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Introduction: Functional information transmission through a complex biological
system is introduced as amethod for biological response (bioresponse) adaptation
using qualified biological marker (biomarker) data.

Methods: This information guided adaptation methodology traverses the series of
complex connections, defined by disparate bioresponse and biomarkers data sets, by
placing both data sets on the commonplatiormdefined by information. The absolute
uncertainty associated with these data sets can be defined in terms of decimal digits
of information. This relationship between the data’s absolute uncertainty and its
information entropy is used to decompose information entropy into functional and
relative uncertainty components, where the functional component quantifies the
function or meaning of a data set in units of information.

Results: Application of functional information to adapt patient medical treatments
using the information values for the bioresponse model and the biomarker model
are outlined in detail and presented tabularly.

Discussion: Functional information provides a mathematical connection between a
bioresponsemodel and a biomarkermodel by quantifying both data sets in the units of
information and thereby providing themeans to implement precision therapeutic plans
by quantitatively adapting patient treatments using their biomarker measurements.
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1 Introduction

The human body is the quintessential complex system with its multiple interacting
heterogeneous components that display emergent macro-level behavior due to multiple non-
linear interconnections that are typically unknown and inseparable, and therefore cannot be
modeled (Johnson, 2006; Sheard and Mostashari, 2009; Earl and Nicholson, 2021; San
Miguel, 2023). Medical diagnosis of the bodies’ biological response (bioresponse) to disease
and treatment based on biological markers (biomarkers) is an effective method for
understanding, treating, and managing complex disease processes (National Cancer
Institute). Understanding the complexity inherent in cancer progression presents a
profound challenge to researchers and is being actively investigated through the
application of biomarkers in the field known as precision medicine (Chatterjee and
Zetter, 2005). Precision medicine is a methodology that uses patient information to
understand and manage the health of the complex biological system that is the human body.

Precision medicine uses patient information about their genes or proteins to prevent,
diagnose, or treat their disease (National Cancer Institute). The prominence of precision
medicine has increased in recent years because of advances in basic research areas including
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molecular biology, genomics, and bioinformatics (Collins and
Varmus, 2015). These advances have enabled more precise
targeting of subgroups of disease with new therapies (Ashley,
2016). The intrinsic link between precision medicine and
biomarkers is illustrated by the Precision Medicine Initiative
(PMI) launched by the US National Institutes of Health (NIH)
with the goal of improving health care by combining clinical data
and multi-omic biomarker measurements on a large scale (Vargas
and Harris, 2016; Olivier et al., 2019). Multi-omics combines
multiple omic data sets, (e.g., genomics, epigenomics,
transcriptomics, proteomics, metagenomics), during data analysis
to determine the mechanism of a biological process (Kim et al., 2012;
Urbanowicz et al., 2018; Krassowski et al., 2020; Momeni et al., 2020;
Peng et al., 2020; Shi et al., 2021). This paper extends the application
of information to the PMI goal of incorporating a patients’
bioresponse and biomarker data into the planning, execution,
and adaptation of their treatments during their prescribed course
of therapy. This is accomplished by placing both the bioresponse
and the biomarker data in the same analytic data space through the
conversion of both data sets into functional information, i.e., all data
are analyzed in the units of information. Thus, biomarker data can
be fed directly back into bioresponse models to adapt patient
therapies based on the patient’s current biological profile.

Information-theoretic analysis began 75 years ago when Claude
Shannon presented a mathematical measure of the amount of
information that can be transmitted over a potentially noisy
communication channel (Shannon, 1948). This mathematical theory
optimizes the transmission of message data by quantifying how many
bits of information are contained in the message, however, it does not
determine if the data have meaning. This is termed the semantic
problem because two messages can have identical information even
though one message has meaning, and the other is nonsense (Weaver).
Applications of information entropy in biomedical informatics include
semantics, genetic selection, feature selection, and biomarkers (Li et al.,
2004; Cohen and Widdows, 2009; Saha et al., 2009; Liu et al., 2010;
Bolón-Canedo et al., 2014; Chen et al., 2017; Sato and Akimoto, 2017;
Bakal et al., 2018; Jadon, 2020). Recently, through the application of
measurement theory, the definition of information has been extended
beyond the data streams associated with communications to include
functional data associated with curves and graphs thus quantifying data
meaning in terms of information bits (Herndon, 2022). The absolute
uncertainty associatedwithmeasured data, in the form y= f(x), has been
defined in terms of real-valued decimal digits (dits) of information
(Herndon, 2017; 2021). This relationship is used to decompose
information into functional and relative uncertainty components,
where the functional component quantifies the function or meaning
of a process data set, y = f(x), in units of information (Herndon, 2022).

Functional information, If, offers an unprecedented way to quantify
system response when using surrogate measurements to assess system
status. A biological system response, or bioresponse, model characterizes
system response to an event, but if it is not measurable then a surrogate
biological system measurement, or biomarker, is used because it is an
objective indicator of the bioresponse to a therapeutic intervention
(Strimbu and Tavel, 2010; Califf, 2018). The biomarker contains no
parametric data from the system model and cannot be used to calculate
the bioresponse status. Functional information removes this constraint
between bioresponses and biomarkers by quantifying a value for the
number of information-carrying decimal digits (dits) in each data set,

thus providing a common space for analysis. Bioresponse will be adapted
using functional information, IS, acquired from the bioresponse function,
S, and functional information, IV, acquired using a biomarker function,V.

Applications of this method include individualizing patient drug
dosages based on their molecular profiles. This could be as routine as
adapting an antibiotic drug prescription to fight a specific infection
based on a patient’s blood test or as specialized as prescribing
immunotherapy uniquely to each patient’s disease. Functional
information is used to create the mathematical machinery that
permits ongoing adaptative therapy during a patient’s treatment course.

2 Materials and methods

2.1 Functional information

Separation of Shannon information entropy, H, into functional
(meaningful) and relative uncertainty (noisy) information

FIGURE 1
(A). Measurement space normalized exponential data, yN = f(x)N
= exp(-x)N, and quantized normalized exponential data, yN,q, are
graphically indistinguishable (B). Differences between uncertainty
space data, z (straight line of blue dots) and zq (spread of orange
dots), calculated using normalized data, yN, and normalized quantized
(q = 3) measurement space data, yN,q, are apparent. The envelope
function, E(x), provides an upper and lower boundary for the quantized
data, zq (C). A zoomed closeup of uncertainty space shows all
quantized points, zq (orange data points), are contained within the
envelope and illustrates that the spread of the envelope defines the
spread of the data, zq. All zq data points are single valued for each input
value of x. Note that the ideal, or unquantized uncertainty data, z (blue
data points), have no spread.
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components has been mathematically developed and presented
(Herndon, 2022). Functional information forms the mathematical
basis for the adaptation methodology which is the focus of the paper.
Therefore, functional information is reviewed first, then the
information guided adaptation methodology is presented,
following by applications to demonstrate the range of the
method’s applicability and provide a detailed outline of the process.

Quantization uncertainty associated with the data measurement
process was linked to the information associated with the function
that maps to the measured data (Herndon, 2017; 2021). Information
associated with measured data is defined in terms of the data’s real-
valued decimal digit (dits) or binary digit (bits) accuracy and is based
on the absolute uncertainty of the data set. Real-valued digit
accuracy, q, is the number of dits, or bits, required to describe
each data point, i.e., the real-valued digit accuracy, q, is equivalent to
the Shannon information, h, associated with each data point (q = h)
(Herndon, 2017; 2021). A relationship between data uncertainty and
information is obtained and used to decompose the information
entropy, H, into functional, If, and relative uncertainty, Iu,
information components (Herndon, 2022). The functional
information component, If, quantifies mathematical model data,
f(x), into a value in the units of information that describes the entire
function.

The exponential, y (Figure 1A), illustrates a data set acquired
with m equiprobable measurements. The exponential function,
ubiquitous in nature, graphically illustrates the useful transition
from measurement data to uncertainty data that is detailed below
(Figures 1B, C). Information entropy, H (Eq. 1), is the average of a
data set’s information components, h, when determined from these
m equiprobable measurements (Cover and Thomas, 2006; Stone,
2015; Çengel, 2021).

H � 1/m∑m

j�0hj (1)

Data constituting this exponential function have information
components, h, that are defined in terms of the data’s real-valued
digit accuracy and are determined in uncertainty space (Herndon,
2017; 2021). Measured data in the form, y = f(x), are transformed
from measurement space data, y, into uncertainty space data, z, by
the γ operation in Eq. 2 (Figure 1B). Data, y, are normalized
(subscript N), yN, before transformation to uncertainty space
data. Normalizing refers to preprocessing steps necessary to
ensure all data values range from zero to one while maintaining
the form of the measured data. After normalization, the data are
quantized (subscript q) to the whole number that corresponds to the
integer-valued digit accuracy of the measured data (Herndon, 2017).
Uncertainty space data, zq, determined by the γ operation, are
defined by the sequence, zq (Eq. 2), where ur is the data’s relative
uncertainty (Figure 1B). Unquantized uncertainty space data, z, is
ideal and therefore is not quantized and produces no data spread (z
plotted as blue dots in Figures 1B, C).

zq � γyN,q � f x + Δx( )N,q/f x( )N,q ± ur (2)

There is also an envelope function, E(x) (Eq. 3), in uncertainty space
(Figures 1B, C) that is characterized by the normalized function, yN =
f(x)N, and the information component, h, which was defined by the real-
valued digit accuracy, q (Herndon, 2017; 2021).

E x( ) � f x + Δx( )N/f x( )N ± 10−h/f x( )N (3)

An equivalency exists in uncertainty space (Eq. 4) between the
relative uncertainty, ur, associated with the spread of the data, zq, and
the spread of the envelope function, E(x) (Herndon, 2017; 2021;
2022).

ur � 10−h

f x( )N (4)

The equivalency of Eq. 4 is illustrated graphically in Figure 1B
where the spread of the uncertainty space data, zq, is bounded by the
spread of the envelope function, E(x), which is further demonstrated
in the closeup of Figure 1C; Eq. 4 is used to decompose the
information entropy, H, into separate components that quantify
data function (f(x)N) information, If, and the data relative
uncertainty (ur) information, Iu (Eq. 5) (Herndon, 2022).

H � − 1
m
∑m

j�0 log f xj( )
N

( )( ) + log ur( )j( ) � If + Iu (5)

Information, If, quantifies a value for the number of functional
information-carrying real-valued decimal digits (dits) in a data set
by determining the average of all individual data point functional
information values, i (Eq. 6) (Herndon, 2022). This deterministic
value, If, assigns meaning to the model function, f(x), in terms of
information, thus any function can be identified in terms of
information. Functional information becomes the common
platform for comparison of data sets that were previously
considered disparate.

If � − 1
m
∑m

j�0log f xj( )
N

( ) � 1
m
∑m

j�0ij (6)

Next, the information formulation for adapting bioresponses
using biomarkers, based on Eq. 6, is presented.

2.2 Information guided adaptation
methodology

An event, x, acts upon a complex biological system and causes a
response or effect, S, that can be as modeled by S = f1(x). Typically, this
biological system response model or bioresponse, S = f1(x), cannot be
directlymeasured, so a valid surrogate biological systemmarkermodel or
biomarker, V, is measured to obtain an indirect quantification of system
response (Strimbu and Tavel, 2010; Califf, 2018). If the mathematical
chain of intermediate functions, Ci (Eq. 7), connecting the biological
system response, S, to the biomarker response, V, were known, then a
cause-effect feedback mechanism based upon calculated and measured
biomarker units would be available for adaptive therapies. However, this
functional chain is unknown which means the input, Cn-1, to the
biomarker, V, is unknown, therefore biomarker data is measured
against an appropriate independent variable, y (Eq. 8), and modeled
by function g.

x→f1
S→f2

C2/→fn−1
Cn−1→fn

V (7)
y→g V (8)

The bioresponse and biomarker models, S = f(x) and V = g(y),
must be used to analyze the system since the chain of models
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represented by f2 → fn in Eq. 7) are not available in complex
biological systems. The formula used to relate bioresponse and
biomarker information, IS and IV, is determined from the
informational relationship between a function’s current state, f,
and its adapted state, f′, defined as IS′ � kSIS and IV′ � kVIV
(illustrated by the yellow arrows in Figure 2). The linear
adaptation formula, (Eq. 9), determined from the bioresponse/
biomarker ratio, IS′/IV′, is based on these relationships, different
criteria will result in more complicated adaptation formulas. The
values of the adaptation constants, ki, specify the amount of change
defined by the investigator’s adaptive goal for the biomarker. This
fractional change in information, kV, between current and adapted
biomarker information is equated to the fractional change, kS,
between current and adapted bioresponse information because
they are describing the same biological system, therefore, kS = kV.
Eq. 9 expects that the bioresponse and biomarker models do not
change, other than parameters, between a function’s current state, f,
and its adapted state, f′. The information criterion IV′ � kIV is
based on the measured biomarker data and is primary because it
used by the investigator to set the value for the adaptation constant,
k, assigned to the bioresponse relationship, IS′ � kIS. The
information criterion IV′ � kIV is applicable to a range of models
including polynomials, power, and exponential functional groups
(see Section 3).

IS′ � IS
IV′
IV

(9)

Functional information can be used to adapt treatments using
measured outcomes because information is transmitted through the
complex connections forming the bioresponse/biomarker system
(illustrated by the blue arrows in Figure 2). Biomarkers must be
investigator qualified as legitimate surrogates of the bioresponse to
minimize uncertainties when modeling information flow through a
biological system (Eq. 9). Next, the adapted bioresponse information
(Eq. 9) will be used to determine the bioresponse input, x, that is
necessary to adapt the bioresponse to the desired goal, i.e., a linear
relationship, based on information, is used to solve a previously
intractable nonlinear problem. A functional bioresponse-biomarker
chain, based on process (7), will be synthesized to demonstrate that
the mathematical foundation provided by functional information

(Eq. 6) can be successfully applied to bioresponse/biomarker
models (Eq. 9).

3 Results and discussion

3.1 Adaptation process outline

Exponential and power/polynomial examples are presented to
demonstrate the range of functional groups applicable to the adaptation
formulation developed in Section 2.2. For example, the adaptation formula
(Eq. 9) robustly applies across exponential bioresponsemodels regardless of
parametric changes to themodels. Robustness is quantified by determining
whether the information criterion IV′ � kIV (Section 2.2) is maintained
when model parameters change.

The implementation process is outlined to show how
functional information is transmitted through the complex
connections of a bioresponse/biomarker system and can be
used to adapt bioresponses using biomarker measurements.
Adaptation of the bioresponse using biomarker information
will be demonstrated using different sets of models based on
the exponential, power, and polynomial functions. Exponential
functions are used primarily because of their natural ubiquity in
the biological sciences and power/polynomial functions are
selected to demonstrate the flexibility of this methodology.
These example applications demonstrate that information
transferred through a complex biological system can be
leveraged for adaptation purposes (Eq. 9).

The process of information flow from bioresponse, S, to biomarker,
V, (Eq. 7), will be synthesized to demonstrate the utility of applied
functional information. Information flow described in Eq. 9 can be
visualized in the information cycle in Figure 2, where information is
the mechanism that creates the bioresponse-biomarker data connection.
Application of this information cycle begins with synthesizing a
composition of functions that connects step I and II. Input changes in
the bioresponse model, S, will automatically propagate to changes in the
biomarker model, V. Next, the biomarker data of II will be modeled
independently and then changed to affect the desired response (III). At
step III the adapted biomarker data,V′, does not equal the biomarker data
of step II, V′ ≠ V. Information determined from steps I-III are then used
to determine the adapted bioresponse information, IS′ (Eq. 9), in step IV.
This information, IS′, is then used to determine the adapted input to the
next iteration of the cycle (step I). If the adaptive information formula (Eq.
9) is valid then the next iteration of biomarker data,V, in step II will equal
the previous adapted biomarker data of step III, i.e., V = V′ verifying the
method. Equivalently, if functional information adaptation is viable, the
next cycle of biomarker functional information (II) will equal the previous
adapted biomarker functional information (III), i.e., IV|cycle 2 � IV′|cycle 1.

Step I and II of Figure 2 and the processes connecting them are
modeled by the composition of functions (Eq. 10) that automatically
calculate the current biomarker, V, from the current bioresponse, S.
This synthetic process is a simplified version of Eq. 7, where the
bioresponse is modeled as S � S0 exp(−(a1 + a2x2)), the
intermediate data is condensed to C � C0 ln(b1S), and the
biomarker is V � V0 exp(−(c1 + c2x) (Figure 3). Selection of an
input parameters, a1 and a2, determine the bioresponse, S
(Figure 3A), which cascades through the nonlinear functions (Eq.
10) to automatically determine the biomarker, V (Figures 3B, C).

FIGURE 2
Information cycle, I-IV, used to adapt bioresponse data to
biomarker-specified changes. Functional information can cross the
knowledge gap represented by the blue arrows and permit changing
the bioresponse model, S, using the adapted biomarker data, V’.
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x→f1
S→f2

C→f3
V (10)

This biomarker data,V, is then independently modeled following Eq.
8, whereV � V0 exp(−d1y) (Figure 3D). Biomarker data, V, is changed
to V′ in step III using Eq. 8; (Figure 3E). The adapted biomarker
functions, V and V′, in Figure 3E, which are modeled using quadratic
exponentials, maintain the linear criterion, IV′ � kIV, shown in
Figure 3F. This linear relationship, IV′ � kIV, is robust, i.e., linearity is
maintained even whenmodel parameters, ai, bi, and ci, change. The basis
for determining the adapted input for the next cycle is the adapted
bioresponse functional information, IS′, calculated using the information
adaptation formula (Eq. 9). Demonstration of the processes, graphically
illustrated in Figure 3, are detailed next in a step-by-step format.

3.2 Adaptation process details

Application of the information adaptation Formula 9 presented
in the following steps uses exponential data for the bioresponse and
biomarker models. The models and the example parameters are
listed in the steps below and in Table 1.

1) The bioresponse model is S � S0 exp(−(a1 + a2x2)), where S0 = 2,
a1 = 2, anda2 = 0.04.Normalize the data anddetermine the bioresponse
information, IS, using Eq. 6. Details are listed in Table 1A, where
calculated bioresponse data are generated given x = {0, 1, 2, . . ., 9} (this
corresponds to Step I of Figure 2). The parameter-of-interest is a2

because it controls the bioresponse information content. The adaptation
formula (Eq. 9) will be used to adapt a2 in step 5 below.

2) Biomarker data, V, is automatically determined by the function
composition x→f1

S→f2
C→f3

V (10). Each step is graphed in Figures
3A–C. Calculated data in Table 1B for C � C0 ln(b1S) and
V � V0 exp(−(c1 + c2x) are determined using C0 = 4.0, b1 =
0.5, V0 = 6.0, c1 = 2.0, and c2 = −0.5 (Table 1A). Functional
information for V is calculated using Eq. 6. (Step II of Figure 2).
a) Biomarker data, V, is modeled in linear increments of the

independent variable, y, simulating the laboratory
environment where the function V = f3(C) is unknown. The
investigator now has biomarker data in terms of the function
V � g(y), where the independent variable y = {0, 5, 10, . . ., 45}
(Figure 3D). The biomarker data in terms of function g are listed
in Table 1B and the information, IV, is identical to IV in Table 1A
because it is dependent on x from Eq. 10 not y from Eq. 8.

3) Current biomarker data, V, is adapted to the investigator’s
achievable goal, V′ using the model V′ � V0

′ exp(−d1y2),
where V0′ = 0.01487, and d1 = 0.0032 (Table 1B). Adaptation
is accomplished by changing d1 to d1′ = 0.002 to produce the
desired change in the biomarker model, V′ � V0 exp(−d1′y)
(Figure 3E). This adaptation could also be accomplished by
choosing a value for k that produces the desired fractional
change in information, IV′ � kVIV. Step III (Figure 2).
a) The parametric change, d1 = 0.0032 to d1′ = 0.002, results in a

change in biomarker information from IV = 0.9902 dits to
IV′ = 0.6189 dits.

FIGURE 3
The functional composition x→f1 S→f2 C→f3 V (plots A–C) connecting Steps I and II (Figure 2) is a synthesized process used to validate the methodology.
Any change to the input, x, in the bioresponse model, S, results in immediate change in the biomarker model, V (Plot C). Plot (D) simulates the clinical
process of modeling the biomarker data from Plot (C) against a logically chosen independent variable, y, because the functional connections between
Plot (A) and Plot (C) are unknown. The biomarker model, V, is plotted against the adapted model, V’, in plot (E) and the linear relationship between
their information, IV′ � kIV , is shown in Plot (F). This linear relationship is maintained even when model parameters, ai, bi, and ci, change.
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TABLE 1 Exponential function application data.

A. Bioresponse information, IS (Figure 2 Step I) and biomarker information, IV (Step II). Data derivations are described in Section 3.2
steps 1-2.

x S SN C V VN iS iV IS IV

0 0.2707 1.0000 −8.000 1.487E-2 1.0000 0.0000 0.0000 0.4951 0.9902

1 0.2601 0.9608 −8.160 1.372E-2 0.9231 0.0174 0.0347

2 0.2307 0.8521 −8.640 1.080E-2 0.7261 0.0695 0.1390

3 0.1888 0.6977 −9.440 7.239E-3 0.4868 0.1563 0.3127

4 0.1427 0.5273 −10.560 4.135E-3 0.2780 0.2779 0.5559

5 0.0996 0.3679 −12.000 2.012E-3 0.1353 0.4343 0.8686

6 0.0641 0.2369 −13.760 8.348E-4 0.0561 0.6254 1.2508

7 0.0381 0.1409 −15.840 2.950E-4 0.0198 0.8512 1.7024

8 0.0209 0.0773 −18.240 8.887E-5 0.0060 1.1118 2.2236

9 0.0106 0.0392 −20.960 2.281E-5 0.0015 1.4071 2.8142

B. Adapted biomarker information, IV’ (Step III). Data derivations are described in Section 3.2 step 3.

y V V’ VN V’N iV iV’ IV IV’

0 0.01483 0.0149 1.0000 1.0000 0.0000 0.0000 0.9902 0.6189

5 0.01373 0.0141 0.9231 0.9512 0.0347 0.0217

10 0.01080 0.0122 0.7261 0.8187 0.1390 0.0869

15 0.00724 0.0095 0.4868 0.6376 0.3127 0.1954

20 0.00414 0.0067 0.2780 0.4493 0.5559 0.3474

25 0.00201 0.0043 0.1353 0.2865 0.8686 0.5429

30 0.00084 0.0025 0.0561 0.1653 1.2508 0.7817

35 0.00030 0.0013 0.0198 0.0863 1.7024 1.0640

40 8.89E-5 0.0006 0.0060 0.0408 2.2236 1.3897

45 2.28E-5 0.0003 0.0015 0.0174 2.8142 1.7589

C. Adapted bioresponse information, IS’ (Step IV cycle 1), becomes the new IS (IS = IS’) in the next information cycle (Step I, cycle 2)
listed below. The next iteration of biomarker information, IV =0.6189, is determined (Step II cycle 2) and compared to the target
biomarker information, IV’ = 0.6189 from Table 2B (Section 3.2 steps 4-5).

x S SN C V VN iS iV IS IV

0 0.2707 1.000 −8.00 1.487E-2 1.0000 0.0000 0.0000 0.3094 0.6189

1 0.2640 0.9753 −8.10 1.415E-2 0.9512 0.0109 0.0217

2 0.2449 0.9048 −8.40 1.218E-2 0.8187 0.0434 0.0869

3 0.2161 0.7985 −8.90 9.483E-3 0.6376 0.0977 0.1954

4 0.1814 0.6703 −9.60 6.683E-3 0.4493 0.1737 0.3474

5 0.1449 0.5353 −10.50 4.261E-3 0.2865 0.2714 0.5429

6 0.1100 0.4066 −11.60 2.458E-3 0.1653 0.3909 0.7817

7 0.0795 0.2938 −12.90 1.283E-3 0.0863 0.5320 1.0640

8 0.0546 0.2019 −14.40 6.062E-4 0.0408 0.6949 1.3897

9 0.0357 0.1320 −16.10 2.591E-4 0.0174 0.8794 1.7589
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TABLE 2 Power/Polynomial function application data.

A. Bioresponse information, IS (Figure 2 Step I) and biomarker information, IV (Step II). Refer to Section 3.2 step 6 for details.

x S SN C V VN iS iV IS IV

0 5.000 0.1066 11.18 7.34 0.3350 0.9722 0.4750 0.4566 0.2413

1 6.000 0.1279 14.70 7.83 0.3573 0.8930 0.4469

2 8.249 0.1759 23.69 8.87 0.4045 0.7548 0.3931

3 11.47 0.2446 38.86 10.23 0.4668 0.6115 0.3308

4 15.56 0.3317 61.36 11.83 0.5398 0.4793 0.2678

5 20.43 0.4355 92.32 13.61 0.6208 0.3610 0.2071

6 26.03 0.5550 132.8 15.52 0.7082 0.2557 0.1499

7 32.33 0.6894 183.8 17.56 0.8010 0.1615 0.0964

8 39.30 0.8379 246.3 19.70 0.8984 0.0768 0.0465

9 46.90 1.0000 321.2 21.92 1.0000 0.0000 0.0000

B. Adapted biomarker information, IV’ (Step III). Refer to Section 3.2 step 6 for details.

y V V’ VN V’N iV iV’ IV IV’

0 7.344 0.335 7.078 0.2890 0.4750 0.5391 0.2413 0.2688

5 7.834 0.357 8.013 0.3271 0.4469 0.4853

10 8.867 0.405 9.198 0.3755 0.3931 0.4254

15 10.23 0.467 10.63 0.4341 0.3308 0.3624

20 11.83 0.540 12.32 0.5029 0.2678 0.2985

25 13.61 0.621 14.25 0.5819 0.2071 0.2351

30 15.52 0.708 16.44 0.6711 0.1499 0.1732

35 17.56 0.801 18.87 0.7705 0.0964 0.1132

40 19.70 0.898 21.56 0.8802 0.0465 0.0554

45 21.92 1.000 24.49 1.0000 0.0000 0.0000

C. Adapted bioresponse information, IS’ (Step IV cycle 1), becomes the new IS (IS = IS’) in the next information cycle (Step I, cycle 2)
listed below. The next iteration of biomarker information, IV =0.2674, is determined (Step II cycle 2) and compared to the target
biomarker information, IV’ = 0.2688 from Table 2B. Refer to Section 3.2 step 6 for details.

x S SN C V VN iS iV IS IV

0 4.000 0.0778 8.000 6.828 0.2942 1.1092 0.5313 0.5085 0.2674

1 5.000 0.0972 11.18 7.344 0.3164 1.0123 0.4997

2 7.379 0.1434 20.04 8.477 0.3653 0.8433 0.4374

3 10.88 0.2117 35.92 9.994 0.4306 0.6744 0.3659

4 15.42 0.2997 60.53 11.780 0.5076 0.5233 0.2945

5 20.89 0.4062 95.51 13.77 0.5935 0.3913 0.2266

6 27.27 0.5302 142.4 15.93 0.6866 0.2756 0.1633

7 34.51 0.6709 202.7 18.24 0.7859 0.1734 0.1047

8 42.57 0.8276 277.8 20.67 0.8905 0.0822 0.0504

9 51.44 1.0000 368.9 23.21 1.0000 0.0000 0.0000
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i) Linearity between the biomarker and adapted biomarker
information, IV′ � kIV, is maintained regardless of changes
to the input coefficients, ai, bi, and ci (Figure 3F).

4) The information adaptation formula (Eq. 9) is used to determine
the adapted information value, IS′, for the adapted state of the
bioresponse model, S′. Step IV (Figure 2).
a) The adapted bioresponse information value, IS′ = 0.3094 dits

(Table 1C), is determined using the initial bioresponse
information, IS, the initial biomarker information, IV, and the
adapted biomarker information, IV′, from Tables 1A, B (IS =
0.4951 dits, IV = 0.9902 dits, and IV′ = 0.6189 dits) and Eq. 9.

5) Finally, the parameter-of-interest, a2 = 0.04, is iteratively adjusted to
a2′ = 0.025 until the next cycle of bioresponse information, IS, is
equal to the target value, IS′ = 0.3094 dits. The cycle begins again at
Step I by setting a2 = a2′, and calculating the next iteration of
biomarker data, V. If this current iteration of biomarker data equals
the adapted biomarker data,V′, of Step IV (from#4 above), then the
adaptation process is finished. An alternate method to determine if
adaptation is finished occurs when there is an equivalency between
the new cycle of biomarker information, IV = 0.6189 dits (Table 1C),
and the adapted biomarker information, IV′ (Table 1B).
a) Adaptation of a complex biological system based on functional

information has been demonstrated when IV|cycle 2 � IV′|cycle 1.
6) The application process outlined above in steps 1–5 is applied to a

power function model, where the bioresponse model, S � a1 + xa2

(a1 = 5, a2 = 1.7), C � Sb1 (b1 = 1.5), V � c1 + Cc2 (c1 = 4, c2 = 0.5).
The power function data resulting from following process steps 1-
2) above are listed in Table 2A. The model, V = g(y), used for
adaptation is the polynomialV � d1 + d2y + d3y2 (d1 = 7.0776, d2 =
0.162, d3 = 0.0038). The quadratic coefficient is changed to d3 =
0.005 to simulate adaptation to the target goal, V′, following the
procedure in Section 3.2 step 3 (Table 2B). The polynomial model,
V = g(y) (Figure 3D), may not offer any mechanistic explanatory
value, but it still serves the purpose of transferring information and
maintaining the criterion IV′ = k·IV and therefore the validity of the
adaptation formulation (Eq. 9). Following Section 3.2 steps 4-5 the
adapted bioresponse information, IS′, is determined and the power
function variable is iteratively modified from a2 = 1.7 to a2′ =
1.7565 so that IS′|cycle 1 = IS|cycle 2 = 0.5085 (Table 2C). The
biomarker information, IV|cycle 2 = 0.2674 dits, that corresponds to
this bioresponse input, IS|cycle 2 = 0.5085 dits, is 0.5% difference from
the IV|cycle 1 = 0.2688 dits. This uncertainty (0.5%) is a measure of the
robustness of the application using this power function model. In
contrast, the linearity criterion for the exponential function had 0%
uncertainty (IV|cycle 2 � IV′|cycle 1 � 0.6189 dits, Table 1), however,
the power function adaptation process is considered complete because
IV|cycle 2 � IV′|cycle 1 is within an acceptable uncertainty range (0.5%).

Functional information transmission through the complexities
of the bioresponse/biomarker relationship provides a mechanism
for precision medicine. Application to precision medicine has been
demonstrated using the reproducible processes outlined and
detailed in Section 3.1, Section 3.2. The adaptation formulation
(Eq. 9) is applicable to a range of bioresponse, S = f(x), and
biomarker, V = g(y), models including exponential-based and
power/polynomial-based models. Adaptation is performed at

the fundamental level of information where the effect the
prescribed therapy has on the patient is analyzed in the same
units (dits) as the patient’s measured outcomes. This information
foundation permits quantitative adaptions of individual patient
treatment responses based on changes defined by the patients’
biomarker measurements. Functional information assists current
efforts in the bioinformatics community to classify and verify
candidate biomarkers (Shin et al., 2008; Wang et al., 2009;
Ganchev et al., 2011; Asgari et al., 2018; Liu and Gao, 2018;
Yaghoobi et al., 2021; Ding et al., 2023; Nazari and Zinati,
2023). Information guided precision medicine also provides a
mechanism for solving inherently complex biological problems
like those encountered in the active research areas of targeted and
adaptive oncology therapies (Sawyers, 2004; Aggarwal, 2010;
Baudino, 2015; Padma, 2015; Wang et al., 2007; Bhullar et al.,
2018; Yang et al., 1038; Zhong et al., 2021; Gatenby et al., 2009;
Pazarentzos and Bivona, 2015; Neri et al., 2007). Oncology
applications are emphasized because it is the focus of the NIH
PMI, however, information-guided analysis is broadly applicable
to any functional analysis of signal data.

4 Conclusion

Functional information’s mathematical origin inmetrology has been
presented and applied to complex biological systems by adapting
bioresponses using biomarker information. Information-guided
analysis is directly applicable to the bioresponse/biomarker
relationships found in immunotherapy, chemotherapy, and
radiotherapy and is extensible within the health sciences to include
bioinformatics and computational biology. In addition, it has application
to systems engineering where it provides a feedback mechanism for
complex control systems. Functional information also impacts basic
sciences because it defines the wave function in units of information.

Functional information guided adaptation of complex biological
systems has been introduced as a promising analytic tool for
investigators in the growing field of precision medicine. Information
guided analysis of complex oncological processes will augment ongoing
research efforts by combining information from the collective
knowledge of oncology researchers in support of the near-term focus
on cancer research established by the NIH Precision Medicine Initiative
(PMI). Generally, functional information has potential application in
any research area where signal function analysis is relevant.
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