂(1)a′
a′∈Xk,l

w a′( )
w c( ) sgn c, ∂(1)a′( )ϕ a′[ ]( )

� ∑
c∈∂(1)a

c∈Xk−1,l

sgn c, ∂(1)a( ) w a( )
w c( ) sgn c, ∂(1)a( )ϕ a[ ]( )[

+ ∑
a≠a′

c∈∂(1)a′

w a′( )
w c( ) sgn c, ∂(1)a′( )ϕ a′[ ]( )⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ∑
c∈∂(1)a

c∈Xk−1,l

w a( )
w c( ) ϕ a[ ]( ) + ∑

c�∂(1)a′∩∂(1)a

c∈Xk−1,l ,a′∈Xk,l

w a′( )
w c( ) sgn c, ∂(1)a( )sgn c, ∂(1)a′( )ϕ a′[ ]( ).

In particular, when ϕ is an elementary cross-form eb, b ∈ Xk,l, we
obtain the following:
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L(TO)
k,l eb a[ ]( ) �

1
w a( )degTO a( ), if a � b,

−w c( )
w a( ), if a ≠ b and ah(1)

c b,

and have same orientation,

w c( )
w a( ), if a ≠ b and ah(1)

c b,

and have opposite orientations,

0, otherwise ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
and

L(TI)
k,l eb a[ ]( ) �

w a( )degTI a( ), if a � b,

w b( )
w d( ), if a ≠ b and agd

(1)b,

and have same orientation,

−w b( )
w d( ), if a ≠ b and agd

(1)b

and have opposite orientations,

0, otherwise .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
It follows that the (ea, eb)-th entry of the matrix representation of

the top (k, l) cross-Laplacian L(T)
k,l with respect to the inner product

defined from the weight function w is given by the following:

L(T)
k,l( )

ea ,eb
�

1
w a( )degTO a( ) + w a( )degTI a( ), if a � b,

w b( )
w d( ) −

w c( )
w a( ), if a ≠ b, ah(1)

c b and agd
(1)b,

and have same orientation

w c( )
w a( ) −

w b( )
w d( ), if a ≠ b, ah(1)

c b and agd
(1)b,

and have opposite orientations

w b( )
w d( ), if a ≠ b, agd

(1)b, same orientation,

and not top − outer adjacent,

−w b( )
w d( ), if a ≠ b, agd

(1)b, opposite orientations,

and not top − outer adjacent,

0, otherwise .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(26)

It is clear that we get similar matrix representation for the bottom (k,
l) cross-Laplacian L(B)

k,l .
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