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Criticality has been proposed as a mechanism for the emergence of complexity,
life, and computation, as it exhibits a balance between order and chaos. In classic
models of complex systems where structure and dynamics are considered
homogeneous, criticality is restricted to phase transitions, leading either to
robust (ordered) or fragile (chaotic) phases for most of the parameter space.
Many real-world complex systems, however, are not homogeneous. Some
elements change in time faster than others, with slower elements (usually the
most relevant) providing robustness, and faster ones being adaptive. Structural
patterns of connectivity are also typically heterogeneous, characterized by few
elements withmany interactions andmost elements with only a few. Here we take
a few traditionally homogeneous dynamical models and explore their
heterogeneous versions, finding evidence that heterogeneity extends criticality.
Thus, parameter fine-tuning is not necessary to reach a phase transition and
obtain the benefits of (homogeneous) criticality. Simply adding heterogeneity can
extend criticality, making the search/evolution of complex systems faster and
more reliable. Our results add theoretical support for the ubiquitous presence of
heterogeneity in physical, biological, social, and technological systems, as natural
selection can exploit heterogeneity to evolve complexity “for free”. In artificial
systems and biological design, heterogeneity may also be used to extend the
parameter range that allows for criticality.
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1 Introduction

Phase transitions have been studied extensively to describe changes in states of physical
matter (Stanley, 1987), and are typically characterized by symmetry breaking (Anderson,
1972). They have also been studied more generally in dynamical systems, such as vehicular
traffic (Chowdhury et al., 2000; Helbing, 2001). Near phase transitions, critical dynamics are
known to occur (Mora and Bialek, 2011). These are also associated with scale invariance and
complexity (Christensen and Moloney, 2005). There are several examples of criticality in
biological systems (Muñoz, 2018), including neural dynamics (Beggs, 2008; Chialvo, 2010),
genetic regulatory networks (Shmulevich et al., 2005; Balleza et al., 2008), and collective
motion (Vicsek and Zafeiris, 2012). These are already serving as inspiration for building
artificial critical systems, such as robots (Braccini et al., 2022).
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It is often argued that critical dynamics are prevalent or desirable in
a broad variety of systems because they offer a balance between
robustness and adaptability (Monod, 1970; Langton, 1990;
Kauffman, 1993; Hidalgo et al., 2016). If dynamics are too ordered,
then information and functionality can be preserved, but it is difficult to
adapt. The opposite occurs with chaotic dynamics: change allows for
adaptability, but it also leads to fragility, as small changes percolate
through the system and useful information tends to be lost. Thus, for
phenomena such as life, computation, and complex systems in general,
critical dynamics should be favored by evolutionary processes
(Gershenson, 2012; Torres-Sosa et al., 2012; Roli et al., 2018).

There are different ways in which one can measure criticality
(Langton, 1990; Wuensche, 1999; Luque and Solé, 2000; Pascual and
Guichard, 2005; Mastromatteo and Marsili, 2011), some of which are
related to entropies. For example, Fisher informationmaximizes at phase
transitions (Prokopenko et al., 2011; Wang et al., 2011). Still, it rapidly
decreases and it is difficult to evaluate how far a system is from criticality.
In this work, we use a measure of complexity (Fernández et al., 2014)
based on Shannon information that also maximizes at phase transitions,
but reduces its value more gradually and is straightforward to calculate
compared to Fisher information, as the latter requires to measure the
effects of controlled perturbations.Moreover, Fisher information requires
the observer to perturb the system (to measure the change in
information), and this is not possible in many systems. The measure
we use can be simply and computationally efficiently applied to any time
series. There are several definitions and measures of complexity (Lloyd,
2001), but, crucially, the one we use here is highly correlated with
criticality.

If criticality is found only near a phase transition, then most of a
parameter space would have non-viable solutions, or in the best
cases, suboptimal. Thus, how can a search procedure find the right
parameters for criticality? Self-organized criticality (Bak et al., 1987;
Adami, 1995; Hesse and Gross, 2014; Vidiella et al., 2020) has been
proposed as an answer. Although interesting and useful for specific
cases, it is not present in many critical phenomena. Criticality can
also be realized through a mixture of excitatory and inhibitory
interactions (Usefie Mafahim et al., 2015). In general, one can think
of different mechanisms that will find or adjust parameters so that
criticality is achieved. And yet, could criticality be more prevalent
than previously thought?

In previous work where we have studied rank dynamics in a
variety of systems (Cocho et al., 2015; Iñiguez et al., 2022), we
observe that the most relevant elements change more slowly than
less relevant elements. We hypothesized that heterogeneous
temporality equips systems with robustness and adaptability at
the same time. Here we explore the role of heterogeneity in
different dynamical systems. We show that different types of
heterogeneity extend the parameter region where critical
dynamics are observed (Bailly and Longo, 2008). Thus, we can
say that heterogeneity results in “criticality for free”, reducing the
problem of fine-tuning parameters.

2 Measuring complexity

Following Lopez-Ruiz et al. (1995), we have proposed a measure
of complexity (Fernández et al., 2014) based on Shannon’s
information (Shannon, 1948),

I � −K∑b
i�i

pi logpi, (1)

where K is a positive constant and b is the length of the alphabet (for
all the cases considered in this paper, b = 2). This measure is
mathematically equivalent to the Boltzmann-Gibbs entropy. To
normalize I to [0,1], we use

K � 1
log2b

. (2)

I is maximal when the probabilities are homogeneous, i.e., there is
the same probability of observing any symbol along a string. I is
minimal when only one symbol is found in a string (so it has a
probability of one, and all the rest have a probability of zero).
Chaotic dynamics are characterized by a high I, while ordered
(static) dynamics are characterized by a low I. Inspired by Lopez-
Ruiz et al. (1995), we define complexity C as the balance between
ordered and chaotic dynamics,

C � 4 · I · 1 − I( ), (3)
where the constant 4 is added to normalize the measure to [0,1].

3 Results

We first present results of a heterogeneous version of the Ising
model, where elements have different temperatures. We then
explore structural and temporal heterogeneity in random Boolean
networks. Afterwards, we abstract the specific dynamics of a system
and investigate the general conditions under which heterogeneity
promotes criticality. Finally, we provide a general solution,
independent of any measure, using Jensen’s inequality.

3.1 Value heterogeneity: the Ising model

We consider a system of interacting atoms arranged in a
two-dimensional square lattice with periodic boundary
conditions (Figure 1A). The state of an atom is defined by its
dipole nuclear magnetic moment: a two-valued spin
representing the orientation of the magnetic field produced
by the atom. Intuitively, neighboring atoms with the same
spin value contribute less to the total energy of the system
than atoms with different spin values. Systems of this kind
evolve preferentially to states with the lowest possible energy.
When the temperature of the environment is increased, the
system heats, and we observe a sudden change in a global
property of the system, namely, loss of magnetization. A
simple theoretical model of such a system is the Ising model
(Ising, 1925; Glauber, 1963).

The Ising model is usually homogeneous: all atoms are subjected
to the same temperature, and one explores different properties as the
temperature T varies. This is a good assumption when all atoms can
be considered to behave in a similar way. However, if we are
modeling an Ising-like biological system (Hopfield, 1982), then
each element might have slightly different properties. In the
proposed heterogeneous case, each atom has a temperature taken
from a Poisson or exponential distribution with a mean equal to the
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temperature of the homogeneous case, for comparison (see Section
5.1 for details).

Figure 1B shows the standard correlation function of the Ising
model for varying temperature. This is maximal in the phase
transition at T ≈ 2.27, i.e., criticality. Figure 1C shows that there
is a correspondence between the correlation function and the
complexity measure in Eq. 3. Figure 1D shows the average
complexity C as T increases. Complexity is maximal near the
phase transition for the homogeneous case. Heterogeneity shifts
the expected maximum complexity (that reflects criticality), but it
also expands it, in the sense that the area under the curve is
broadened. In other words, critical-like dynamics are found for a
broader range of T values (here defined as complexity larger than an
arbitrary threshold of 0.8, as an example).

Figure 2A explores the role of finite-size effects in the Ising
model for homogeneous and heterogeneously distributed
temperatures, by increasing the length L of the underlying square
lattice. In all cases, the width of the complexity curves increases with
the length of the lattice, but the region where criticality is extended
by heterogeneity does not depend greatly on the lattice size. The
exponential distribution shows the largest effect of all. We also

performed a standard finite-size scaling analysis (see Section 5.1.4).
As seen in Figure 2B, the scaling function fits data into the scaled
function. This shows that criticality is extended by heterogeneity
independently of the measure of complexity used (Eq. 3).

Table 1 contains an overview of the critical exponents calculated
via finite-size scaling. For the homogeneous distribution, the
temperature and critical exponents roughly agree with known
values for the Ising model, as expected. In all cases, the critical
exponent ζ shows that data from all lattice sizes collapse into one
single curve and the scaled function is correct. For the heterogeneous
distributions, we notice slightly lower critical temperatures than for
the homogeneous Ising model, but higher values for the critical
exponent ]. This is yet another signal of the increase in the width of
the complexity curves around the transition point, further indicating
that heterogeneity extends criticality in the Ising model. Similar
effects due to spatial heterogeneity have been noticed already by
Griffiths (1969) and others (Bray, 1987; Vojta, 2006; Munoz et al.,
2010; Ódor and Hartmann, 2018), and also used to study neural
systems (Haimovici et al., 2013; Moretti and Muñoz, 2013). Less has
been explored about temporal heterogeneity, with a notable
expection by Vazquez et al. (2011).

FIGURE 1
(A) Two-dimensional Ising model over a square lattice. The graph is wrapped into a torus, implementing periodic boundary conditions. (B) The
correlation function is relatively lower at low and high temperatures than at the critical temperature T ≈ 2.27, where the correlation function is maximum.
(C) Correlation as a function of complexity illustrates that complexity is a good proxy for criticality. (D) Average complexity with error bars for the Ising
model at different temperatures, considering homogeneous (blue), heterogeneous with Poisson distributed (orange), and heterogeneous with
exponentially distributed (gray) temperatures. The black dotted vertical line represents the theoretical phase transition at T ≈ 2.27 (in practice smaller due
to finite size effects).
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3.2 Temporal and structural heterogeneity:
random Boolean networks

We now turn to the role of temporal heterogeneity in the
critical behaviour exhibited by random Boolean networks. A gene
is a part of the genomic sequence that encodes how to produce
(synthesize) either a protein or some RNA (gene products). Gene
product synthesis is called gene expression. Because not all gene
products are synthesized at the same time, the regulation of gene
expression is constantly taking place within a cell. In fact, the
expression of each gene is regulated (among many things) by the
expression of other genes in the genome. This gives rise to an
interaction structure known as a genetic regulatory network.
Boolean networks are a theoretical model of genetic regulatory
networks. In random Boolean networks (RBNs) (Kauffman,
1969; 1993), traditionally there is homogeneous topology and
updating. In this case, critical dynamics are found close to a phase
transition between ordered and chaotic phases (Derrida and
Pomeau, 1986; Luque and Solé, 1997; Wang et al., 2010).

Figure 3A shows an example of the topology of a RBNwith seven
nodes (N = 7) and two connections (inputs K) each. Each node has a
lookup table where all possible combinations of their inputs are
specified (Figure 3A). Using an ensemble approach, for each
parameter combination, we randomly generate topologies
(structure) and lookup tables (function), and then evaluate them
in simulations. Depending on different parameters, the dynamics of
RBNs can be classified as ordered, critical (near a phase transition),
and chaotic. Figure 3C shows example of these dynamics for
different K values.

One can have heterogeneous topology in different ways
(Oosawa and Savageau, 2002; Aldana, 2003), as genetic
regulatory networks are not homogeneous: few genes affect
many genes, and many genes affect few genes. Just like in the
previous case of the Ising model, here we use Poisson and
exponential distributions. Strictly speaking, both are
heterogeneous, but exponential is more heterogeneous than
Poisson, which here we consider as “homogeneous”. The
technical reason for using a Poisson distribution is that it allows
us to explore non-integer average connectivity values in the
network.

We can also have heterogeneous updating schemes
(Gershenson, 2002), as it can be argued that not all genes in a
network “March in step” (Harvey and Bossomaier, 1997). Classical
RBNs (CRBNs) have synchronous, homogeneous temporality, while
in here we use Deterministic Generalized Asynchronous RBNs
(DGARBNs) for heterogeneous temporality. In particular, each
node is updated every number of time steps equal to its out-
degree, so the more nodes one node affects, the slower it will be
updated (see Section 5.2 for details).

FIGURE 2
(A) Complexity as a function of temperature in the Ising model for varying length L of the underlying finite square lattice. The extended criticality
behaviour seen the heterogeneous cases (Poisson and exponentially distributed temperatures, as opposed to the homogeneous case) does not change
greatly with the size of the lattice. (B) Plot of the scaling function leading to data collapse into the original scaled function. Plotting L−ζ/]A (L, T) against
L1/](T − Tc) should let the experimental data collapse into the single curve f(x) (see Section 5.1.4). We also show the values of critical exponents ] and ζ,
calculated analytically using pyfssa (Sorge, 2015) python library. Extended criticality is also exhibited by the scaling function in the heterogeneous version
of the Ising model, independently of the complexity measure used elsewhere.

TABLE 1 Critical temperature Tc and critical exponents ν and ζ, calculated via
finite-size scaling (see Section 5.1.4) for the Ising model with both
homogeneous and heterogeneously distributed temperatures.

Distribution Tc ] ζ

Homogeneous 2.1225 1.0882 0.0109

Poisson 1.8900 1.3281 0.0011

Exponential 2.0217 1.2547 0.0010
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Figure 3D compares the average complexity C as the average
connectivity K is increased. Structural and temporal homogeneity
(CRBN-Poisson) has a classical complexity profile, maximizing near
the phase transition (K = 2 for the thermodynamical limit, i.e., N→

∞). It can be seen that structural heterogeneity (CRBN-
Exponential) extends criticality more than temporal heterogeneity
(DGARBN-Poisson), which basically shifts the curve to the right.
Still, having both structural and temporal heterogeneity (DGARBN-

FIGURE 3
(A) Example of a k-in regular directed graph with set of nodes V ={1,2,. . . ,7} (N =7) and K =2. (B) Truth table of the functions comprising a Boolean
network with 7 nodes and K =2. (C) Example of three regimes of CRBN and their measures of complexity using 40 nodes (N =40) with 100 steps each.
(time flows downwards) For K =1, C =0.0558. For K =2, C =0.9951. For K =5, C =0.4714. (D) Average complexity of RBNs as the average connectivity K is
increased. Combinations of “homogeneous” structure (Poisson), heterogeneous structure (Exponential), homogeneous temporality (CRBN), and
heterogeneous temporality (DGARBN). ΔK = 0.2, N=100, with 1000 iterations for each K

FIGURE 4
(A) Average complexity C for collections of strings with average probability of ones p1, in homogeneous (blue circles) and heterogeneous (red
triangles) cases. The latter yields higher average complexity in the central region, where the homogeneous complexity is low. (B) Illustration of Jensen’s
inequality. The function of the averages f (|x|) of a variable with a distribution with average |x| is lower than the average of the functions |f(x)| for concave
functions. The opposite is the case for convex functions.
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Exponential) extends criticality even more than having structural
heterogeneity only.

3.3 Arbitrary complexity

Abstracting the results from the previous examples, and trying
not to rely on any model in particular, here we explore exhaustively
the measure of complexity (Eq. 3) in homogeneous and
heterogeneous settings, to observe when each case yields a higher
average complexity. So we simply vary the probability p1 of having
ones in a binary string directly (Figure 4A).

In the homogeneous case, we calculate directly the complexity C
as a function of p1 using Eq. 3, assuming that we are averaging the
complexities of several elements with the same p1. For the
heterogeneous case, we generate a collection of probabilities with
mean p1 and standard deviation of 0.2 (truncating to 0 negative
values, and to 1 values greater than one), calculate their complexity,
and then average it. Heterogeneity achieves higher complexities for
roughly 0.25 < p1 < 0.75. One might wonder why all heterogenous
complexities avoid extreme values, even when heterogeneous RBNs
can have complexities close to zero and one. This is because of the
standard deviation of the distributions from which the means are
generated. Smaller standard deviations yield curves closer to the
heterogeneous case.

By assuming that heterogeneity sometimes will be better than
homogeneity and vice versa, we can further generalize our results to
be independent of any measure or function. If we have homogeneity
of a variable x, all elements will have the same value for x, and thus
the mean |x| will be equal to any xi. Thus, the average of any function
|f(x)| will be equal to any f (xi). If we have heterogeneity, then the
mean |x| will be given by some distribution of different values of x,
and similarly for |f(x)|.

We can then say that heterogeneity is preferred when the
average of the function is greater than the function of the average,

|f x( )|>f |x|( ). (4)
Jensen’s inequality (McShane, 1937) tells us that

heterogeneity will be “better” than homogeneity for concave
functions (Figure 4B). If we have a heterogeneous distribution
with mean |x|, a concave function will fulfill that the average of
the functions |f(x)| (heterogeneity) will be greater than the
function of the averages f (|x|) (homogeneity). For more
complex functions, their concave parts will benefit from
heterogeneity and their convex parts will benefit from
homogeneity (as can be seen for C in Figure 4A).

For linear functions, it can be shown that there is no difference
between homogeneity and heterogeneity, as f (|x|) will always be
equal to |f(x)| (see proof in Section 5.3). Thus, we conclude that the
difference between homogeneity and heterogeneity is relevant only
for nonlinear functions.

4 Discussion

There are several recent examples of heterogeneity offering
advantages when compared to homogeneous systems. And yet, it
seems that a general treatment of the role of heterogeneity in

criticality and other collective phenomena has remained elusive.
In public transportation systems, for example, theory tells us that
passengers are served optimally (wait at stations for a minimum
time) if headways are equal, i.e., homogeneous. However, equal
headways are unstable (Gershenson and Pineda, 2009; Quek et al.,
2021). In turn, adaptive heterogeneous headways can deliver
supraoptimal performance through self-organization
(Gershenson, 2011), due to the slower-is-faster effect
(Gershenson and Helbing, 2015): passengers do wait more time
at stations, but once they board a vehicle, on average they will reach
their destination faster, as the idling required to maintain equal
headways is avoided.

There are other examples where heterogeneity promotes
synchronization (see Zhang et al. (2021) and references therein).
Zhang et al. (2021) showed that random parameter heterogeneity
among oscillators can consistently rescue the system from losing
synchrony. In related work, Molnar et al. (2021) found that
heterogeneous generators improve stability in power grids.
Recently, Ratnayake et al. (2021) explored complex networks
with heterogeneous nodes, observing that they have a greater
robustness as compared to networks with homogeneous nodes.
In social networks, Zhou et al. (2020) have found that
heterogeneity of social status may drive network evolution
towards self-optimization. Structural heterogeneity has also been
shown to favor the evolution of cooperation (Santos et al., 2006;
2008).

These examples suggest that heterogenous networks improve
information processing. With heterogeneity, elements can in
principle process information differently, potentially increasing
the computing power of a heterogeneous system over an
homogeneous one with similar characteristics. This is related to
Ashby’s law of requisite variety (Ashby, 1956; Gershenson, 2015),
which states that an active controller should have at least the same
variety (number of states) as the controlled. It is straightforward to
see with random Boolean networks that temporal heterogeneity
increases the variety of the system: the state space (of size 2N for
homogeneous temporality) can explode once we have to include the
precise periods and phases of all nodes (in heterogeneous
temporality), as different combinations of the temporal substates
may lead a transition from the same node substate to different node
substates. Higher K also implies more possible networks. Even if
there are evolutionary pressures for efficiency (smaller networks), if
heterogeneity shifts criticality to higher K, then it will be easier for an
evolutionary search to find critical dynamics in larger spaces. In
recent work (López-Díaz et al., 2023), we have found that functional
heterogeneity (having a distribution of bias in lookup tables, rather
than the same value for all nodes) also extends criticality, as well as
antifragility (Taleb, 2012).

Shannon’s information (Shannon, 1948), mathematically
equivalent to Boltzmann-Gibbs entropy, is maximal when the
probability of every symbol or state is the same,
i.e., homogeneous. Thus, one can measure heterogeneity as an
inverse of entropy (one minus the normalized Shannon’s
information) (Fernández et al., 2014). It is clear that maximum
heterogeneity has its limitations (as measured here, it would occur
when only one symbol or state has probability one, and all the rest
probability zero). Thus, we can assume that there will be an
“optimal” balance between minimum and maximum
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heterogeneities. The precise balance will probably depend on the
system, its context, and may even change in time. If we want
heterogeneity to take the dynamics towards criticality (or
somewhere else), then the precise “optimal” heterogeneity will
depend on how far we are from criticality (Gershenson, 2012;
Pineda et al., 2019). In this sense, a potential relationship with
no-free-lunch theorems (Wolpert and Macready, 1995; 1997) seems
an interesting area of further research.

When homogeneous systems are analyzed in terms of their
symmetries, heterogeneity is a type of symmetry breaking. In
converse symmetry breaking (Nishikawa and Motter, 2016), only
heterogeneity leads to stability, i.e., system symmetry is broken to
preserve state symmetry. This idea can be used to control the
stability of complex systems using heterogeneity (Nicolaou et al.,
2021). A further avenue of research is the relationship between
heterogeneity and Lévy flights (Iñiguez et al., 2022). Lévy flights are
heterogeneous, since they consist of many short jumps and a few
large ones. They offer a balance between exploration and
exploitation, and seem advantageous for foraging (Ramos-
Fernández et al., 2004), extinction prevention (Dannemann et al.,
2018), and search algorithms (Martínez-Arévalo et al., 2020).
Another interesting relationship to study is the one between
heterogeneity and non-reciprocal systems (Fruchart et al., 2021).
The exploration of heterogeneity within self-organized criticality
may also prove useful.

Network science (Albert and Barabasi, 2002; Newman, 2003;
Barabási, 2016) has demonstrated the relevance of structural
heterogeneity. This should be complemented with a systematic
exploration of temporal (Barabási, 2005) and other types of
heterogeneity. It would be interesting to study heterogeneous
adaptive (Gross and Sayama, 2009) and temporal (Holme and
Saramäki, 2012; Holme, 2015) networks, where each node has a
different speed for its dynamics. Temporal heterogeneity
enables a system to match the requisite variety of their
environment at different timescales. If systems can adapt at
the scales at which their environments change, then they will do
so better if they have a variety of timescales, i.e., heterogeneous
temporality. Recently, Sormunen et al. (2022) have shown that
adaptive networks have critical manifolds that can be navigated
as parameters change. In other words, criticality is not restricted
to a single value, but can be associated to a manifold in a
multidimensional system.

In ecology, there is a global tendency towards increased
homogenization (fewer species of plants and animals),
i.e., reduced biodiversity due to agricultural expansion and
invasive species (Ruckelshaus et al., 2020). There is also an
increase in the intensity of disturbances, such as fire (Bowman
et al., 2020), that are predicted to lead to critical transitions (Abades
et al., 2014; Scheffer, 2020) with global consequences (Barnosky
et al., 2012). Thus, increasing ecosystem heterogeneity (e.g.,
diversity) might be a way of reducing the effects of climate
change, by promoting criticality.

Further research is required to better understand the role of
heterogeneity in the criticality of complex systems. The present
work is limited and many open questions remain. We encourage
the reader to experiment with a heterogeneous version of their
favorite homogeneous complex system model, be it structural,
temporal, or other type of heterogeneity. We could learn more

from heterogeneous models of collective motion (Arenas et al.,
2008), opinion formation (Peralta et al., 2022), epidemic spreading
(Sander et al., 2002; Pastor-Satorras et al., 2015), financial markets,
urban growth, ecosystems (Roy et al., 2003; Pascual et al., 2011),
supply chains, brains (Balasubramanian, 2015; Effenberger et al.,
2022), and more. This could contribute to a broader understanding
of heterogeneity and its relationship with criticality.

5 Methods

A graph G consists of a set of vertices V and a set of edges E,
where an edge is an unordered pair of distinct vertices ofG. We write
u ~ v to denote that {u, v} is an edge and in this case we say that u and
v are adjacent. If H is a graph with vertex setW ⊂ V and edge set F ⊂
E, we say that H is a subgraph of G. A graph is said to be connected if
for every pair of distinct vertices u and v, there is a finite sequence of
distinct vertices a0, a1 . . . , an such that a0 = u, an = v, and ai−1 ~ ai for
each i = 0, 1, . . . , n. A connected component of G is a connected
subgraph of G. A graph is said to be finite just in case its vertex set is
finite. A graph is called d-regular if every vertex is adjacent to exactly
d ≥ 1 distinct vertices.

A directed graph D consists of a set V of elements a, b, c, . . .
called the nodes of D and a set A of ordered pairs of nodes (a, b), (b,
c), . . . called the arcs of D. We use the symbol ab to represent the arc
(a, b). If ab is in the arc set A of D, then we say that a is an incoming
neighbour (or in-neighbour) of b, and also that b is a outgoing
neighbour (or out-neighbour) of a. We say that D is k-in regular (k ≥
1) if every node has exactly k in-neighbours: for every node a there
are distinct nodes a1, . . . , ak, such that aja ∈ A for j = 1, . . . , k. In
other words, D is k-in regular just in case the set of in-neighbours of
any node has exactly k elements, all distinct, and possibly including
itself. The out-degree of a node a is the number of nodes b such that
the arc ab is in the arc set of D. Thus the out-degree of a is the
number of out-neighbours of a. Similarly, the in-degree of a node a is
the number of nodes c such that ca ∈A. Thus the in-degree of a is the
number of in-neighbours of a.

5.1 The Ising model with individual
temperatures

It is quite common to study the Ising model on a finite,
connected 4-regular graph where the number of edges is twice
the number of vertices. This graph is usually introduced as a
finite lattice of two-dimensional points on the surface of a three-
dimensional torus. An example of such a graph with 25 vertices and
50 edges is shown in Figure 1A.

5.1.1 The Ising model
We start with a finite graphG = (V, E). We identify the vertex set

ofGwith a system of interacting atoms. Each vertex u ∈V is assigned
a spin σu which can take the value +1 or −1. The energy of a
configuration of spins is

H σ( ) � − ∑
u,v∈V
u~v

σuσv.
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The energy increases with the number of pairs of adjacent vertices
having different spins. The Ising model is a way to assign
probabilities to the system configurations. The probability of a
configuration σ is proportional to exp (−βH(σ)), where β ≥ 0 is a
variable inversely proportional to the temperature.

More precisely, the Ising model with inverse temperature β is the
probability measure μ on the set of configurations X = {+1,−1}V

defined by

μ σ( ) � 1
Z
exp −βH σ( )( )

where Z = Z (G, β) is a normalizing constant. This constant can be
computed explicitly as

Z G, β( ) � exp −β|E|( ) ∑
F⊂E

exp β( ) − 1( )|F|2k〈F〉
where |A| denotes the cardinality of a finite set A, and k〈F〉 the
number of connected components of the (spanning) subgraph 〈F〉 =
(V, F) of G. Then

lim
β→0

Z G, β( ) � C

where C = ∑F⊂E2
k〈F〉 and so, for any configuration σ, we have that

lim
β→0

μ σ( ) � 1
C
.

As the temperature increases (and hence β→ 0), μ converges to the
uniform measure over the space of configurations. When the
temperature decreases, β > 0 increases, and μ assigns greater
probability to configurations that have a large number of pairs of
adjacent vertices with the same spin.

5.1.2 Simulation
Most simulations of the Ising model use either the Glauber

dynamics or the Metropolis algorithm for constructing a Markov
chain with stationary measure μ. Here we only describe the
Metropolis chain for the Ising model.

Given two configurations σ, σ′ ∈ X, let P (σ, σ′) denote the
probability that the Metropolis chain for the Ising model moves
from σ to σ′. For every a ∈ V, we write σa to denote the configuration
obtained from σ by flipping the sign of the value that σ assigns to a
and leaving all the other spins the same. In other words, σa ∈ X is the
unique configuration which agrees everywhere with σ except for the
spin assigned to vertex a: for every u ∈ V, σau � σu if u ≠ a and
σau � −σu if u = a. We let the transition probabilities to be positive P
(σ, σ′) > 0 just in case σ′ = σ or σ′ = σa for some a ∈ V. In the latter
case, the Metropolis chain moves from σ to σa with probability

P σ, σa( ) � 1
|V| 1 ∧

μ σa( )
μ σ( )( )

where x ∧ y denotes the minimum of the quantities x and y. The
probability that the chain stays at the same configuration σ is then

P σ, σ( ) � 1 − ∑
a∈V

P σ, σa( ).

A key property about these transition probabilities is that they
only depend on the ratios μ(σa)/μ(σ). Therefore, to simulate the

Metropolis chain it is not necessary to compute the normalizing
constant Z of the Ising measure μ.

To summarize, we have constructed a transition matrix P that
defines a reversible Markov chain with stationary measure μ.
Proposition 1. The Metropolis chain for the Ising model has
stationary measure μ.

Proof. It is sufficient to prove that the probability measure μ and the
transition matrix P satisfy the detailed balance equations

μ σ( )P σ, σ′( ) � μ σ′( )P σ′, σ( ) (5)
for all σ ≠ σ′. To show this, it suffices to verify that Eq. 5 holds when
σ′ = σa for some a ∈ V. After cancellation of 1/|V| and distributing
μ(σ) and μ(σa) accordingly, it suffices to check

μ σ( ) ∧ μ σ( ) μ σa( )
μ σ( ) � μ σa( ) ∧ μ σa( ) μ σ( )

μ σa( )
or equivalently

μ σ( ) ∧ μ σa( ) � μ σa( ) ∧ μ σ( )
which is obvious.

5.1.3 Individual temperatures
In the previous section, we described how to construct a

transition matrix P that defines a reversible Markov chain with
stationary measure μ. Starting at a configuration σ, the probability
that the chain moves to a new configuration σa for any a ∈ V, is
given by

P σ, σa( ) � 1
|V| 1 ∧

μ σa( )
μ σ( )( )

� 1
|V| 1 ∧

exp −βH σa( )( )
exp −βH σ( )( )( )

� 1
|V| 1 ∧ exp −βΔHa σ( )( )( )

where

ΔHa σ( ) � H σa( ) −H σ( )
� − ∑

u,v∈V
u~v

σauσ
a
v + ∑

u,v∈V
u~v

σuσv

� − ∑
u,v∈V
u~v

σauσ
a
v − σuσv( )

� 2σa ∑
u∈V
u~a

σu.

Thus, the transition probability from σ to σa of the Metropolis chain
P for the Ising model with parameter β ≥ 0 is determined by the
quantity

exp −βΔHa σ( )( ).
We now turn to study a situation where each vertex a has its

own parameter βa. In other word, we shall describe a Markov
chain Pind that moves from σ to σa with probability
depending on

exp −βaΔHa σ( )( ),
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where βa ≥ 0 is a individual (possibly distinct) parameter for each a ∈
V. More precisely, the probability that the new chain moves from σ

to σa is defined as

Pind σ, σa( ) � 1
|V| 1 ∧ exp −βaΔHa σ( )( )( ).

The probability that the chain stays at the same configuration is

Pind σ, σ( ) � 1 − ∑
a∈V

Pind σ, σa( ).

Hence, all the configurations σ′ that differ from σ in at least two
vertices are not reachable from σ. That is to say, Pind (σ, σ′) = 0 if and
only if σ′ ≠ σa for any a ∈ V.

Definition 1. (Ising measure with individual temperatures). LetG =
(V, E) be a finite, connected graph and (βu: u ∈ V) a collection of
non-negative real numbers. The probability measure μind on X =
{+1,−1}V is defined by

μind σ( ) � 1
Zind

exp ∑
u,v∈V
u~v

βuσuσv
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Zind = ∑σ∈Xμind(σ) is a normalizing constant.

Remark 1. We can think of μind as an heterogenous Ising model as
opposed to the homogeneous version μ defined in Section 5.1.1 by

μ σ( ) � 1
Z
exp β ∑

u,v∈V
u~v

σuσv
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Remark 2. It is cleat that the probability measure μ is a stationary
measure of the Markov chain defined by the transition matrix
Pind just in case we have βa = β for all a ∈ V. In other words, μind =
μ if and only if the individual parameters βa in the definition of
Pind are all equal to the single parameter β of the homogeneous
Ising model.
Proposition 2. The probability measure μind is the stationary measure
of the Markov chain defined by the transition matrix Pind.

Proof. In order to satisfy the detailed balanced equations

μind σ( )Pind σ, σa( ) � μind σa( )Pind σa, σ( )
we must have

μind σ( ) 1 ∧ exp −βaΔHa σ( )( )( )
� μind σa( ) 1 ∧ exp βaΔHa σ( )( )( )

for all σ and σa, because

ΔHa σa( ) � H σ( ) −H σa( ) � −ΔHa σ( ).
Now, if ΔHa(σ) ≥ 0 then βaΔHa(σ) ≥ 0, and hence exp (βaΔHa(σ)) ≥
1, so

μind σ( )exp −βaΔHa σ( )( ) � μind σa( ).
Otherwise, if ΔHa(σ) < 0 then −βaΔHa(σ) ≥ 0, and so exp
(−βaΔHa(σ)) ≥ 1, hence

μind σ( ) � μind σa( )exp βaΔHa σ( )( ).
In both cases, we arrive at the conclusion that in order for μind to be
the stationary measure of the chain defined by Pind, we must have

μind σ( )
μind σa( ) � exp βaΔHa σ( )( ) (6)

for every σ ∈ X and a ∈ V.
Now we proceed to prove that Eq. 6 holds. After cancellation of 1/

Zind and using properties of the exponential function, it suffices to check

∑
u,v∈V
u~v

βuσuσv − ∑
u,v∈V
u~v

βuσ
a
uσ

a
v � βaΔHa σ( )

By inspection,

∑
u,v∈V
u~v

βuσuσv − ∑
u,v∈V
u~v

βuσ
a
uσ

a
v

� ∑
u,v∈V
u~v

βuσuσv − βuσ
a
uσ

a
v( )

� 2βaσa ∑
v∈V
a~v

σv

� βaΔHa σ( ).
Therefore, the probability measure μind and the transition matrix
Pind satisfy the detailed balance equations and the result follows. □□

5.1.4 Finite-size scaling analysis
Finite-size scaling (FSS) analysis explores the observables of

critical phenomena in a finite-size system. A phase transition is an
abrupt change in an infinite volume system at some values of control
parameters like temperature and magnetic field. The values of the
control parameters where this happens are known as critical points.
Following these ideas, we characterize the temperature-driven phase
transition of the two-dimensional Ising model (at zero external
magnetic field) on both homogeneous and heterogeneous systems.

Consider a system with some temperature T, which experiences a
phase transition at a critical temperature Tc. In the critical region, a
diverging quantityA∞(T) scales as |T − Tc|

−ζwith some critical exponent
ζ. This critical behavior should hold in systems of finite length L at scales
much larger than the characteristic length scale ξ. The characteristic
length scale ξ is the correlation length in the infinite system (L → ∞).

As the correlation length diverges, i.e., ξ~|T − Tc|
−] for T→ Tc, in

large systems we have

AL T( ) ~|T − Tc|−ζ ~ ξζ/], L≫ ξ, T → Tc( ).
For smaller systems, we also have the cutoff

AL T( ) ~ Lζ/], L≪ ξ, T → Tc( ),
that is,

AL T( ) � ξζ/]f L/ξ( ), L → ∞, T → Tc( ).
The scaling function f(x) depends on the ratio L/ξ between the

length of the finite system and the correlation length of the infinite
system. This ratio controls finite-size effects. According to Newman
and Barkema (1999) and Binder and Heermann (2010), the
conventional scaling function can be written, in terms of
temperature, as

Frontiers in Complex Systems frontiersin.org09

Sánchez-Puig et al. 10.3389/fcpxs.2023.1111486

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2023.1111486


AL T( ) � Lζ/]f L1/] T − TC( )( ), L → ∞, T → Tc( ). (7)
In the case of the two-dimensional Ising model in a square lattice

with nearest neighbor interactions and no external magnetic field, the
critical temperature is Tc � 1

2 log(1 +
�(√
2)) ≈ 2.27 and the critical

exponents are ζ = 0 and ] = 1. Following the previous arguments, we
have performed a finite-size scale analysis for both homogeneous and
heterogeneous Ising models, as shown in Figure 2.

5.2 Random Boolean networks

5.2.1 Homogeneous random Boolean networks
Let D = (V, A) be a directed graph. We identify the nodes of D

with the genes in a gene regulatory network. Suppose D is a k-in
regular directed graph. Figure 3A is an example of a 2-in regular
digraph with 7 nodes, i.e., N = 7, K = 2.

A family (fa)a∈V of functions fa: {0,1}k → {0, 1} is called a
Boolean network on D. Figure 3B is an example of a Boolean network
on a graph with 7 nodes, and with the parameter of “connectivity” k
equal to 2. A Boolean network is called random if the assignment
a↦fa is made at random by sampling independently and uniformly
from the set of all the 22

k
Boolean functions with k inputs. A function

σ: V→ {0, 1}, a↦σa, is called a state of the random Boolean network
on D. The value σa is called the state of a. The updating function F(σ)
of a state σ is the function F(σ): V → {0, 1}, a ↦ σa′ , defined as

σa′ � fa σa1, . . . , σak( ).
For every σ, we have a sequence of states σ, σ′, σ″, . . . such that each
state is the updating function of the previous state in the sequence:
σ′ = F(σ), σ″ = F (σ′), and so on. The sequence of states
σa, σa′ , σa″ , . . . is called the time series of a.

5.2.2 Heterogeneous random Boolean networks
The description given in 5.2.1 corresponds to the case where the

structure and the updating scheme of the random Boolean network
are homogeneous. Here we describe the two versions of heterogeneous
random Boolean networks that were used in the simulations. The first
of these heterogeneous descriptions is structural, while the second
gives rise to some sort of asynchronous dynamics.

The definition of Boolean network above makes the assumption
that every node in the directed graph has the same in-degree. Now
we consider Boolean networks over arbitrary (not necessarily k-in
regular, directed) graphs. A generalized Boolean network on a
directed graph D consists of a family (fa)a∈V of functions
fa: {0, 1}k−a → {0, 1} with k−a ≥ 1 the in-degree a. Thus a
heterogeneous random Boolean network is a generalized Boolean
network chosen uniformly at random.

For talking about temporal heterogeneity we need to introduce
asynchronous updating schemes (Gershenson, 2002). The
heterogeneous updating function of a state σ of a random
heterogeneous Boolean network on D is the function
~F(σ): V × N → {0, 1}, defined by

a, t( ) ↦ σa′ if t is amultiple of k+a
σa otherwise

{
where t is called the discrete time-step, and k+a is the out-degree of a: there
are nodes a1, . . . , ak+a all distinct, such that aaj ∈ E for j � 1, . . . , k+a .

5.3 Linear functions

Here we observe that for linear functions, there is no difference
between homogeneity and heterogeneity. Indeed a function
f: Rd → R with d ≥ 1, is called linear if for all x, y ∈ Rd and all
a, b ∈ R, we have

f ax + by( ) � af x( ) + bf y( ).
For x1, . . . , xn ∈ Rd, n≥ 1, it can be shown, by induction on the
number of points n, that

f
1
n
∑n
i�1

xi
⎛⎝ ⎞⎠ � 1

n
∑n
i�1

f xi( ).

Thus, in the context of linear functions, average value
(heterogeneity) is the same as value of the average
(homogeneity).
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