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The advancement of wireless technologies has led to significant progress in
antenna design in order to meet the continuously increasing demands. Liquid
antennas have gained significant interest in research owing to their distinctive
properties, such as being small, flexible, transparent, and capable of
reconfiguration. Recently, graphene liquid has been considered for various
applications because of its affordability, excellent conductivity, flexibility,
transparency, and easy processing. This paper presents a beam-reconfigurable
graphene liquid antenna. The movement of the graphene liquid within the
microfluidic channel enables beam reconfiguration. The antenna is realized in
a rectangular microfluidic channel made of polymethyl methacrylate over a liquid
crystal polymer substrate. The proposed antenna performs beam-steering up to
360° with 7 dBi of gain and operates at 28 GHz with a wideband of 10-dB
impedance bandwidth of over 20%. In particular, the main beam of the antenna
reconfigures into six directions (0°,45°, 135°, 180°, 225° and 315°)at the operating
frequency. Moreover, the antenna offers a consistent reflection coefficient at
28 GHz in each of the six reconfigurable frequencies. Therefore, the proposed
novel technique for designing reconfigurable antennas using graphene liquid
holds great promise for 5G mmWave wireless communication systems.
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1 Introduction

Over the past few years, wireless communication systems have undergone significant
revolutionary advancements. Fifth-generation (5G) wireless communications networks
have already been deployed with the aim of providing high data rates (Chowdhury
et al., 2020). In particular, 5G has been formally commercialized since 2019, using the
millimeter wave (mmWave) and sub-6 GHz bands. However, the rapid growth in the
number of smart devices and the emergence of the Internet of Everything (IoE) applications,
which require energy-efficient, ultra-reliable and low-latency communications, will
substantially burden the 5G wireless networks (Alsabah et al., 2021; Chowdhury et al.,
2020). Therefore, the 5G paradigm will be further developed and expanded under sixth-
generation (6G) technologies that will pursue wider coverage, higher rates, more
connections, ultra-low latency, ultra-high positioning accuracy, integration of
communications and sensing, more intelligence, more security, and better
substitutability (Chowdhury et al., 2020). The mmWave communication systems offer
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significant advantages in terms of high data rates and bandwidth,
spectrum availability, beamforming capabilities, high spatial
resolution, and reduced latency, making them essential for the
5G wireless communication networks (Hong et al., 2021).
However, wireless communications over the mmWave bands are
susceptible by bad weather conditions and obstacles due to the
signal’s smaller wavelengths. Therefore, efficient antennas that
overcome these limitations are important for the effective
operation of future wireless systems.

In the present era of wireless communication systems,
adaptability and diverse functionality stand out as the most
attractive features in any communication device. Therefore, since
the antenna is essential to these systems, the rapid progression
towards 5G technologies necessitates the design of efficient
antennas. Nevertheless, conventional antennas, usually made of
conductive metals on stiff substrates, perform well but are not
mechanically flexible. Moreover, exceeding certain limits in
bending or stretching these antennas leads to irreversible
structural deformations and even destruction (Alzoubi et al.,
2011). As a consequence, metallic antennas’ rigidity limits their
use in application where flexibility is required. This motivates the
need for more flexible and adaptable antennas, such as antennas
using metallic liquids (Huang et al., 2021). Metallic liquids are a
perfect substitute for flexible antenna applications due to their
flowing properties and lack of deformation limits. Moreover,
liquid metals in microfluidic channels maintain exceptional
flexibility and mechanical stability without compromising their
electrical properties (So et al., 2009). Therefore, metallic liquid
antennas are perfect for antenna applications because of their
exceptional flexibility, deformability, and high conductivity.
Modern methods of fabricating antennas take advantage of the
fluidic qualities of metallic liquids, such as 3D printing, injecting, or
spraying metallic liquid onto rigid or flexible substrates. Liquid
antennas can readily achieve reconfigurability through
electrochemically controlled capillary action or micro pumping,
in contrast to traditional techniques like high-frequency
switching. Given these important benefits, there has been
significant interest recently on the beneficial role of liquid
antennas in wireless communication systems (Psomas et al.,
2023; Wong et al., 2021). The basis for developing efficient liquid
antennas is found in the special qualities of liquid materials, which
have a major impact on antenna performance and design.

Liquid antennas capitalize on the mechanical properties of
fluids, leveraging their ability to change shape and flow to create
flexible, reconfigurable, and adaptable antenna structures for various
applications (Huang et al., 2021). The presence of metallic liquid in
fluidic channels allows the fluidic channel to take shape due to its
low viscosity (Choi, 2014). Flexible substrates allow for the bending,
folding, stretching, and twisting of liquid antennas, thereby
withstanding various forms of mechanical deformation. However,
due to their high degree of reversibility, they can instantly regain
their original form (So et al., 2009). Because of their intrinsic
flexibility, liquid materials serve as a viable substitute for rigid or
solid conductors in the realm of flexible electronics (Varnava, 2019).
The development of metallic liquid antennas is made possible by the
fluidic properties of metallic liquids. By using metallic liquids as
radiative elements instead of solid conductors like copper, it is
possible to create antennas that are much more flexible and

reconfigurable. Moreover, the high conductivity inherent in
metallic liquids makes them particularly well-suited for antenna
applications. Indeed, the fluidic properties of metallic liquids have
enabled a wide range of metallic liquid antennas (Kosta and
ChaIurvedi, 1989; Dey et al., 2016; Hayes et al., 2012; So et al.
2009; Morishita et al., 2013). Even when radiative elements are
installed on rigid substrates, more flexibility and reconfigurability
can be achieved due to the fluidic nature of liquid materials. Metallic
liquids have been used to develop flexible and reconfigurable
antennas since the late 80s (Kosta and ChaIurvedi, 1989). One
notable example of a metallic liquid is mercury (Hg). The fluidic and
conductive nature of mercury allows for the design of reconfigurable
metallic liquid antennas (Dey et al., 2016). However, the toxic nature
and high cost of mercury impose limitations on its use for antennas.
Alternative metallic liquid materials typically manifest as alloys
composed of conductive nanoparticles. A well-known alloy for
liquid antenna consists of gallium and indium has been explored
in several antenna designs (Hayes et al., 2012; So et al., 2009;
Morishita et al., 2013).

Recently, metallic liquid antennas employing graphene liquid, a
novel metallic liquid material, have been designed (Dash et al.,
2023). In comparison to traditional metallic liquid antennas made of
mercury and gallium indium alloy (EGaIn), graphene-based liquid
antennas exhibit superior electromagnetic performance. Since its
discovery in 2004 Novoselov et al. (2004), the superior properties of
graphene, including high electrical conductivity (= ~106), high
mechanical tensile strength (= ~130 GPa) and high thermal
conductivity (= ~5000 W/m.K), have led to a great deal of
current research interest and a wide range of practical
applications. Graphene-based metasurface designs have garnered
significant research interest in recent years (Dhote et al., 2023;
Molero et al., 2021). Reconfigurable intelligent surfaces based on
metamaterials open new possibilities for future sensing and wireless
communication systems (Wang et al., 2024; Bazzi and Chafii, 2025).
Due to the high electron mobility within the hexagonally arranged
carbon atoms of graphene, it exhibits an electrical conductivity of
the order of 106 S/m (Sruti and Jagannadham, 2010). Hence, the
conductivity of the graphene liquid is sufficient for its use as an
antenna candidate, ensuring high efficiency. Moreover, since
graphene does not melt when heated, it lacks a defined melting
point. Instead, it undergoes sublimation at temperatures around
3,600 K.

Table 1 presents the material properties of graphene liquid in
comparison to conventional metallic liquids such as mercury and
EGaIn. The comparison highlights that graphene liquid is a
promising candidate for liquid antennas, offering advantages over
traditional metallic liquids. Graphene’s higher electrical
conductivity and optical transparency provide significant
advantages over EGaIn, particularly in applications where both
high conductivity and optical transparency are required.
Graphene’s higher conductivity makes it ideal for ultra-fast
electronics, flexible circuits, and antennas. Graphene is nearly
transparent, absorbing only 2.3% of visible light, making it an
excellent material for transparent conductive films, touchscreens,
and optoelectronic devices. EGaIn is completely opaque, limiting its
use in applications requiring optical transparency. Moreover,
graphene liquid proves to be safe for industrial use and is
environmentally friendly. As a result, graphene liquid has many
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applications in various industries (Marlinda et al., 2023). The
extensive research focus in recent years has led to the utilization
of graphene inks for flexible electronics, wireless connectivity, and
Internet of Things (IoT) applications (Yang and Wang, 2016; Pan
et al., 2018). In addition to its flexibility, the stability and
biocompatibility of graphene have gained interest as a promising
candidate for applications in neuroscience, cardiac science, and
biomedical engineering (Garcia-Cortadella et al., 2021; Gao et al.,
2024). Therefore, it is no surprise that, during the last decade,
graphene has been proven to be a well-known material for
efficient antenna design (Dash et al., 2020; Dash and Patnaik,
2021). Nevertheless, designs for graphene-based liquid antennas
remain unexplored. To the authors’ knowledge, graphene
conductive liquid for beam reconfigurable antenna is considered
in this work for the first time. Compared to conventional metallic
liquid antennas that use mercury and EGaIn, graphene liquid
antenna performs better in terms of gain, bandwidth, reflection
coefficient, as well as radiation efficiency (Dash et al., 2023).
Additionally, it offers reconfigurability and the potential for
integration into advanced communication systems. These
advantages make it a compelling alternative, particularly for
applications requiring flexibility and dynamic reconfiguration. In
this work, we introduce a new method for designing a beam-
reconfigurable antenna that uses graphene liquid inside a
microfluidic channel. The various states and reconfigurations of
the proposed liquid antenna are made possible by the fluidic
property of the graphene liquid. In the present work, the main
beam is reconfigured in different directions by moving the graphene
liquid to different locations. The movement of the graphene liquid
within the microfluidic channel is used to investigate a
reconfiguration mechanism for the antenna beams. The antenna
is realized in a rectangular-shaped poly methyl methacrylate
microfluidic channel over a liquid crystal polymer substrate. The
primary contributions of the paper are provided below:

• A microfluidically beam-reconfigurable antenna based on
graphene liquid for mmWave communication systems is
proposed. The antenna design concept utilizes the unique
properties of the graphene liquid and uses its movement inside
the microfluidic channel in order to provide the new degree of
performance in the liquid antenna systems. The proposed
graphene-based liquid antenna is realized in a rectangular poly
methyl methacrylate microfluidic channel over a liquid crystal
polymer substrate.

• We design and numerically analyze the microfluidically
graphene-based beam-reconfigurable liquid antenna for
mmWave systems by using the finite element method
(FEM)-based electromagnetic (EM) simulator.

• The performance of the proposed antenna is investigated by
considering the movement of the graphene liquid inside the
microfluidic channel and the characteristics of the liquid at
different locations inside the microfluidic channel. It is
demonstrated that the antenna’s radiation direction is
reconfigurable, covering up to 360° angle with six beams at
an operational frequency of 28 GHz.

• Finally, we investigate the performance of the proposed
graphene-based liquid antenna in terms of gain, efficiency,
bandwidth, reconfigurability, design flexibility and safety.

2 Design and analysis of beam
reconfigurable graphene-
liquid antenna

2.1 Antenna design

We design and numerically analyze the proposed graphene-
based liquid antenna over mmWave frequency bands. The antenna
consists the graphene liquid (≈ 1 ml volume) in a rectangular-
shaped poly methyl methacrylate microfluidic channel (length Lc =
13.74 mm, width Wc = 9.12 mm, and diameter Dc = 0.75 mm) and
placed over a metallic grounded liquid crystal polymer substrate of
dimension (17.4 × 12.4 × 1) mm3. Platinum metal is taken into
consideration as the ground plane for the proposed antenna
structure. A polymethyl methacrylate microfluidic channel over a
liquid crystal polymer substrate is a promising solution for reducing
graphene liquid pocket formation. It provides flow control,
improves adhesion, and enhances uniformity. A polymethyl
methacrylate microfluidic structure provides a confined flow path
for graphene liquid, ensuring consistent spreading and reduced void
formation. By controlling flow dynamics (e.g., via capillary action or
micropumps), the graphene liquid can be evenly distributed,
minimizing unpredictable pocket formation. The liquid crystal
polymer substrate is flexible, chemically stable, and has low
surface roughness, making it a suitable base for uniform
graphene deposition. Unlike rigid substrates like silicon, the
liquid crystal polymer substrate can conform to microfluidic
structures, reducing unwanted gaps or air pockets. The

TABLE 1 Material properties of graphene compared to other conventional metallic liquid.

Parameter Graphnee Mercury EGaIn

Electrical Conductivity 50 × 106 (S/m) 1 × 106 (S/m) 3.4 × 106 (S/m)

Thermal Conductivity ~5000 W/m · K ~8 W/m · K ~50 W/m · K

Melting Temperature Does not melt (sublimes at 3,600 K) −38.87°C 16°C

Density ~2000 kg/m3 ~6000 kg/m3 ~13000 kg/m3

Viscosity 1 − 1000 mPa · s ~1.5 mPa · s ~2 mPa · s

Optical Transparency highly transparent ~97% Completely opaque Near-total opacity

Thermal stability High up to ~3000°C Low Moderate
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polymethyl methacrylate can act as an interface layer between
graphene liquid and liquid crystal polymer substrate, improving
surface wettability and adhesion. Moreover, the liquid crystal
polymer substrate has low moisture absorption and good
dielectric properties, making it ideal for graphene liquid antenna
applications.

Figure 1 illustrate the proposed microfluidically graphene-based
liquid antenna. The dimensions of the antenna are optimized for the
operating frequency of 28 GHz. Table 2 displays the geometrical
dimensions of antenna. The proposed antenna is designed, analyzed
and its performance is validated using the FEM-based Ansoft HFSS
software by ANSYS HFSS (2021). The center-fed single probe
method is used to excite the antenna. The antenna’s ground
plane (bottom layer) is a metal sheet that is electrically connected
to an SMA connector’s external conductor. The feeding probe is
electrically connected to the SMA’s internal conductor and inserts
into the metallic liquid from its bottom center. In six locations P1,
P2, P3, P4, P5, and P6, six SMA connectors are connected. The
volume of liquid has a role in the frequency reconfiguration of the
antenna and the radiation pattern is reconfigured by the movement
of liquid at different locations within the microfluidic channel. In

order to achieve antenna beam reconfigurability, the position of the
graphene liquid relocates into different positions in the
microfluidic channel.

Since this graphene liquid antenna is excited by only one port at
a time, the antenna evaluates only S11 for the active port. The
S11 parameter has been evaluated for return loss analysis, ensuring
that reflection at the excited port is minimized for efficient radiation
at the desired frequencies. S12 typically represents transmission
between two simultaneously active ports, which does not apply in
this case because, at any given time, only one port is excited.
However, when the graphene liquid moves and shifts excitation
to a second port, a new S11 measurement is performed for that
configuration. This means that each state of the antenna has its own
S11 evaluation, but no direct S12 measurement exists. In this design,
where a single port is active at any time, the essential performance
metrics include: S11 for impedance matching at each excitation
state, radiation patterns to analyze beam steering effectiveness, gain
and efficiency to evaluate antenna performance.

2.2 EM simulation

The Ansys HFSS, an FEM-based electromagnetic (EM) solver, is
used to validate the proposed designed graphene-based liquid
antenna with a resonant frequency of 28 GHz ANSYS HFSS
(2021). The antenna is realized by considering a fixed volume
(≈ 1 ml) of graphene liquid into a poly methyl methacrylate
microfluidic channel (length Lc = 13.74 mm, width Wc =
9.12 mm, and diameter Dc = 0.75 mm) over a metallic grounded
liquid crystal polymer substrate of dimensions (17.39 × 12.40 × 1)
mm3. The platinummetal is used as a ground plane for the proposed
antenna structure. The ground plane of the proposed antenna is
made of platinum metal. The antenna structures’ dimensions and
graphene liquid volume are optimized for the 28 GHz
operating frequency.

For the modelling of the graphene liquid in the FEM-based EM
solver, it is essential to model the conductive liquid with the surface
conductivity σs (Equation 1) of graphene in the operational
frequency 28 GHz according to Kubo formalism Gusynin et al.
(2006). In the EM simulator, the graphene liquid is thus represented
as a conductive liquid with a surface conductivity σs.

σs � −j e2KBT

πZ2 ω − jτ−1( )
μc
KBT

+ 2 ln exp − μc
KBT

( ) + 1( )[ ], (1)

where KB stands for Boltzmann’s constant, Z for reduced Planck’s
constant, T for temperature, μc for chemical potential, τ for
relaxation time, ω for angular frequency, e for electronic charge,
and j for imaginary unit.

The graphene liquid flows in the microfluidic channel from one
position to another. In the present work, six positions of graphene
liquid in the microfluidic channel are considered. The center-fed
single probe method is used to excite the antenna. The antenna is

FIGURE 1
Schematic of the proposed graphene-based liquid antenna. (a)
3D view. (b) Cross-sectional view.

TABLE 2 The geometrical dimensions of the proposed liquid antenna.

Ls (mm) Ws (mm) Lc (mm) Wc (mm) Dc (mm) Lm (mm)

17.39 12.40 13.74 9.12 0.75 3
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excited at the centre of graphene liquid radiating elements, like
dipoles. In order to feed the graphene liquid antenna in a
microfluidic channel, the external conductor of the SMA
connector connected to the ground plane. The feeding probe is
electrically connected to the inner conductor of the SMA and
inserted into the graphene liquid from the bottom center, as
shown in Figure 1b. To attain six working modes and beam
reconfigurability, six feeding ports are created in six positions.
Impedance matching must be accomplished in order to guarantee
the antenna’s maximum radiation. Figure 3 illustrates the behavior
of antenna impedance matching. It is evident that for each of the six
graphene liquid positions, the antenna has a well-matched resonant
frequency at 28 GHz.

2.3 Fabrication feasibility

The fabrication feasibility of the proposed graphene-based liquid
antenna can be explained using Figure 2. The graphene liquid
antenna can be mechanically supported by a silicon wafer
sample. The graphene-based liquid antenna can be realized by
injecting graphene liquid into a poly methyl methacrylate
microfluidic channel (ϵr � 2.55, tan δ � 0.002) over a metallic
grounded liquid crystal polymer substrate (ϵr � 2.9, tan
δ � 0.0025) (Ling et al., 2015; Dey et al., 2016). The soft
lithographic processes can be used to fabricate microfluidic
channel (Xia and Whitesides, 1998; So et al., 2009; Dey et al.,
2016). The microfluidic channel of poly methyl methacrylate
elastomer can be sealed with a thin and flat sheet of liquid
crystal polymer based substrate layer (Dey et al., 2016; Rodrigo
et al., 2012). The graphene liquid can first be injected using a syringe
into the polymethyl methacrylate channel to fill the microfluidic that
defines the radiating element. The micropump unit will reconfigure
the liquid volume of the antenna in the microfluidic channel. During
the practical realization of the graphene liquid antenna, six SMA
connectors in six locations P1, P2, P3, P4, P5, and P6 can be
employed. Six feeding ports can be created in six positions to
attain six working modes and beam reconfigurability. The
graphene liquid flows in the microfluidic channel from one

position to another. With the use of a micropump controller
through microfluidic techniques, the location of the graphene
liquid within the microfluidic channel can be adjusted to achieve
the intended outcome. The main beam of antenna is reconfigured
when the graphene liquid is displaced from one position to another.
Physical displacement of the graphene liquid can be achieved
through microfluidic techniques like pumping or electrowetting
(Rodrigo et al., 2012). Digital microfluidics is also a new
consideration for the physical displacement of metallic liquid in
microfluidic channel (Wan et al., 2006).

Reconfigurability is one of the important advantages of the
proposed graphene-based liquid antenna. The antenna’s
operating frequency can be tuned by varying the volume and
shape of the graphene liquid. The volume of liquid has a role in
the frequency reconfiguration of the antenna and the radiation
pattern is reconfigured by the movement of liquid at various
positions within the microfluidic channel. By utilizing the
micropump unit to alter the graphene liquid configuration inside
the microfluidic channel, the antenna achieves beam
reconfigurability.

2.4 Result analysis

The reflection coefficient of the microfluidically graphene-based
liquid antenna at six different positions P1, P2, P3, P4, P5 and P6 are
shown in Figure 3. It can be noticed that the proposed antenna
resonates at 28 GHz in six different positions P1, P2, P3, P4, P5 and
P6. The antenna resonant frequency remains the same for all six
positions in themicrofluidic channel. The antenna offers a wideband
of 10-dB impedance bandwidth of 22%. Consequently, six distinct
operation states are made possible by the fluidic property of the
graphene liquid in the microfluidic channel. The loss characteristics
of the graphene liquid in the considered operational frequency
bands can be further noticed in Figure 3. The graphene liquid
antenna exhibits low losses at 28 GHz frequency. These antenna
losses are significantly influenced by the conductivity of the material.
Therefore, due to its high conductivity, the graphene liquid antenna
has a low loss.

FIGURE 2
The fabrication feasibility of the proposed graphene-based liquid antenna.
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The volume of the graphene liquid in a microfluidic channel
plays a significant role in operating at different frequencies. Figure 4
shows the reflection coefficient of antenna at different liquid
volumes to illustrate how the liquid volume affects the antenna
performance. The reflection performance of the graphene liquid
antenna is analyzed for different volumes, with Lm varying between
2 mm and 5 mm. The antenna operates at different frequencies
between 24 GHz and 30 GHz by varying the volume of the liquid in
the microfluidic channel from Lm = 2 mm–5 mm, which is clearly
marked in Figure 4. Furthermore, it can be noticed that an antenna
with a smaller liquid volume leads to higher operational frequency,
whereas an antenna with a higher liquid volume operates at a lower

frequency. The antenna resonates at 30 GHz, 28 GHz, 26 GHz, and
24 GHz when Lm = 2 mm, 3 mm, 4 mm and 5 mm are considered,
respectively. The resonant frequency decreases with the volume of
liquid and can be dynamically controlled in a wide frequency range.

The proposed graphene-based liquid antenna at 28 GHz attains
a unidirectional symmetrical radiation pattern with a gain of 7 dBi,
as illustrated in Figure 5. The antenna’s gain and radiation efficiency
over the frequency bands 10–45 GHz are shown in Figure 6. Over
the considered frequency bands, the antenna’s radiation efficiency
exceeds 60%. Figure 8 shows the normalized radiation patterns of
the proposed graphene liquid antenna at 28 GHz. The proposed
antenna provides a reduced back lobe radiation with front-to-back
ratio of 10 dB, which can be observed in Figure 8. Beam
reconfiguration and six different operation states are made
possible by the flow of the graphene liquid into six distinct
locations within the microfluidic channel. The proposed
graphene-based liquid antenna with six beams is presented in
Figure 7. The antenna’s normalized radiation patterns in six
modes are shown in Figure 8. By appropriately choosing the
location of the graphene liquid within the microfluidic channel,
the antenna can be directed in D2 (θ � 0°), D3 (θ � 45°),
D4 (θ � 135°), D5 (θ � 180°), D6 (θ � 225°), and D1 (θ � 315°)
directions. At an operational frequency 28 GHz, the antenna
reconfigures the main beam direction, covering a 360° angle.
Table 3 lists the antenna main beam directions for each graphene
liquid locations. The 3D pattern shows the highly directional beam.
The beam width appears wider when the radiation pattern is
normalized and plotted in 2D (Figure 8). This difference arises
due to normalization effects and scaling in 2D plots. In 2D
normalized radiation plots, power levels are scaled relative to the
peak. The normalized radiation plot does not reflect absolute gain,
only the relative power distribution. The proposed antenna provides
<40° HPBW (half power beam width).

FIGURE 3
S11 parameter of the proposed antenna for six different positions
of the graphene liquid.

FIGURE 4
S11 parameter of the proposed antenna for different volumes of
the graphene liquid.

FIGURE 5
3D far-field radiation pattern of the graphene-based liquid
antenna at 28 GHz.
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3 Discussion

With the growth of wireless communication networks, there
have been significant technological advancements in antenna design
in order to meet the ever-growing requirements of users Kumar et al.
(2020). Therefore, the utilization of high-performance antennas to
increase coverage and reduce the complexity of a system is required
(Alibakhshikenari et al., 2022; Marasco et al., 2022; Marasco Parchin
et al., 2023; Hasan et al., 2022). It is thus expected that 5G antennas
will be effective in terms of polarization, gain/directivity, bandwidth,
efficiency, etc.

Applications requiring mechanically flexible antennas can
benefit from the use of liquid antennas. The conductive metals
used to make conventional antennas, like copper, make them
extremely effective but unfortunately rigid. On the other hand,
liquid antennas are capable of providing the required flexibility
and reconfigurability. For this reason, they have recently gained
significant interest in the research community of wireless
communications. Fluidic and conductivity characteristics are the
primary determinants of metallic liquid antenna performance. As

such, a graphene-based liquid antenna performs better than the
EGaIn and Mercury liquid antenna counterparts, in terms of gain,
bandwidth, reflection coefficient, and radiation efficiency (Dash
et al., 2023).

Graphene-based liquid antennas represent a revolutionary
advancement in the field of wireless communications and
antenna technology. Graphene, a single layer of carbon atoms
arranged in a hexagonal lattice, offers exceptional electrical,

FIGURE 6
Radiation Gain and Radiation efficiency of the antenna over the
frequency band 10–45 GHz. (a) Radiation Gain. (b)
Radiation efficiency.

FIGURE 7
Six working modes of the graphene-based liquid antenna.

FIGURE 8
The normalized radiation pattern of the graphene-based liquid
antenna in six working modes at 28 GHz.
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mechanical, and thermal properties. When graphene is in liquid
form, it has highly conductive and flexible behaviour that can be
used to create antennas with unprecedented characteristics.
Graphene production techniques have advanced significantly,
leading to more cost-effective methods for large-scale
production. Additionally, the liquid nature of these antennas
simplifies manufacturing processes and reduces material waste,
further enhancing their cost-effectiveness and scalability
compared to conventional antennas. Graphene-based liquid
antennas can be easily modelled into different shapes and allow
for seamless integration into a wide range of devices and
structures. Graphene’s exceptional electronic characteristics
allow for the development of antennas that can operate at a
wide range of frequencies. This wideband performance is
crucial for modern communication systems that must support
multiple wireless standards and frequencies simultaneously.
Graphene exhibits exceptional electrical conductivity and low
electromagnetic losses, resulting in antennas with high
efficiency and minimal signal degradation. This characteristic is
particularly important for applications requiring long-range
communications or operation in challenging environments with
high interference or attenuation.

The overall electromagnetic performance of a liquid antenna is
influenced by multiple parameters, including losses, flexibility,
adaptability, reconfigurability, density, oxidation effect, and
residue formation. Beyond conductivity, graphene-based liquid
antennas offer additional advantages, such as lower density,
higher mechanical flexibility, transparency, environmental
stability and the ability to be easily processed in microfluidic
channels. Graphene metallic liquids also offer advantages in
terms of oxidation mitigation and reduced residue formation,
which helps maintain stable electrical properties, ensuring better
long-term reliability and environmental stability. Furthermore,
graphene’s tunable conductivity enables dynamic impedance
matching and beam reconfiguration, making it particularly well-
suited for reconfigurable antenna applications. In contrast, EGaIn
has certain limitations, such as higher density, susceptibility to
oxidation, and potential toxicity, which can affect long-term
performance. The high density and oxidation-prone nature of
EGaIn alloys can degrade the antenna performance over time.
Thus, graphene-based liquid antennas provide superior overall
performance making them more suitable for next-generation
reconfigurable and flexible wireless communication systems. The
reconfigurability of graphene-based liquid antennas in a

microfluidic channel is an additional benefit. Additional degrees
of freedom are made possible by the fluidic nature of liquid
materials, which improves reconfigurability. In graphene liquid
antennas, frequency reconfiguration and beam reconfiguration
can be accomplished by adjusting the liquid volume and liquid
movement within the microfluidic channel at different locations.
This tunability allows for adaptive antenna designs that can optimize
performance based on network dynamics (e.g., due to mobility),
changing environmental conditions or communication
requirements. In this way, graphene-based liquid antennas
address the need for high-performance, flexible, and adaptable
antennas in modern communication systems. Their unique
combination of properties offers significant advantages over
conventional antennas, paving the way for 5G mmWave wireless
communication system.

4 Conclusion

A microfluidically beam-reconfigurable directional antenna
using graphene liquid for the mmWave wireless communication
system was presented in this work. The reconfiguration mechanism
of the proposed antenna is based on the movement of the graphene
liquid inside the microfluidic channel. The antenna is realized in a
rectangular-shaped poly methyl methacrylate microfluidic channel
over a liquid crystal polymer substrate. The antenna is reconfigured
in its radiation direction, covering up to 360° angles with six beams
(0°, 45°, 135°, 180°, 225° and 315° at an operational frequency of
28 GHz. Moreover, the antenna provides a wideband of
bandwidth about 22% and a gain of 7 dBi. Furthermore,
frequency reconfiguration is achieved by controlling the volume
of the liquid inside the microfluidic channel. The presented results
reveal that the proposed graphene-based liquid antenna is promising
for future applications in wireless communications. As next-
generation wireless networks demand high-performance
antennas, the proposed microfluidically beam-reconfigurable
antenna using graphene liquid will cater to the needs of the ever-
growing network users.
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