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In cognitive radio (CR) systems, efficient spectrum utilization depends on the
ability to predict spectrum opportunities. Traditional statistical methods for
spectrum occupancy prediction (SOP) are insufficient for addressing the non-
stationary nature of spectrum occupancy, especially with UEs’ increased mobility
and diversity in the sixth-generation and beyond wireless networks. This survey
provides a comprehensive overview of machine learning (ML)-based SOP
methods that address these challenges. The paper begins with a brief
discussion of problem definition and traditional statistical methods before
delving into a detailed survey of ML-based methods. Various aspects of SOP
are analyzed from a CR perspective, highlighting the multidimensional
correlations in spectrum usage across time, frequency, space, etc. Key
challenges and enabling methods for effective prediction are reviewed,
focusing on deep learning methods that exploit these multidimensional
correlations. The survey also covers dataset generation techniques for SOP.
Additionally, the paper discusses CR threats that impair spectrum utilization
and reviews ML methods for detecting these threats. The future directions for
ML-based SOP are also given.
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1 Introduction

Accommodating exploding data traffic is one of the most critical challenges for
communication systems in the sixth generation (6G) and beyond (Zhang and Zhu,
2020; Guo et al., 2021). In 6G networks, data rates are expected to exceed 1 terabit per
second, and end-to-end delays will be reduced to less than 0.1 milliseconds. Additionally,
6G will provide access to powerful edge intelligence with processing delays below
10 nanoseconds and network reliability exceeding 99.99999%. The extreme connection
density of over 10 million devices per square kilometer will support the Internet of
everything (De Alwis et al., 2021). Thus, there is an intrinsic gap with the limited
spectrum available due to the ever-demanding nature of higher-rate communications
(Amjad et al., 2018).

One potential solution to this gap is the recent integration of communication and
sensing capabilities in 6G networks (Bazzi and Chafii, 2023; Chowdary et al., 2024), which
aim to optimize the use of limited spectrum resources. However, this solution is limited to
the integration of sensing and communication tasks. A more general and flexible approach
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to addressing the spectrum demand is the use of cognitive radio
(CR) systems (Ivanov et al., 2021), which dynamically allocate
spectrum based on the environment’s needs.

CR systems rely on accurate spectrum sensing and prediction to
identify and exploit “spectrum holes” efficiently. Traditional
statistical methods, such as autoregressive methods and Bayesian
inference, have been widely used for spectrum occupancy prediction
(SOP) (Wen et al., 2008; Xing et al., 2013b). However, these methods
often struggle to cope with the non-stationary nature of spectrum
occupancy, which is increasingly influenced by the mobility and
diversity of users (UE)s in modern wireless communication
networks. Machine learning (ML) methods are proposed as a
robust alternative to SOP to address these challenges.

ML methods, ranging from shallow neural networks (NN)s to
advanced deep learning (DL) methods, offer significant
improvements in prediction accuracy by leveraging the complex
temporal and spatial correlations in spectrum data (Tumuluru
et al., 2012; Eltholth, 2016; Selim et al., 2017). In particular, DL
methods such as convolutional neural networks (CNN)s and long
short-term memory (LSTM) networks have been particularly
useful, as CNNs excel at extracting spatial patterns, while
LSTMs effectively capture temporal dependencies, both of
which enhance the reliability of spectrum predictions (Yu et al.,
2017; Omotere et al., 2018).

Despite the successes of ML-based methods, several challenges
remain. The need for large labeled datasets, the adaptability of
methods to changing environments, the interpretability of
predictions, the computational cost and energy consumption,
how to use multidimensional correlations for higher accuracy,
and data privacy are critical issues that should be addressed for
efficient ML usage. Additionally, the presence of CR threats, such as
jamming and primary UE (PU) emulation attack (PUEA),
necessitates the development of robust security measures to
ensure the integrity of SOP (Fragkiadakis et al., 2013). Therefore,
ML-based SOP methods should be investigated thoroughly. Along
with this line, a comprehensive survey is required to highlight and
address these challenges, discussing different ML-based
SOP methods.

1.1 Related work

Numerous studies have investigated SOP. While some of these
studies solely focus on traditional methods, some of them discuss
ML-based methods. Miao et al. (2009) reviews spectrum
measurement campaigns and introduces interference maps as
spectrum analysis and management tools. The paper highlights
how these maps characterize spectrum use by defining the level of
interference over specific areas and frequency bands. López-
Benítez and Casadevall (2011) gives an overview of the existing
SOP methods that characterize the spectrum usage patterns of
licensed systems in the time, frequency, and space dimensions.
Xing et al. (2013a) gives an overview of the problem of spectrum
assignment in CR network (CRN), presenting the literature,
analyzing the criteria for selecting the most suitable portion of
the spectrum, and showing the most common methods used to
solve the spectrum assignment problem. Tragos et al. (2013)
surveys the state-of-the-art spectrum prediction in CRNs. They

summarize the main spectrum prediction methods, illustrate their
applications, and present the relevant open research challenges.
Chen and Oh (2014) focuses on various SOP methods based on
real-world measurements, highlighting their importance for CR
systems. Chen and Oh (2014) studies the various SOP methods
used in diverse locations by research campaigns worldwide. The
detailed analyses of the empirical results in different measurement
scenarios were compared. Ding et al. (2017) provides a
comprehensive survey and tutorial on spectrum inference.
Eltom et al. (2018) categorizes various spectrum prediction
methods, including single memoryless source, Markov-based,
and linear statistical regression methods. It comprehensively
reviews current spectrum prediction methods and their
applications in dynamic spectrum access. Agarwal et al. (2018)
investigates the practical prowess of various time-series modeling
and the ML methods for predicting spectrum occupancy based on
a spectrum measurement campaign conducted in India. In Tidjani
and Hammoudi (2019), spectral prediction methods are meanly
divided into four categories: linear, pattern mining, Markov model,
and ML-based methods. Naikwadi and Patil (2020) delves into
applying artificial NNs (ANN)s for SOP. It discusses how these
methods can improve spectrum efficiency by predicting spectrum
bands’ occupied or free status from existing measurement data.
Okorie et al. (2022) analyzes the use of ANNs to identify vacant
portions of the spectrum in CR systems. Several ANN topologies
are considered, including CNNs, LSTM networks, and hybrid
combinations. Radhakrishnan (2022) performs spectrum
prediction in the temporal domain using a DL method. It also
compares different ML-based SOP methods in a multi-UE
cooperative radio environment. Cullen et al. (2023) takes a
comprehensive method for dynamic spectrum allocation,
covering measurement of spectrum usage, prediction methods,
and system deployment. It emphasizes the holistic nature of these
systems and the importance of accurate spectrum usage
predictions. Li et al. (2024) provides insights into SOP methods,
emphasizing data-driven methods. Although these works
investigated several challenges for SOP and methods used to
predict spectrum occupancies, a more comprehensive survey is
still required to investigate ML-based SOP methods and their
challenges, including research directions.

1.2 Contributions of the paper

The contributions of this paper to the literature are itemized
as follows.

• To the best of the authors’ knowledge, this paper is the first to
comprehensively analyze ML-based SOP methods.

• Several scenarios are provided to enable an easier
understanding of the dataset generation process.

• This paper introduces interpretable ML methods specifically
tailored for SOP.

• The attacks on CR systems are defined, their consequences are
highlighted, and solutions for these security weaknesses are
provided by leveraging diverse domains.

• Future research directions for ML-based SOP methods are
outlined to guide further advancements in the field.
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2 Structure of the survey

As illustrated in Figure 1, the structure of this survey is as
follows. The problem definition of SOP is covered in Section 3.
Section 4 delves into the evidence for leveraging multidimensional
correlations in SOP, highlighting their significance in improving
prediction accuracy. Section 5 explores state-of-the-art SOP
methods, offering a critical comparison of various algorithms.
The process of dataset generation, crucial for training and
validating SOP models, is covered in Section 6. Section 7
investigates CR threats and discusses potential protection
methods to mitigate security risks. Section 8 discusses the key
challenges faced in advancing ML-based SOP methods and
discusses future research directions to address these challenges
Finally, Section 9 concludes the paper, summarizing the key
contributions and findings.

3 Problem definition of SOP

The problem definition of SOP is to make spectrum occupancy
state predictions over a given frequency range according to
previous occupancies. Spectrum access is modeled using the
heterogeneous spectrum access model (Khalfi et al., 2018). This
model divides the spectrum into k contiguous frequency sub-
bands. The presence of a PU signal indicates signal occupancy,
while the absence of such a signal indicates a spectrum hole.
Hypotheses (H0 and H1) denote these scenarios scenarios, as in
Equation 1

r � n, H0: There is no PU.
Hs + n, H1: APU is exist,

{ (1)

where r, s, H, and n represent received signal, transmitted signal,
channel matrix, and noise realization, respectively.

The primary system model that is considered for SOP is
demonstrated in Figures 2A, B. Here, Figure 2A illustrates the
real occupancies while predicted occupancies are given in
Figure 2B. As shown in these figures, when the occupied band is
predicted to be a hole, SU uses that band, creating interference. On
the other hand, when the band is vacant and is predicted as
occupied, its usage opportunity is lost, so spectral efficiency is
decreased. Besides that, it should be predicted promptly so there
will be enough time to allocate holes to the SUs efficiently. Thus,
spectrum occupancies should be predicted with low complexity and
high accuracy.

4 The evidence of multidimensional
correlations

4.1 Evidence for frequency and time
correlations

To show the frequency and time correlations, the following test
is carried out. First, 10 min of the spectrum was recorded between
832 and 862 megahertz. (Note that 832–862 megahertz is just an
example frequency range, and similar analyses can be applied to
other frequency bands as well. We focused on the frequency range of
832–862 MHz because it corresponds to the private uplink bands of
the top three telecom operators in Turkey: Türk Telekom, Vodafone,
and Turkcell.) Then, the plot of the block-correlation pattern is
given in Figure 3A to show the correlation coefficients in frequency.
This figure indicates a high correlation in the neighboring frequency
bands for each operator. This shows the correlation in frequency.

FIGURE 1
Structure of this survey.
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The channel occupancy distribution is computed for all time
instants and frequency sub-bands for each frequency point in
Figure 3B. The spectrum occupancy state representing frequency
and time correlations is illustrated in this figure by the color bar
(black indicates the spectrum is not occupied, while white indicates
the spectrum is occupied). In other words, the correlation in time is
illustrated by the vertical lines, while the horizontal lines show the
correlation in frequency. This figure shows the correlation across
frequency and time since the occupied accumulates in one place.

4.2 Evidence for geographical space
correlation

The exploitation of spatial correlation is advantageous for the
SOP problem, as demonstrated in Figure 4. Here, BS1 is the base
station (BS) on which the SOP will be made. This figure shows that

when BS1 is trained without prior information from neighboring
BSs, it decides on the future spectrum as vacant. On the other hand,
BS2 and BS3 are full, and the UE of BS2 and BS3 can occupy the
spectrum of the BS1 for the upcoming intervals, so the number of
occupied bands will increase for BS1. Along with this line, more
accurate predictions of spectrum occupancy can be made by
utilizing the data from the space dimension.

4.3 Evidence for code correlation

In the code domain, the spectrum can be correlated through
orthogonal codes, which allow simultaneous transmissions without
interference. This correlation occurs because different UEs or
services can use different orthogonal codes to share the same
frequency band. Figure 5 illustrates an example of opportunistic
code domain usage. In this scenario, if a secondary UE (SU) can

FIGURE 2
Modeling the (A) true and (B) predicted occupancies and usage of sub-band spectrum units.

FIGURE 3
Illustration of channel (A) correlation and (B) occupancy distributions.
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identify which codes are currently being utilized by PUs, they can
select an orthogonal code for their transmission.

4.4 Evidence for angle correlation

In wireless communications, signals propagate differently
depending on their transmission angle, which is influenced by
factors like antenna directivity, terrain, and obstacles. These
characteristics create an angular correlation that can be exploited to

predict spectrum occupancy more accurately. The angle correlation
becomes particularly useful in scenarios involving directional antennas
or beamforming, where the transmission power is concentrated in
specific directions, leaving other angles with lower signal levels.

Consider a PU transmitting in a particular direction. Due to the
directional nature of the antenna, the energy radiated is stronger along
the intended path, while signals in other directions are weaker due to
factors like path loss, scattering, and obstacles. This leads to an
occupancy pattern that correlates with angle: when a PU transmits
in one direction, the likelihood of significant spectrum usage in other
directions decreases. This phenomenon arises from directional beam
patterns, suggesting that SUs can opportunistically utilize the angular
information to access the spectrum more effectively. For example, if
an SU can determine that a PU is transmitting toward the north, it
may choose to transmit in the east or west directions, where the signal
strength from the PU is lower, thus minimizing interference and
enhancing spectrum utilization.

5 SOP methods

This section begins by reviewing several traditional methods and
examining the limitations of traditional SOP methods. Next, ML-based
SOP methods are explored, highlighting their advantages. Finally, the
importance of interpretableML in SOP is emphasized, underscoring the
critical need for transparency and explainability in prediction methods.

5.1 Traditional SOP methods

5.1.1 Prediction with autoregressive method
The autoregressive (AR) method is a widely used linear

predictor in time series analysis. It operates by expressing the

FIGURE 4
The proposed method-training stage.

FIGURE 5
Opportunistic code domain usage.
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predicted state of a future time instant as a weighted sum of past
observations and a noise term, as in Equation 2:

ŝt � ∑
i�1

r

φiyt−i + ωt, (2)

where r represents the model order, φi (i � 1, 2, . . . , r) are the model
parameters, ŝt denotes the predicted state at time t, ωt represents
white noise at time t, and yt−i are the past observations at time
instants t − i.

The AR model requires careful tuning of its parameters to
provide accurate predictions. This tuning can be done using
various methods, such as the Yule-Walker equations, which
solve a system of linear equations derived from the data’s
autocorrelation, or through maximum likelihood estimation,
which seeks parameters that maximize the likelihood of
observing the historical data. Once the model parameters are
determined, the AR model leverages the historical data and
these parameters to predict future states of the system. This
method is particularly useful when the spectrum occupancy
patterns exhibit linear dependencies over time. The effectiveness
of the AR method has been demonstrated in Wen et al. (2008),
Gorcin et al. (2011).

5.1.2 Prediction with moving average
Moving average (MA)-based prediction is a straightforward

technique for smoothing and forecasting trends within a
sequence of observations (Bütün et al., 2010). In this approach,
the next predicted value is computed as the average of the last k
observed values, where k is the order of the MA. This simple method
is effective for filtering out short-term fluctuations and highlighting
longer-term trends in spectrum occupancy.

To improve responsiveness to recent changes, the exponential
MA (EMA) assigns exponentially decreasing weights to older values,
placing more emphasis on recent observations (Lin et al., 2009). This
makes the EMA more sensitive to sudden changes in the spectrum,
which can be advantageous in dynamic environments where
occupancy patterns shift rapidly. Both techniques are valuable
when dealing with noisy data and are commonly used to smooth
short-term variations while retaining meaningful trends.

5.1.3 Prediction with time series analysis
using ARIMA

The AR integratedMA (ARIMA)model is a powerful traditional
time series forecasting technique that can be employed for SOP. The
ARIMA model combines three components: AR, differencing, and
MA. It is particularly useful for time series data that exhibit trends
and require transformation to achieve stationarity. Wang and Salous
(2011) applies ARIMA to SOP.

By analyzing past occupancy data, the ARIMA model can
capture both the AR and MA components, providing a robust
framework for predicting future spectrum occupancy. The model
parameters can be identified through techniques like the Box-
Jenkins methodology, which involves examining the
autocorrelation and partial autocorrelation functions of the time
series data. ARIMA is especially effective when past occupancy states
are indicative of future states, making it suitable for scenarios where
temporal correlations are strong.

5.1.4 Prediction with hidden Markov model
The hidden Markov model (HMM) is a probabilistic framework

that extends the Markov chain by introducing hidden states, which
are not directly observable. In the context of CRNs, the true
spectrum occupancy states are hidden from UEs, who can only
observe the spectrum usage indirectly. The HMM consists of two
processes (Saad et al., 2016): a hidden state process, where
transitions between states (e.g., idle or busy) follow a Markov
process, and an observation process, where the observations
depend probabilistically on the hidden states.

Define the hidden state space as X � x1, x2, where x1 � 0
represents an idle channel and x2 � 1 represents a busy channel.
The corresponding observation space is defined as Y � y1, y2, where
y1 � 0 indicates an idle spectrum and y2 � 1 indicates a busy
spectrum. The channel’s hidden state at time slot n is denoted by
qn, and the corresponding spectrum prediction result is q. The
HMM is parameterized by Λ � (π, A, B), where π is the initial state
distribution, A is the state transition probability matrix, and B is the
emission probability matrix, which links the hidden states to the
observations. The HMM’s ability to model the uncertainty in
spectrum states makes it a powerful tool for SOP in dynamic
environments (Chatziantoniou et al., 2013).

5.1.5 Prediction with Bayesian inference
Bayesian inference is a probabilistic method that updates the

distribution of a hypothesis based on observed evidence. In the
context of SOP, Bayesian inference allows CR UEs to update their
belief about the spectrum occupancy state based on newly acquired
observations (Jacob et al., 2014). The method applies Bayes’ rule to
compute the posterior probability of the spectrum state s given the
observed data y, as given in Equation 3:

P s|y( ) � P y|s( ) · P s( )
P y( ) , (3)

where P(s) is the prior probability of the state, P(y|s) is the
likelihood of the data given the state, and P(y) is the marginal
likelihood of the data.

Bayesian inference-based method is particularly useful when the
spectrum occupancy pattern is uncertain or when prior knowledge
about the spectrum environment is available. By continuously
updating the posterior probability as new evidence becomes
available, Bayesian inference provides a dynamic and adaptive
approach to SOP, enabling more accurate predictions in real-
time scenarios. Bayesian inference-based method is applied to
spectrum prediction in Xing et al. (2013a).

5.2 Why traditional SOP methods fail?

Traditional SOP methods have served as the foundation for
spectrum management and optimization strategies in wireless
communication for decades. However, as wireless systems evolve
and the demand for spectrum resources intensifies, particularly in
dense urban environments, these traditional techniques encounter
significant limitations. Many of these methods rely heavily on linear
models and static assumptions, which do not adequately capture the
complexities and dynamic nature of real-world scenarios.
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One primary challenge with traditional SOP methods is their
reliance on the assumption that the spectrum environment is
stationary. This means that historical data is used to forecast
future occupancy patterns without adequately accounting for
time-varying factors such as UE mobility, interference from
neighboring systems, or sudden fluctuations in network traffic.
For instance, traditional techniques may use historical occupancy
data from the previous week to make predictions, failing to consider
that external events—like concerts, sporting events, or public
gatherings—can drastically alter UE behavior and spectrum
demand. Moreover, traditional approaches often employ
simplified statistical models, such as Markov Chain or ARIMA
models, which may overlook the intricate, multidimensional
correlations among various factors, including frequency, time,
geographic space, code, and angle. These correlations are critical
for accurately predicting spectrum opportunities, as they can reveal
underlying patterns that influence channel usage in ways that
simplistic models cannot grasp.

Consider a bustling metropolitan city during a major festival,
where numerous wireless services compete for limited spectrum
resources. Network operators deploy a traditional Markov Chain
model to predict spectrum occupancy based on historical data.
However, this model assumes constant transition probabilities
and fails to account for the surge in UE demand or the exclusive
use of certain channels by emergency services. As thousands of
attendees flood the area, drastically increasing mobile data demand
for activities like live streaming and social media, the model
inaccurately predicts spectrum availability, leading to
unanticipated channel congestion. Additionally, it overlooks
multidimensional correlations such as the interplay between time,
location, user behavior, and external factors like emergency services.
This one-dimensional approach results in severe delays, dropped
connections, and slow data speeds, frustrating attendees and causing
negative feedback. The model’s failure to adapt to real-time changes
and complex factors highlights the need for more advanced
spectrum prediction techniques that incorporate real-time
analytics and consider the dynamic nature of modern wireless
environments.

This is where ML approaches provide a transformative solution.
ML models can process large-scale, complex data and identify non-
linear relationships that traditional models often miss. By leveraging
real-time data from multiple dimensions, ML models can
dynamically adapt to changing spectrum conditions. These
models learn from patterns across various datasets and improve
prediction accuracy over time, enabling proactive spectrum
management. In the case of the festival scenario, an ML-based
model can learn from historical data as well as real-time inputs
to predict and react to the surge in UE demand. Rather than relying
on static assumptions, ML techniques allow the network to adapt to
congestion, reallocate spectrum resources, and prioritize channels
based on real-time usage patterns. This can result in more efficient
spectrum utilization, minimized disruptions, and an overall
improved UE experience during high-demand events. Thus, ML
offers a path forward by enabling more dynamic, data-driven
approaches for SOP, capable of handling the complexities of
modern wireless communication environments. These techniques
empower network operators to make more accurate predictions and
real-time decisions, addressing the limitations of traditional models

and improving spectrum efficiency in a fast-evolving
wireless landscape.

5.3 ML-based SOP methods

5.3.1 Support vector machines
Support vector machines (SVM)s are supervised learning

models used for classification and regression tasks (Suthaharan
and Suthaharan, 2016). In the context of SOP, SVM can be used
to identify spectrum availability by learning decision boundaries
between spectrum usage states (occupied or free) based on features
such as signal strength, interference levels, or historical spectrum
usage patterns. SVM aims to find the optimal hyperplane that
separates classes with the maximum margin, ensuring robust
predictions. Panchal et al. (2018), Azmat et al. (2015),
Kyeremateng-Boateng et al. (2020) utilize SVM for SOP.

SVM’s ability to handle high-dimensional feature spaces and
work well with non-linear data makes it a valuable tool for spectrum
prediction tasks. SVM achieves this by employing the kernel trick,
which maps input data into a higher-dimensional space to make it
linearly separable. Common kernels include the radial basis function
and polynomial kernels.

5.3.2 Decision trees
Decision trees (DT)s are a non-parametric, interpretable ML

method used for classification and regression tasks Mienye and Jere
(2024). For SOP, a decision tree can predict the availability of a
frequency band based on a series of binary decisions derived from
input features such as signal strength, UE traffic, and interference levels.

The tree splits the feature space into regions based on decision
rules learned during training. Each internal node represents a
feature, and each leaf node corresponds to a prediction (e.g.,
spectrum available or unavailable). Azmat et al. (2015), Panchal
et al. (2018), Zhao et al. (2018) applies DT to SOP. The simplicity
and interpretability of these algorithms make them appealing for
real-time SOP tasks Zhao et al. (2018), but they tend to overfit the
training data if not properly pruned. Despite this, they serve as the
basis for more sophisticated ensemble methods like random forests.

5.3.3 Random forest
Random forest is an ensemble learningmethod that builds multiple

decision trees during training and merges their predictions to improve
accuracy and robustness (Rigatti, 2017). For SOP, random forest can
predict whether a spectrumbandwill be available by leveragingmultiple
historical and environmental features (Baddour et al., 2018). It is less
prone to overfitting compared to individual decision trees due to their
ensemble nature, which aggregates multiple independent predictions.
Moreover, it provides feature importance measures, helping network
operators understand which factors most influence spectrum
availability. Accordingly, random forest algorithm is used in SOP in
Baddour et al. (2018). However, random forests can be computationally
intensive when dealing with very large datasets or high-
dimensional features.

5.3.4 k-nearest neighbors
The k-nearest neighbors (k-NN) algorithm is a simple, non-

parametric method that can be used for SOP prediction (Ghazizadeh
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et al., 2016). In this context, k-NN identifies the k-nearest historical
instances of spectrum usage to a current observation and assigns a
label based on the majority vote among its neighbors.

The advantage of k-NN lies in its simplicity and interpretability,
as predictions are based directly on historical data points rather than
complex models (Syriopoulos et al, 2023). This makes k-NN suitable
for scenarios where spectrum patterns exhibit strong local
correlations. Along with this line, k-NN is used in SOP (Panchal
et al., 2018). However, its performance can degrade with increasing
data dimensionality or volume, leading to high computational costs,
especially in large-scale SOP systems. Additionally, k-NN is sensitive
to the choice of distance metrics and can be affected by noisy data.

5.3.5 Prediction with linear regression
Linear regression provides a robust and interpretable approach

for predicting spectrum occupancy (Uyanik et al., 2012). In SOP, it is
often essential to estimate how different variables—such as time,
frequency, and space—influence the likelihood of spectrum
availability. Linear regression allows for modeling the relationship
between these variables and spectrum occupancy, making it easier to
analyze and interpret trends that may follow linear patterns.

One of the key advantages of linear regression in this context is
its simplicity and ease of implementation, which makes it suitable
for environments where transparency and interpretability are
crucial. Additionally, its ability to handle continuous variables
and provide a straightforward estimation of their contributions to
spectrum occupancy makes it a practical choice for predicting
spectrum availability in diverse scenarios. Along with this line,
linear regression usage is analyzed for SOP in Azmat et al. (2015).

5.3.6 Naive Bayes
Naive Bayes (NB) is a probabilistic classifier that applies Bayes’

theorem under the assumption that features are conditionally
independent given the class label. While this assumption is often
unrealistic, NB performs well in many real-world scenarios. In SOP
prediction, NB can estimate the probability that a given frequency
band is free (Mishra and Vijaykumar, 2018), according to features
such as prior usage patterns, signal strength, or interference levels.

The NB classifier is computationally efficient and works well
with small datasets or when the independence assumption roughly
holds (Rish et al., 2001). It is also easy to implement and interpret,
making it a suitable choice for real-time spectrum management in
resource-constrained environments. Panchal et al. (2018), Bolat and
Kelek (2020) are the examples of NB usage in SOP. However, NB
may struggle with highly correlated features, which is common in
dynamic spectrum environments, limiting its prediction accuracy
compared to more complex models.

5.3.7 Prediction with multilayer perceptron NN
Amultilayer perceptron (MLP) is a widely used feedforward NN

technique for supervised learning tasks, mapping input data onto the
corresponding outputs by learning complex patterns through
hidden layers (Aran and Alpaydın, 2003). In SOP prediction,
MLP leverages past observations to predict future system
performance. The key advantage of MLP is its ability to
approximate any continuous function, making it highly adaptable
to various prediction problems, including those in dynamic and
non-linear systems (Tumuluru et al, 2010; Tumuluru et al., 2012).

An MLP consists of at least three layers: an input layer, one or
more hidden layers, and an output layer. Each neuron in the hidden
layers is connected to every neuron in the subsequent layer, forming
a fully connected directed graph. The neurons process input by
calculating a weighted sum and applying an activation function such
as sigmoid and rectified linear unit, which introduces non-linearity
to the network. This non-linearity is essential in capturing complex
dependencies in the input data, enabling the MLP to perform tasks
that linear models cannot handle.

The MLP’s training process is iterative, involving forward and
backward passes through the network. During the forward pass, the
network produces predictions based on the current weights. The
error is computed as the difference between predicted and actual
outputs using a loss function like mean squared error (MSE). In the
backward pass, the network uses the error to adjust the weights via
gradient descent and backpropagation, minimizing the loss. Over
multiple epochs, the model improves its predictive performance.
Once trained, the MLP can generalize to unseen data by making
predictions based on newly observed inputs.

There are several examples of NN usage in SOP, such as
Tumuluru et al. (2010), Tumuluru et al. (2012), Eltholth (2016),
Das et al. (2018), Mohammadjafari et al. (2019), Fan et al. (2019),
Ajiboye et al. (2021), Chirov and Kandaurova (2023), Kandaurova
and Chirov (2023), Enwere et al. (2023). On the other hand, recent
literature views that spectrum occupancy is a non-stationary process
(Ding et al., 2017). Nevertheless, the methods above may not always
be capable of addressing this issue. This incapacity has become more
visible since more UE mobility and various UE types are anticipated
in 6G and beyond. Thus, thanks to multiple hidden layers, DL
methods, such as deep NN (DNN), CNN, and LSTM networks,
which can capture complex temporal and spatial correlations in
spectrum data, have been proposed as an advanced SOP framework
for addressing this non-stationarity. For example, Cao et al. (2021)
proposes a type of DNN that combines residual network, channel
and spatial attention modules, and gated recurrent unit network.

5.3.8 Prediction with CNN
One-dimensional CNN (1D-CNN) are commonly used for tasks

that involve sequential or temporal data, such as time-series
prediction. A 1D-CNN has a simpler architecture compared to
two-dimensional CNNs (2D-CNN)s, making it suitable for real-
time and low-cost applications (Kiranyaz et al., 2019). The process is
composed of two stages: the training stage and the testing stage.

During the training stage, the 1D-CNN model adjusts the
convolutional layers. The core operation of the convolutional
layer is to slide a filter over the input sequence and compute the
dot product between the filter and the input sequence. The result of
this operation is known as the convolved feature map, and it can be
expressed mathematically as

o � ∑u
p�1

wp · xk p − 1[ ],

where wp represents the element at the p-th row of the u × 1 filter
vector, and xk denotes the elements of the input feature vector being
convolved with the filter.

After convolution, the feature map is typically passed through
an activation function (such as rectified linear unit) to introduce
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non-linearity, followed by pooling layers to reduce the
dimensionality and retain the most important features. This
process helps the model capture local patterns in the input sequence.

During the testing stage, the trained 1D-CNN model uses the
learned filters to process new input data by convolving the filters
with the input sequence, generating a feature map that highlights the
most relevant information. The final output is then used to predict
the next sequence or value, depending on the specific task at hand.

While 1D-CNN uses one-dimensional data, 2D-CNN processes
two-dimensional input, such as images or matrices. 2D-CNN is also
composed of two stages: the training stage and the testing stage.
During the training stage, the convolutional layers are adjusted
based on the input data. A feature map is generated by convolving
the input feature vector with a set of filters. The operation can be
expressed mathematically as

o � ∑u
p�1

wp · xk p − 1[ ] · yk r − 1[ ],

where yk represents the elements of the input feature vector
convolved by wp, and r is the corresponding element in the
second dimension of the feature map. The other processes are
the same as the 1D-CNN. CNNs have been particularly effective
in detecting the presence of radar signals by analyzing the phase and
amplitude differences in data (Selim et al., 2017; Sun et al., 2019). In
Ambika et al. (2021), a deep CNN method is used to classify the
occupancy state of PU.

5.3.9 Prediction with LSTM
LSTM networks are a type of recurrent NN (RNN) designed to

handle sequential data with long-term dependencies. Standard
RNNs struggle to retain information over long sequences due to
the vanishing gradient problem. LSTM mitigates this issue using
memory cells that maintain information over time, allowing the
model to capture both short-term and long-term dependencies (Yu
et al., 2019).

The LSTM architecture consists of a series of gates that control
the flow of information: the input gate it, the forget gate f t, and the
output gate ot. These gates are regulated by the current input xt and
the previous hidden state ht−1. The memory cell ct stores
information, and the hidden state ht is computed based on the
cell’s output.

The mathematical operations within an LSTM cell are as follows.

• Forget Gate: The forget gate determines how much of the
previous cell state ct−1 should be forgotten. It is computed as

f t � σ Wf · ht−1, xt[ ] + bf( ),
where Wf are the weights, [ht−1, xt] is the concatenation of the
previous hidden state and the current input, bf is the bias, and σ is
the sigmoid activation function. The output f t is a vector with values
between 0 and 1, controlling the amount of forgetting.

• Input Gate: The input gate controls how much new
information is added to the cell state. It is computed as

it � σ W i · ht−1, xt[ ] + bi( ).

Simultaneously, a candidate cell state ~ct is generated using a tanh
activation function as follows.

~ct � tanh Wc · ht−1, xt[ ] + bc( ).

The new cell state ct is updated by combining the forget gate and
input gate is

ct � f t ⊙ ct−1 + it ⊙ ~ct,

where, ⊙ represents element-wise multiplication.

• Output Gate: The output gate determines the next hidden state
based on the current cell state ct. It is computed as

ot � σ Wo · ht−1, xt[ ] + bo( ).

The hidden state ht is then updated as

ht � ot ⊙ tanh ct( ).
In these equations, Wf ,W i,Wc,Wo are weight matrices, and

bf, bi, bc, bo are bias vectors associated with the forget gate, input
gate, candidate cell state, and output gate, respectively. The sigmoid
function σ(z) � 1

1+e−z ensures that the gate values are between 0 and
1, while the tanh function constrains the candidate cell state values
between −1 and 1.

The flow of information through the gates allows the LSTM to
retain relevant information and discard irrelevant data over time.
This structure enables LSTMs to model long-term dependencies
effectively, making them ideal for time-series SOP predictions.
Along with this line, in SOP, spectral and temporal correlations
were used with LSTM methods (Shawel et al., 2018). Furthermore,
the spectrum in a frequency hopping communication was predicted
by an LSTM network (Yu et al., 2017). This work was extended using
the Taguchi method (Yu et al., 2018). In Radhakrishnan et al. (2021),
different hard and soft fusionmethods perform cooperative SOP in a
CR environment with trained LSTM-based local predictors. Feng
et al. (2020) proposes a bidirectional LSTM-based spectrum
prediction scheme performed in two stages. Notably, in the first
stage, the historical spectrum data is pre-processed. In the second
stage, the pre-processed data is sent to the bidirectional LSTM
method, which performs training and generates the optimized
hyperparameters. Pan et al. (2024) proposes a multichannel
multi-step spectrum prediction method using a transformer and
stacked bidirectional LSTM. Li et al. (2019) proposed an LSTM-
based method by analyzing the relationships between frequency and
time of historical spectrum data for IoT. Besides that, frequency and
time correlations were exploited to predict spectrum occupancy over
real-world measurements via 2D-LSTM Aygül et al. (2020b). To
improve duty cycle prediction after block averaging, LSTM, and
gated recurrent units are selected and enhanced using data features,
such as the variance of duty cycle data and duty cycle data
themselves (Al-Tahmeesschi et al., 2021). Tusha et al. (2022)
designs a hierarchical SOP method, taking advantage of the RNN
focusing on the gated recurrent unit. Nandakumar et al. (2023) also
proposes an LSTM-basedmethod to predict the radio spectrum state
for two time slots simultaneously. Besides the use of DL methods
individually, Zhang and Jia (2021) proposed a method that adopts
the joint CNN and LSTM in a combined manner. Furthermore,
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Omotere et al. (2018) designed DNNs, LSTM, and CNN-based and
compared their capabilities in SOP.

5.3.10 Prediction with convolutional LSTM
Convolutional LSTM (ConvLSTM) networks integrate the

strengths of LSTMs and CNNs by applying convolutional
operations within the LSTM architecture. This allows ConvLSTM
to capture both spatial and temporal dependencies in the input data,
making them ideal for tasks that involve spatio-temporal dynamics,
such as SOP prediction in multi-dimensional systems.

In ConvLSTM, the convolutional structure is applied during
both input-to-state and state-to-state transitions, which allows the
model to extract spatial features at each time step. The state
transition within a ConvLSTM cell can be expressed, as in
Equation 4.

o � ∑u
p�1

wpxk p − 1[ ], (4)

where the convolution operations capture spatial correlations while
the LSTM structure handles temporal dependencies. ConvLSTMs
are particularly useful in applications where system states are
represented as multidimensional grids, allowing for the
simultaneous prediction of multiple SOP metrics over time.
Accordingly, Shawel et al. (2019); Wang L. et al. (2024) propose
a method that uses ConvLSTM for spectrum prediction.

5.3.11 Prediction with reinforcement learning
Reinforcement learning (RL) provides a framework for agents to

learn optimal behaviors through interactions with their
environment. In the context of SOP prediction, RL agents are
trained to make decisions that maximize long-term performance
by taking actions based on current system states and receiving
rewards or penalties as feedback. The agent’s goal is to learn a
policy that maps states to actions in a way that maximizes
cumulative rewards over time (Kaelbling et al., 1996).

The RL process consists of several steps. First, the agent observes
the current state of the system and selects an action based on a
policy, which can be either a deterministic function or a probability
distribution over actions. The agent then receives feedback from the
environment in the form of rewards or penalties, which is used to
update its policy. Over time, the agent improves its decision-making
by maximizing the expected cumulative reward, enabling it to
predict and optimize future system performance dynamically.

Despite the successes of the supervised learning-based methods
(such as LSTM and CNN), they require a large set of labeled data
points, which prevents them from being fully independent solutions.
Furthermore, even with the availability of such a dataset, these
methods do not inherently adapt to the environment where they are
operated. Therefore, RL is proposed to predict spectrum
occupancies without requiring prior training overhead while
working in a standalone fashion, i.e., with minimized human
dependency (Jalil et al., 2021; Peng et al., 2022; Aygül et al., 2022c).

5.3.12 Prediction with tensor-based method
Despite the methods above helping analyze numerous cases,

they consider correlations only one or two of time, frequency, and
space domains. On the other hand, these dimensions do not provide

a detailed analysis of the wireless signals’ non-stationary
characteristics and multidimensional attributes (Hisham and
Arslan, 2008). Jointly exploiting multidimensional correlations
provides a promising perspective for spectrum prediction. Tensor
analysis is used to utilize multidimensional correlations for
spectrum prediction. Along with this line, Sun et al. (2018)
converted spectrum prediction into a third-order tensor
completion problem. This method achieved one-day-long
forecasts with a reasonable error margin. Another study
examines combining LSTM with CANDECOMP/PARAFAC
tensor decomposition for prediction (Alkhouri et al., 2020).
Moreover, multidimensional correlations were utilized jointly
with ConvLSTM for a long-term temporal prediction (Shawel
et al., 2019).

Despite tensor methods providing a robust and rich
representation of a three-dimensional (3D) dataset, they require
high processing time (Ioannidou et al., 2017; Gezawa et al., 2020)
and assume 3D data can be provided at any time. On the other hand,
sometimes, getting information from all of the BSs is not easy. For
instance, in the case of CR security threats [PUEA and jamming
attack (Fragkiadakis et al., 2013)], accurate information about
spectrum occupancy cannot be provided from BSs. Besides that,
in the case of a natural disaster, the information flow of some BSs can
be cut. Thus, such an assumption is not always accurate or practical.
To compensate for the effects above, Aygül et al. (2020a) proposed
using composite 2D-LSTM methods to divide the 3D SOP problem
into smaller sub-problems while exploiting multidimensional
correlations. Experimental results indicate that the composite 2D-
LSTM method can predict spectrum occupancies with less
complexity and slight performance loss compared to tensor-
based methods.

5.3.13 Federated learning
One of the critical challenges in SOP is ensuring data privacy,

while maintaining high performance. The collection of vast amounts
of data for SOP can expose sensitive information about UEs, devices,
and their behaviors. In shared spectrum environments, data from
different UEs or systems can inadvertently reveal private details,
such as location, communication patterns, or operational
frequencies, raising serious privacy concerns. With increasing
regulatory oversight and the rise of privacy regulations,
addressing these privacy issues becomes imperative. To mitigate
these concerns, federated learning (FL) has emerged as a promising
solution to ensure data privacy in ML-based SOP systems (Kułacz
and Kliks, 2023). In traditional centralized learning, raw data must
be transferred to a central server for model training, which risks
exposing sensitive information during transmission or storage. FL,
however, enables models to be trained directly on decentralized
devices (e.g., spectrum sensors, UE devices) without the need to
share raw data. Only model updates or gradients are shared with the
central server, ensuring that the underlying data remains private and
secure. This approach significantly reduces the risk of privacy
breaches, as the sensitive data does not leave the local device.
Moreover, FL also improves data security by distributing the
model training process, making it harder for attackers to
compromise the entire system. Ensuring that only aggregated
model updates are shared prevents malicious entities from
inferring sensitive information about individual UEs or devices.
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This decentralized approach also aligns well with the dynamic
nature of CRNs, where data is often generated in real-time and
across a distributed infrastructure. FL can adapt to these
environments, ensuring both privacy and performance are
maintained.

However, despite its advantages, FL introduces new challenges
that need to be addressed. The communication overhead associated
with sharing model updates across decentralized nodes can become
a bottleneck, especially in resource-constrained environments.
Furthermore, ensuring that the models trained locally on
heterogeneous devices converge to a global solution requires
careful consideration of factors such as model synchronization,
data heterogeneity, and local computational limitations. Future
research should focus on optimizing these aspects to fully
leverage the privacy benefits of FL in SOP applications.

Additionally, privacy-preserving techniques like differential
privacy can be incorporated within the FL framework to provide
even stronger privacy guarantees. Differential privacy ensures that
the model updates shared with the central server are randomized in
such a way that it becomes statistically impossible to infer
information about any single data point in the dataset. This
combination of FL and differential privacy can offer robust
protection against privacy threats while still enabling effective
ML-based spectrum prediction.

5.4 Interpretable ML for SOP

Numerous ML-based SOP methods have demonstrated
superiority over traditional model-based methods, as discussed in
this paper. However, the increasing reliance on ML raises several
critical questions that go beyond mere performance metrics: What
exactly have these ML models learned from the data? Why do they
outperform traditional methods in complex wireless environments?
What unique insights do they uncover that traditional model-based
methods, grounded in expert-designed heuristics, might have
overlooked? Furthermore, can wireless engineers fully trust these
ML models to predict spectrum occupancy outcomes accurately,
especially in critical scenarios where communication efficiency and
security are at stake?

The crux of these questions is understanding the underlying
decision-making processes of ML models, which is pivotal for their
deployment in real-world wireless systems. Trusting ML to act as
more than a black-box predictor—transforming it into a tool for
actionable intelligence—requires clear, interpretable insights into
why certain predictions are made. Along these lines, interpretable
ML has already gained traction in domains like medical imaging,
where its predictions are relatively easy for humans to cross-check
and verify (Salahuddin et al., 2022; Fuhrman et al., 2022;Wang A. Q.
et al., 2024). Recently, interpretable ML has also been explored in
wireless communication applications such as channel estimation
(Gizzini et al., 2023), modulation classification (Xu et al., 2024), and
resource management (Khan et al., 2023), but its potential within the
domain of SOP remains under-explored.

Integrating interpretable ML techniques into SOP modeling can
provide valuable insights into the internal workings of these
complex algorithms. For instance, understanding why an ML
model classifies a specific spectrum band as occupied or vacant is

essential for engineers to validate the reliability of these predictions.
This level of understanding ensures that ML decisions align with
known characteristics of radio frequency (RF) behavior, offering
engineers a clearer picture of the factors influencing these outcomes.
Techniques such as feature attribution, which highlights the most
relevant aspects of the spectrum data the model is focusing on, can
help engineers pinpoint how temporal, spatial, and frequency-
domain correlations contribute to the model’s final decision. This
transparency helps demystify the black-box nature of many
advanced models, enabling engineers to make more informed
decisions based on the model’s interpretations.

Additionally, interpretable ML plays a critical role in identifying
potential biases embedded within spectrum data, which may stem
from environmental conditions or hardware-related inconsistencies.
Such biases, if left unchecked, can lead to flawed predictions, which
can compromise the reliability of SOP systems. By offering clear,
human-readable explanations for each decision, interpretable ML
empowers engineers to verify the influence of various input
features—such as PSD, interference levels, and noise figures—on
the model’s output. This insight is especially crucial in CR systems,
where the accuracy and robustness of spectrum predictions are
directly tied to network performance, spectrum efficiency, and the
security of communication links. In this context, interpretable ML
not only enhances the transparency and accountability of SOP
models but also enables engineers to detect and correct any
underlying biases or model weaknesses before they propagate
through the network.

Furthermore, interpretable ML can facilitate collaboration
between wireless engineers and ML practitioners by bridging the
knowledge gap between these two domains. It can translate complex
algorithmic decisions into understandable terms that align with
engineers’ domain expertise, ensuring that the model’s behavior is
not only statistically sound but also practically relevant for real-
world deployment. This collaboration can lead to the development
of hybrid models where domain-specific knowledge is integrated
with data-driven insights, ultimately improving both performance
and trustworthiness. As SOP evolves within increasingly complex
and dynamic wireless environments, the role of interpretable ML
becomes indispensable in fostering confidence in these systems,
ensuring that they can be safely and efficiently deployed in diverse
applications, from commercial networks to mission-critical systems.

6 Dataset generation

It is also important to explore various dataset generation
methods and real-world datasets used for SOP (Naikwadi and
Patil, 2020; Agarwal et al., 2018). These datasets are crucial for
training and validating ML methods, ensuring they generalize well
to real-world scenarios. Therefore, parameters of the spectrum and
threshold selection mechanism should be investigated to use the ML
methods efficiently.

6.1 Parameters of spectrum

Spectrum usage can be predicted using several key parameters,
each of which provides valuable information about the current state
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and future occupancy of frequency bands. The most common
parameters include power spectral density (PSD) and received
signal strength indicator (RSSI). Beyond these, additional
parameters such as duty cycle, interference level, historical usage
patterns, UE mobility patterns, network traffic load, geolocation
data, device type and capability, environmental factors, and quality
of service (QoS) requirements are also critical features for SOP. Each
of these parameters captures different aspects of the radio
environment, contributing to a more comprehensive
understanding of spectrum occupancy patterns.

6.1.1 PSD
PSD quantifies the distribution of power across a signal’s

frequency spectrum. It is typically expressed in watts per hertz
and provides a direct measure of the power level at each frequency.
PSD analysis is crucial for understanding how much power is being
transmitted within a given frequency band, which directly correlates
to the level of spectrum utilization. For example, in heavily
congested areas, the PSD across multiple bands may be high,
indicating significant spectrum usage. By evaluating PSD trends
over time, it is possible to predict future spectrum occupancy and
identify underutilized bands that can be better managed for efficient
spectrum allocation. Additionally, PSD provides insights into signal
interference and noise, which are key factors in determining
spectrum availability.

6.1.2 RSSI
RSSI is a measure of the strength of a received signal and reflects

how well a receiver can “hear” the transmission. It is usually
measured in decibels relative to one milliwatt. RSSI plays an
important role in determining the quality of a wireless
connection, and higher values indicate stronger signals. In SOP,
RSSI data can reveal which frequency bands are actively being used
and by how many devices. For example, a consistently high RSSI
value across a particular frequency band suggests that the channel is
occupied by multiple transmitters. By analyzing the variations in
RSSI over time, the future load on that frequency band can be
anticipated.

6.1.3 Duty cycle
The duty cycle is the proportion of time a frequency band or

channel is actively being used compared to the total available time. It
is expressed as a percentage, where a higher duty cycle indicates that
the spectrum is heavily utilized. Duty cycle analysis is particularly
important in time-varying environments where spectrum usage
fluctuates throughout the day. For instance, during peak hours, a
channel may exhibit a high duty cycle, signaling continuous usage,
whereas off-peak hours might show a lower duty cycle. By analyzing
these patterns, it is possible to forecast when a channel will be in use
and when it might become available for other applications.

6.1.4 Interference level
Interference refers to the presence of unwanted signals in the

frequency band that degrade communication quality. Measuring the
interference level helps in understanding how crowded the spectrum
is and how multiple devices interact with each other in a shared
environment. High interference levels generally indicate high
spectrum occupancy, as many devices or services may be

competing for the same frequency bands. Furthermore,
interference analysis can identify problematic areas in the
spectrum where noise or cross-talk between devices is prevalent.
This information is essential for improving spectrum efficiency and
for predicting when and where future interference might occur.

6.1.5 Historical usage patterns
Analyzing historical spectrum usage data provides valuable

insights into recurring trends and patterns that can be used for
future predictions. This includes identifying peak usage times (such
as during business hours or specific seasons) and low-traffic periods.
By aggregating long-term usage data, it is possible to predict with
reasonable accuracy when a frequency band will be in high demand.
Historical patterns can also highlight emerging trends, such as
increased spectrum usage due to the deployment of new services
or technologies.

6.1.6 UE mobility patterns
The mobility of UE, such as smartphones or Internet of things

(IoT) devices, plays a significant role in spectrum occupancy. For
instance, if a large number of UEs are moving toward a specific
geographic area, it is likely that spectrum usage in that region will
increase. Mobility patterns can be tracked using geolocation data
and movement models, which in turn provide a dynamic forecast of
spectrum occupancy. This is especially important in urban areas
where UE density and mobility are high, leading to frequent
handovers and spectrum reallocation between BSs.

6.1.7 Network traffic load
Network traffic load is a measure of the total demand placed on

the network by active UEs. This load is closely correlated with
spectrum usage, as high traffic demands typically require more
spectrum resources to meet the QoS requirements. Monitoring
current traffic loads can provide real-time data on spectrum
utilization, while long-term traffic patterns can help in predicting
future demand. For example, during major events or festivals,
network traffic may surge, requiring careful spectrum planning to
avoid congestion.

6.1.8 Geolocation data
Geolocation data provides insights into where spectrum demand is

highest. By mapping UE density and usage patterns to specific
geographic locations, network operators can optimize spectrum
allocation based on real-world usage. For example, urban centers
with high UE density may require more spectrum resources, while
rural areas might have more available bandwidth. Incorporating
geolocation data into spectrum prediction models allows for location-
specific forecasting, enabling more efficient resource management.

6.1.9 Device type and capability
Different types of devices, such as smartphones, IoT devices, or

laptops, have varying spectrum needs and capabilities. IoT devices,
for example, typically require less bandwidth compared to video-
streaming applications on smartphones. Understanding the mix of
devices on the network helps in predicting future spectrum needs
and allocating resources appropriately. Device capabilities, such as
multi-band support or advanced modulation schemes, can also
influence how spectrum is used and managed.
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6.1.10 Environmental factors
Environmental conditions, such as weather, terrain, and physical

obstructions, significantly affect signal propagation. For example, rain
or heavy fog can attenuate wireless signals, reducing the effective range
and increasing the likelihood of interference. Understanding these
environmental factors allows for more accurate predictions of
spectrum occupancy under different conditions. Spectrum
prediction models that account for weather-related effects can help
optimize frequency allocations during adverse conditions.

6.1.11 QoS requirements
Different applications and services have varying QoS

requirements. For instance, real-time applications like voice or
video calls require low latency and stable connections, which
translate to specific spectrum demands. By understanding the
QoS requirements of different services, it is possible to predict
which parts of the spectrum will be most in demand at any given
time. Applications with high QoS requirements may need to be
prioritized in spectrum allocation to ensure uninterrupted service.

6.2 Threshold selection

Threshold selection is essential for efficient SOP. This work
categorizes threshold selection into two groups: fixed threshold and
adaptive threshold selections.

6.2.1 Fixed threshold selection
Fixed threshold selection involves setting a predetermined,

constant threshold value that does not change over time or with
varying conditions. This method is simple and easy to implement.
The threshold value is usually chosen based on historical data or
specific requirements of the spectrum occupancy environment. It
provides a consistent decision criterion and often relies on historical
data or empirical observations to determine the threshold. However,
it may not adapt well to changing conditions, leading to potential
inaccuracies in SOP. Below are the methods used for fixed threshold
selection for SOP, and Table 1 compares these methods.

• Empirical Thresholds: This method uses historical data and
empirical observations to set a threshold. The threshold is
chosen based on past measurements of signal presence and
absence. It is simple to implement and does not require
complex calculations. However, it may not be adaptable to
changing conditions, and performance depends on the
accuracy of historical data.

• Statistical Methods: Mean and standard deviation is one of the
examples of statistical methods. In this method, we set the
threshold based on the mean signal power plus a multiple of
the standard deviation. It takes into account the variability of
the signal. However, it requires a good understanding of the
signal distribution and may not be suitable for highly variable
environments.

• Percentile-Based Thresholds: It sets the threshold at a specific
noise or signal power distribution percentile. It can be tailored
to specific requirements (e.g., setting at the 95th percentile to
minimize false positives). However, it may still be static and
not responsive to real-time changes.

• Fixed Value Thresholds: A fixed value (e.g., −90 decibel-
milliwatts) is chosen based on general industry standards
or specific application requirements. It is simple and easy
to implement but does not account for environmental or
temporal noise or signal strength variations.

• SNR-Based Thresholds: A fixed SNR threshold is set to
distinguish between signal and noise. It is more accurate
than simple power-based thresholds directly related to
signal quality. Still, it requires precise noise power
estimation and may not adapt well to rapid changes in the
environment.

• EDMethod: A threshold is set based on the energy detected in
the frequency band. If the detected energy exceeds the
threshold, the band is considered occupied. It is widely
used in practical applications and is straightforward to
implement. However, fixed energy thresholds may perform
poorly in low SNR conditions or fluctuating noise levels.

6.2.2 Adaptive threshold selection
Adaptive threshold selection involves dynamically adjusting the

threshold value based on real-time data and changing conditions.
This method aims to improve prediction accuracy by responding to
variations in the spectrum environment. However, it is more
complex to implement compared to fixed thresholds. Adaptive
threshold selection methods for SOP are detailed below, and
comparisons between them are given in Table 2.

• Noise Level Estimation: It adjusts the threshold based on real-
time measurements of the noise level in the spectrum. MA and
median filtering are the widely used methods. MA calculates
the average of recent noise measurements to estimate current
noise levels. Median filtering uses the median of recent noise
measurements to reduce the impact of outliers. It is simple and
effective in environments with varying noise levels. However,

TABLE 1 Comparisons of fixed threshold selection methods.

Method Advantages Disadvantages Use case

Empirical Methods Simple, based on historical data Non-adaptive, accuracy depends on past data Stable environments

Statistical Methods Considers variability, customizable Requires understanding of signal distribution Environments with known distributions

Fixed Value Thresholds Extremely simple and easy Not flexible, non-responsive to changes General applications, industry standards

SNR-Based Thresholds Relates to signal quality Requires accurate noise estimation Moderate variability environments

ED Methods Widely used, straightforward Fixed thresholds may not handle low SNR well Practical applications with consistent noise levels
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it may require frequent updates and is sensitive to the choice of
window size for averaging or filtering.

• SNR-Based Methods: It dynamically adjusts the threshold
based on the estimated SNR. The adaptive SNR
thresholding method is widely used to continuously update
the threshold tomaintain a desired SNR level. It provides more
accurate detection by considering both signal and noise, but it
requires an accurate estimation of both signal and noise levels.

• Statistical Methods: It utilizes statistical properties of the received
signal to adjust the threshold. Variance-based thresholding and
probability density function (PDF) estimation are widely used
methods. Variance-based thresholding adjusts the threshold
based on the variance of the received signal. PDF estimation
uses the estimated PDF of the noise and signal to set adaptive
thresholds. It can provide robust performance in varying
conditions. However, it is computationally intensive and
requires accurate statistical methods.

• ML-Based Methods: It employs ML methods to predict and
adjust the threshold based on historical and real-time data. It is
highly flexible and can adapt to complex and non-linear
environments, but it requires extensive training data and
computational resources.

• Bayesian Methods: It uses Bayesian inference to adjust the
threshold based on prior and observed data. In other words, it
models the relationship between signal, noise, and threshold
and updates based on observed data. It provides a probabilistic
framework for threshold adjustment. However, it is
computationally intensive and requires accurate prior models.

7 CR security

Jamming and PUEA may mislead spectrum prediction
(Fragkiadakis et al., 2013), as illustrated in Figure 6. A PU

TABLE 2 Comparisons of adaptive threshold selection methods.

Method Advantages Disadvantages Use case

Noise Level Estimation Simple, effective in varying noise levels Requires frequent updates, sensitive to window size Environments with varying noise

SNR-Based Methods Accurate detection considering signal and noise Requires accurate estimation of signal and noise Environments with varying SNR

Statistical Methods Robust performance in varying conditions Computationally intensive, requires accurate models Dynamic statistical environments

ML-Based Methods Highly flexible, adapts to complex environments Requires extensive training data, computationally heavy Complex and non-linear
environments

Bayesian Methods Probabilistic framework for adjustment Computationally intensive requires accurate prior
models

Environments with well-defined
priors

FIGURE 6
An example that shows a noise, an attacker, and a PU.
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emulator can emulate the transmission characteristics of the PU,
while a jammer can generate intentional interference. In both cases,
the consequences of the attacks result in an incorrect inference on
the spectrum occupancy. Thus, there should be methods to identify
these attacks.

The formal objective of these methods is to distinguish between
the following hypotheses, as in Equation 5.

y �
n, H0: there is no PU
hPUxs + n, H1: APU is exist
hixs + n, H2: APU emulator is exist
hixn + n, H3: A jammer is exist,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5)

where y, hPU, hi, xs, and xn represent the received signal, the channel
corresponding to the legitimate PU, the channel corresponding to
PUEA or jammer, the structured signal, and the jamming signal,
respectively. After these attacks are identified, they can be
preventable, and the spectrum can be predicted more accurately.

Traditional methods to identify jamming and PU emulation
include cryptography-based methods. On the other hand, these
methods suffer from key management and distribution issues in
heterogeneous wireless communication networks (Wang et al.,
2016). To solve these issues, an ED-based method (Jin et al.,
2015) is proposed for identifying legitimate PUs. Another
method uses a Markov random field-based belief propagation
framework based on ED for PUEA detection (Yuan et al., 2012).
Although ED-based methods are simple, they tend to create high
false alarm rates (Fragkiadakis et al., 2013). Another detection
method category is based on exploiting physical layer
characteristics. Although these methods effectively detect CR
security threats, more intelligent and robust methods are still
required to support diverse services in various scenarios (Wu
et al., 2018).

Recent literature considers using ML methods to detect JAs and
PUEAs. This usage is based on training a machine to identify such
attacks, where training is conducted over features extracted from
received signals (Pu and Wyglinski, 2014). In Pourranjbar et al.
(2021), an anti-jamming strategy is proposed based on deceiving the
jammer into attacking a victim channel while maintaining the
communications of legitimate UEs in safe channels. Since the
jammer’s channel information is unknown to the UEs, an
optimal channel selection scheme and a sub-optimal power
allocation method are proposed using an RL method. Kihei et al.
(2021) demonstrates a supervised ML method that can detect and
classify the jamming attack with high accuracy. tu Zahra et al. (2024)
proposes an LSTM-based method for jamming detection that uses
parameters from multiple layers. Liu et al. (2021) models the attack
and defense strategies optimization using single-channel jamming,
multiple-channel jamming, single-channel sensor, and multiple-
channel sensor DNNs for channel jamming attacks. Besides that,
it extends the design to the scenario where the intelligent jammer
can launch a hybrid mode jamming attack and propose a DNN
Stackelberg game-based defense scheme. Ullah et al. (2023) proposes
a hybrid learning framework for jamming detection and path loss
predictions based on the successive usage of multiple DNN blocks.

Kasturi et al. (2020) proposes an ML-based classification
technique for different types of jamming attacks. Hachimi et al.
(2020) focuses on deploying a multi-stage ML-based intrusion
detection that can detect and classify four types of jamming

attacks: random, constant, reactive, and deceptive jamming. Lee
et al. (2023) proposes a jammer classification and effective defense
method to classify jamming attack types using ML. Different multi-
output multiclass ML methods are trained with global positioning
system-specific sample datasets obtained from exhaustive feature
extraction and data collection routines that followed a set of realistic
experimentations of attack scenarios (Alkhatib et al., 2024). Reda
et al. (2024) uses a DL-based method to detect two specific kinds of
jammers: continuous wave jammers and chirp jammers.

Shi and Sagduyu (2022) investigates how to launch over-the-air
jamming attacks to disrupt the FL process when executed over a
wireless network. A federated deep RL-based anti-jamming
technique is proposed (Sharma et al., 2022). Meftah et al. (2023)
proposes an FL-based jammer detection and waveform classification
method for distributed tactical wireless networks. Also, Abou El
Houda et al. (2024) combines FL with deep RL for efficient jamming
attack detection. Meftah et al. (2024) presents a FL method, named
Aggregated and Augmented Training Federated, tailored for
stochastic, distributed, tactical terrestrial and non-terrestrial
network environments to address jammer detection through
convolutional variational autoencoders within the FL framework.

Shafique et al. (2021) proposed a support vector machine-based
method signal spoofing attack in unmanned aerial vehicles (UAV)s.
Pawlak et al. (2021) proposes an ML method to detect and classify
jamming attacks on UAVs. Jasim et al. (2022) proposes an intelligent
security system for UAVs that harnesses ML to detect spoofing and
jamming attacks. An ML method is proposed to detect and classify
jamming attacks against orthogonal frequency division multiplexing
receivers with applications to unmanned aerial vehicles UAVs (Li
et al., 2022). Mensi et al. (2023) uses ML-based methods for
detecting jamming attacks in UAVs. Zagrouba and Alhajri (2021)
focuses on proposing low-power consumption ML methods for
detecting IoT botnet attacks using random forest as an ML-based
detection method and describing common IoT attacks with their
countermeasures. Hussain et al. (2022) proposes an ML method for
jamming detection in IoT wireless networks. Saheed et al. (2022)
proposes an ML-based intrusion detection system for detecting IoT
network attacks. Jayabalan and Pugazendi (2022) proposes a DL
method for detecting jamming attacks in low-power and lossy
wireless networks. Latif et al. (2020) proposes a lightweight
random NN-based prediction method for industrial IoT
networks. A RL-based method is proposed for based jamming-
detection in vehicular ad hoc networks (Shetty and Manjaiah, 2021).
Bousalem et al. (2023) proposes a DL-based method to detect radio
jamming attacks on vehicle-to-network and vehicle-to-
infrastructure communications interfaces using a dataset collected
from a vehicular-to-everything testbed. In Zhou et al. (2021), an
intelligent anti-jamming communication method is investigated for
wireless sensor networks. The stochastic game framework is
introduced to model and analyze the multi-UE anti-jamming
problem, and a joint multi-agent anti-jamming method is
proposed to obtain the optimal anti-jamming strategy. The
proposed method adopts multi-agent RL to make online channel
selections in an intelligent multichannel blocking jamming
environment. This can tackle external malicious jamming and
avoid internal mutual interference among sensor nodes.
Bensalem et al. (2019) proposes an ML method to detect and
prevent jamming attacks in optical networks. Asif et al. (2021)
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uses a CNN method for anti-jamming in safety-critical aeronautical
communications.

Different ML types are used to detect PUEA. A semi-supervised
ML method is proposed to detect and prevent PUEA (Srinivasan
et al., 2019). Support vector machine detects PUEA (Arul Selvi and
Sundararajan, 2016; Cadena Munoz et al., 2020; Ambhika, 2024). In
Muñoz et al. (2022), K-nearest neighbors, random forest, and
support vector machine are implemented to detect the PUEA. An
RL method is used to detect PUEA (Sureka and Gunaseelan, 2022).
Camana et al. (2022) uses a decision tree method to detect PUEA.
Furqan et al. (2020) uses the convergence patterns of sparse coding
as features for ML-based classification to identify jamming and
PUEA. A DL-based method is proposed to detect the PUEA and
jamming without explicit feature extraction (Aygül et al., 2020).

Besides the technical papers, Villain et al. (2022) surveys ML
methods for jamming detection in electromagnetic communication.
Also, Šimon and Götthans (2022) surveys the use of DL methods for
UAV jamming and deception. Teeda et al. (2023) propose and
evaluate experimentally the use of ML to detect the presence of a
jammer attack in next-generation wireless fidelity networks.

8 Future directions

Although there are promising existing works for ML-based SOP,
as investigated in this paper, several areas still need to be studied.

• Data Augmentation and Synthetic Data Generation: The
challenge of acquiring large-scale, high-quality, and labeled
datasets is particularly acute in the context of SOP prediction,
where spectrum dynamics vary across different environments
and applications. Future research can address this by
leveraging advanced data augmentation techniques and
synthetic data generation methods. Specifically, generative
adversarial networks (GAN)s can be employed to create
realistic spectrum usage scenarios that mimic real-world
conditions. GANs can help simulate a variety of
interference patterns, UE behaviors, and environmental
conditions, providing diverse datasets that are invaluable
for training ML models. Beyond GANs, variational
autoencoders and diffusion models can also generate
synthetic data that enhances the training process by
introducing controlled variations in spectrum
characteristics. These techniques can be combined with
domain adaptation approaches, where synthetic data is
fine-tuned to better reflect real-world conditions, further
improving model generalization and reducing the reliance
on manually collected data.

• Interpretable ML and Model Interpretability: As SOP
prediction methods become increasingly reliant on complex
DL architectures, there is a growing need for model
interpretability to foster trust and ensure reliable
deployment. Interpretable ML methods should focus on
enhancing transparency at multiple levels: feature
attribution, decision explanation, and system transparency.
Tools like SHapley Additive exPlanations (SHAP) and Local
Interpretable Model-agnostic Explanations (LIME) can be
used to provide detailed insights into which input features

most influence the predictions. This helps both engineers and
end-UEs understand why a model made a specific decision
and whether that decision aligns with expected spectrum
usage patterns. Furthermore, counterfactual analysis can be
introduced, where theMLmodel generates “what-if” scenarios
to show how small changes in input (e.g., signal strength,
interference levels) can affect the prediction. In the context of
SOP, this is valuable as it can highlight sensitive features and
parameters that need more precise monitoring. Visual tools
that map the learned patterns from the model to interpretable
visualizations, such as spectrum heatmaps, can also make the
decision-making process more accessible to practitioners.
Therefore, integrating these interpretable features into real-
time systems will be key for adoption in practical CRNs, as it
will allow for both monitoring and dynamic model
adjustments in response to live spectrum conditions.

• Integration of Multidimensional Correlations: Current SOP
methods typically exploit correlations in time, frequency, and
space simultaneously; however, the spectrum environment
involves a broader range of dimensions, and expanding the
utilization of additional dimensions simultaneously can enhance
prediction capabilities. While prior works have considered
domains such as angle and code, future research should aim
to integrate these dimensions more comprehensively.

• Advanced ML Methods: While certain DL techniques have
already demonstrated impressive results in SOP, future
advancements in ML are likely to focus on more sophisticated
architectures capable of representing complex relationships in
wireless communication networks. These advanced methods can
be particularly promising for capturing the intricate interactions
between multiple entities, such as UEs, BSs, and spectrum
resources, enabling more effective modeling of the spatial
dependencies in wireless communication networks.
Additionally, architectures designed to handle long-range
dependencies and large-scale sequence data hold great promise
for modeling time-varying spectrum dynamics. By combining
multiple techniques, these hybrid architectures can unlock the
potential for capturing intricate relationships across spatial,
temporal, and frequency domains, resulting in more accurate
and robust SOP predictions.

• Robustness Against Adversarial Attacks: As CRNs become
more prevalent, security threats pose significant challenges to
ML-based SOP methods. Therefore, enhancing the robustness
of these methods against such threats is critical. One approach
to address adversarial attacks, where malicious entities
attempt to manipulate the SOP model’s predictions, is
adversarial training. This involves generating adversarial
examples during training to expose the model to potential
attacks, allowing the model to better withstand such
manipulations. Additionally, integrating anomaly detection
methods, such as autoencoders and one-class SVMs, can help
detect suspicious spectrum activity that deviates from normal
usage patterns, potentially signaling a threat before it affects
SOP predictions. Defensive techniques like gradient masking
and defensive distillation can also mitigate adversarial attacks
by reducing the information attackers can exploit. However,
despite these promising approaches, more research is required
to develop comprehensive solutions that can fully protect ML
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models in CRN environments. Ensuring the robustness of
these models remains a priority for their reliable deployment,
and future work should focus on advancing these defense
mechanisms.

• Real-World Implementation and Standardization: For ML-
based SOP methods to be effective in practice, extensive real-
world validation is essential. Future research should focus on
collaborative field trials with industry stakeholders, leveraging
actual CRN deployments to gather real-world performance
data. Additionally, edge-computing-based deployment can be
explored, allowing SOP models to operate in a distributed
fashion, closer to the spectrum sensing nodes, thus reducing
latency and improving real-time decision-making. The
development of standardized protocols, interfaces, and
frameworks is also vital for ensuring the interoperability of
SOP methods across different platforms and hardware
implementations. Establishing benchmarks and
performance metrics, such as spectrum efficiency, latency,
and energy consumption, will facilitate fair comparisons
between various SOP methods, driving further innovation
and enabling regulatory bodies to evaluate the performance
and compliance of these models.

• Green CRNs: Energy efficiency is a crucial consideration for the
deployment of ML-based SOP methods in CRNs, as SOP is
often a resource-intensive task. Future research should focus on
developing energy-efficient algorithms that balance prediction
accuracy with reduced energy consumption. This involves
exploring the use of low-power ML models, such as those
optimized through model compression techniques like
pruning and quantization. Furthermore, energy-harvesting
technologies, which enable CR nodes to generate power from
ambient sources (e.g., solar or RF energy), can be integrated into
SOP systems. By incorporating energy awareness into themodel
training and operation processes, ML-based SOP systems can
minimize their energy footprint, making themmore sustainable
for large-scale CRN deployments.

• Cross-Layer Optimization: The performance of SOP models
can be significantly enhanced by adopting a cross-layer
optimization approach, where interactions between different
layers of the communication protocol stack (physical, MAC,
and network) are considered. Accordingly, future research
should explore joint optimization techniques that holistically
consider constraints and opportunities at multiple layers.
Additionally, RL-based cross-layer strategies allow SOP
systems to dynamically adapt to real-time changes in the
network environment, learning optimal policies for
spectrum management while accounting for UE behavior,
interference, and energy consumption. By optimizing across
layers, SOP models can achieve higher accuracy, better QoS,
and improved spectrum efficiency.

• Ethical AI and Fairness in SOP: As ML models become more
pervasive in SOP, it is essential to ensure that these systems
operate in a fair and unbiased manner. Future research should
focus on investigating potential biases in SOP predictions,
which may arise from the underlying training data or model
design. These biases can disproportionately affect certain UEs
or regions, leading to unfair spectrum allocation or access.
Techniques such as fairness-aware ML or adversarial

debiasing can be explored to mitigate these risks.
Additionally, incorporating ethical AI principles into the
development of SOP systems helps ensure that these
technologies are not only efficient but also equitable and
just in their deployment.

• Context-Aware SOP: The integration of contextual
information, such as UE behavior, environmental factors,
and network load conditions, into SOP models remains an
open research direction. Context-aware SOP can leverage
additional data sources, such as IoT devices or
environmental sensors, to improve the accuracy of
predictions. By incorporating real-time contextual data,
SOP models can become more adaptive and responsive to
dynamic network conditions, such as sudden increases in
traffic or changes in UE mobility.

• Comparative Analysis of ML Models for SOP: Although
several comparative studies have been conducted on ML
models for SOP, a truly systematic and fair comparison
remains an open research challenge. One of the key issues
is the inconsistency in hyperparameter selection, where the
chosen parameters might be optimal for one model but not for
others, potentially leading to biased results. Ensuring that each
model is evaluated with its best possible configuration requires
rigorous optimization techniques and fair evaluation
protocols. Without such measures, comparisons can favor
certain architectures simply because they were better tuned,
rather than because they are inherently more effective.
Additionally, most existing studies tend to focus primarily
on accuracy, neglecting other critical factors such as model
complexity, computational efficiency, energy consumption,
and even data privacy. For example, while one model may
achieve higher accuracy, it could come at the cost of
significantly higher computational requirements or power
consumption, making it impractical for real-world
applications. Similarly, some models may have higher
privacy risks due to their data processing style. Future
research should thus aim to provide a more holistic
comparison, incorporating these aspects alongside accuracy,
to offer a clearer understanding of each model’s trade-offs and
suitability for different deployment scenarios.

9 Conclusion

This survey comprehensively reviewed ML-based methods for
SOP in 6G and beyond wireless networks, highlighting their
superiority over traditional statistical methods in addressing the
non-stationary nature of spectrum usage. These methods effectively
capture complex temporal and spatial correlations by leveraging
advanced ML methods, such as CNN and LSTM networks,
enhancing prediction accuracy. The paper also emphasized the
importance of interpretable ML in ensuring the interpretability
and trustworthiness of these ML methods, which is crucial for
practical applications in CR systems. Additionally, the survey
addressed vital challenges, such as dataset generation and CR
threats. Future research directions were outlined, focusing on
improving ML methods’ robustness, adaptability, and
transparency and exploring new multidimensional correlations to
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achieve more efficient and secure spectrum utilization in dynamic
and complex wireless environments.
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