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The rapid expansion of mobile devices with enhanced sensing and computing
capabilities has driven the growth of mobile crowd sensing (MCS), enabling
applications that collect large datasets from sources like smartphones and
smartwatches. However, this data aggregation raises substantial security and
privacy concerns, especially when MCS integrates with unmanned aerial vehicles
(UAVs), where potential risks are further amplified. This study identifies and
analyzes specific security and privacy threats in UAV-based MCS through the
framework of the confidentiality, integrity, and availability (CIA) triad. We
categorize potential vulnerabilities and propose comprehensive
countermeasures targeting hardware, software, and communication models.
Our findings outline strategic and actionable countermeasures to mitigate
identified risks, thus ensuring data integrity and reliable functionality within
MCS systems. Additionally, we present a security scenario involving mitigation
suggested for data integrity and recovery. This work underscores the critical need
for robust security frameworks in UAV-enhanced MCS applications, offering a
holistic approach to mitigate emerging security threats.
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1 Introduction

The sensing and computing capabilities of mobile devices have grown rapidly with the
spontaneous advancement in information technology. Mobile devices such as smart
phones, smart tags, body sensors, and in-vehicle sensing devices collect sensor data and
share it to measure andmonitor some phenomena of common interest. These capabilities in
mobile devices are evolving the Internet of Things (IoT) as they provide sensing data to the
Internet on a large scale. These devices are equipped with more diverse sensors and wireless
connections that enable them to generate, collect, and share data across the Internet, which
is called mobile crowd sensing (MCS), as addressed by Capponi et al. (2019).

The rapid developments in communication technology have also resulted in substantial
breakthroughs in utilizing unmanned aerial vehicles (UAVs) for diverse applications within
the MCS framework. As flying objects, UAVs are not limited to terrain. Any place can use
them for any purpose, including civil applications in urban areas or military activities over
battlefields. Researchers are particularly interested in the fundamental attributes of UAVs,
such as their adaptability, mobility, and energy efficiency, which make them highly suitable
for wireless networks. It is worth noting that combining MCS applications with UAVs
significantly enhances the capabilities of MCS.
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However, MCS could give rise to noteworthy privacy and
security concerns because the data collected by MCS applications
may contain sensitive personal information of participants. Sharing
such sensor measurements with the larger community to measure or
study events could potentially breach privacy if improperly used.
Many researchers, including Abualigah et al. (2021), Owoh and
Singh (2022), and Gharibi et al. (2016), reported that the main
concerns in this context include authentication risks and the risk of
identity, location, and flight route information being leaked.
Moreover, MCS with UAVs could amplify noteworthy privacy
and security concerns due to the lack of terrain restrictions and
the constraints from the battery-powered environment of UAVs, in
addition to the security and privacy issues in MCS.

Although many researchers have endeavored to identify threats
in MCS applications and proposed the mitigation against privacy
and security issues, as far as we know, there has yet to be a holistic
approach to mitigate the overall system with a comprehensive
analysis of potentially possible threats encompassing multiple
perspectives, including software, hardware, and communication
channels specific to MCS with UAV environments.

This paper seeks to tackle these pressing challenges by
thoroughly examining the security issues present in UAV
environments when implementing MCS applications. Our main
objective is to identify potential threats and develop strategies to
mitigate their impact. To accomplish this, we perform a
comprehensive threat analysis, categorizing threats within the
framework of confidentiality, integrity, and availability (CIA).
Furthermore, we present a scenario centered on the retrieval of
lost drones, highlighting the essential role of secure communication
in facilitating effective recovery and rebuilding trust among UAVs.

1.1 Objective and contribution

This paper aims to validate a comprehensive threat modeling
framework that addresses vulnerabilities associated with hardware,
software, and secure communication within UAV ecosystems. By
examining a practical scenario involving lost UAVs, we aim to
highlight the critical need for targeted countermeasures that
facilitate secure communication and restore trust among UAVs.

This paper presents a validated threat modeling framework that
identifies significant vulnerabilities related to hardware, software,
and secure communication in the context of MCS and UAV
operations. It introduces a practical scenario in which UAVs
conducting crowd-sensing missions face temporary
communication loss, illustrating the consequences of the threat
model and underscoring the necessity of the proposed
countermeasures.

Additionally, it outlines specific measures for establishing
secure communication with lost UAVs, including authentication
processes, the utilization of device lists for trust assessment, and
strategies for re-establishing communication based on reputation
models. Our findings demonstrate effective methods for
rebuilding trust between UAVs following disconnection
events, detailing the essential steps for assessing the status of
lost UAVs and evaluating their trustworthiness. Ultimately, this
study lays the groundwork for future research into advanced
security measures and protocols tailored to specific UAV

applications, particularly in situations involving data recovery
and operational integrity.

The outline of this paper is as follows: Section 2 provides an
overview of mobile crowd sensing and UAV applications. Section 3
presents a literature review of the security issues in crowd-sensing-
based platforms and UAVs. Section 4 highlights the threat modeling
process aimed at enhancing drone security through the lens of
confidentiality, integrity, and availability. Section 5 provides a
summary of the primary countermeasures required as holistic
approaches: system hardening, adopting hardware security,
securing communication, lifecycle management, and adopting a
cybersecurity framework. Section 6 examines practical scenarios
concerning the management of trust in UAVs and their
communication dynamics. Finally, Section 7 concludes the paper
and discusses future directions.

2 Mobile crowd sensing-based
platform overview

In this section, we provide an overview of MCS platforms and
UAV ecosystems.

2.1 Mobile crowd-sensing environments

Smart devices such as smartphones, smart watches, smart tags,
and body sensors are commonly used in our daily lives. For example,
14.4% of the world’s population already uses a smart wristband
device, and the market is predicted to grow at a compound annual
growth rate (CAGR) of 15.6% between 2024 and 20321. These
devices consist of sensing capabilities to detect and collect data
and communication capabilities to connect with other network-
enabled devices.

As a result, a unique sensing paradigm known as mobile crowd
sensing (MCS) has been sparked by the extensive capabilities of such
mobile devices and networking technology. Capponi et al. (2019) are
credited with pioneering the concept of MCS, and Guo et al. (2015)
defined the concept as a platform enabling common individuals to
gather and contribute sensed data that is subsequently aggregated
and fused in the cloud to extract useful insights.

Yang et al. (2015) defined the system architecture as four
entities: service provider, end users, sensing crowd, and computing
crowd. The service provider’s role is to accept the request from the
end user, process this task within the sensing and computing crowd,
and return the final result to the end user. The end users are the
customers who send the requests and receive the results. Crowd
sensing is diverse among users who participate in sensing tasks,
which are collecting data from the end users and sending it to the
server that stores that data or sends it back to the users as a result.
Computing sensing has diverse users who participate in the

1 Rohit Shewale, Smartwatch Statistics 2024: Worldwide Market Data,

24 March 2024, demandsage, https://www.demandsage.com/

smartwatch-statistics/
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computing task, which is a task of collecting data from multiple
sources and considering different computing device data as input.

Figure 1 illustrates the network of theMCS application. A typical
MCS system consists of a service provider, a task requester, and a
group of mobile users working together to make data gathering,
aggregation, and analysis easier. The task requester, driven by
specific data requirements and MCS system objectives, initiates
and defines sensing tasks to be completed by mobile users. To
maintain system functionality and meet the needs of task requesters,
the service provider acts as an intermediary, overseeing and
organizing communications between task requesters and mobile
users. As data contributors, mobile users are essential because they
use their smartphones or other devices with multiple sensors to
gather and send data to the system.

The overall architecture of an MCS system includes user
interaction, cloud or server processing, data analysis, sensing
tasks, data gathering, communication infrastructure, data
aggregation, and collaboration among mobile users. Each
component is crucial for facilitating the collection and processing
of large-scale data and generating insightful results for various
applications, such as early warning systems, traffic anomaly
detection, noise pollution monitoring, and air pollution
monitoring. For example, the popular commercial application
Waze gathers real-time traffic data through crowd sensing and
serves as a traffic monitoring and route assistance system. A key
component of MCS is encouraging mobile users to participate in
sensing and providing the system with high-quality data. Thus,
Suhag and Jha (2023) suggested models that allow users of mobile
devices to donate data voluntarily or in exchange for rewards.

Fascista (2022) highlighted two large categories of transmission
paradigms in MCS: infrastructure-based transmission and
opportunistic transmission. Infrastructure-based transmission
considers users accessing sensory data across a network, such as
a 3G/4G connectivity. Opportunistic transmission, on the other

hand, enables users to share and receive data through intermittent
connections, such as radio wave and Bluetooth short-range
communications.

2.2 Mobile crowd sensing with unmanned
aerial vehicles

The increasing availability of UAVs has encouraged their
widespread use for a variety of applications, including tracking,
mapping, surveillance, and search and rescue missions, as reported
by Pandey et al. (2022). UAV capabilities are advancing with new
technologies, including software-defined networks (SDNs) and fog
computing, which are essential for MCS applications for a variety of
purposes. SDN is an approach that uses software-based controllers
or APIs to direct network traffic and interact with the underlying
hardware. Several researchers, including Boite et al. (2017) and
McCoy and Rawat (2019), suggest that SDN could be essential for
UAV environments due to its ability to provide centralized control
and dynamic network management, which are crucial for adapting
to rapidly changing conditions and large-scale deployments. SDN
enhances scalability, allowing efficient handling of numerous UAVs,
and optimizes resource utilization to ensure critical data receives the
necessary bandwidth. It also bolsters security through centralized
policy enforcement, ensures high quality of service (QoS) by
prioritizing important traffic, and supports rapid deployment and
reconfiguration in dynamic scenarios. Additionally, SDN improves
cost efficiency by centralizing management and resource use,
facilitates interoperability between diverse UAV systems, and
enhances network resilience and reliability by enabling real-time
monitoring and quick recovery from failures.

However, SDN faces several security risks. One issue is the
reliance on a central controller, which creates a single point of failure
from which attackers could control the entire network. Additionally,

FIGURE 1
Model MCS system.
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vulnerabilities in the APIs between the controller and network
devices can be exploited by attackers to inject harmful
commands, intercept data, or disrupt communications.
Furthermore, the lack of encryption in communications between
the controller and devices allows attackers to intercept and
manipulate data (Boite et al., 2017). Configuration errors can also
happen because SDN’s dynamic setup can lead to mistakes or weak
security policies, creating vulnerabilities. Lastly, SDN controllers can
be targeted by distributed denial-of-service (DDoS) attacks, which
can overload the controller and cause network outages (Yassine
et al., 2022).

3 Literature review

In this section, we review the literature on security and privacy
issues and mitigation in MCS in Section 3.1 and in UAVs
in Section 3.2.

3.1 Security and privacy challenges in mobile
crowd sensing

Yang et al. (2015) addressed three main threats against the
privacy, reliability, and availability of mobile crowd sensing.

The privacy threat is the leakage of privacy information such as
the location, health monitoring data, and personal identities of the
participants or the output result of the tasks. Hiding the participant
identities or keeping participants anonymous are suggested to
protect MCS against privacy threats.

The reliability threat can occur in two directions. First, the data
sent to the end user could originate from a malicious participant to
provide false information or impersonate the service provider.
Ensuring that the data are from the true source requires
identifying the sender. Second, someone could intercept the
packets and alter the data during transmission. In MCS
applications, encryption and authentication could be used to
protect the integrity and confidentiality of outgoing data
during transit.

Several types of attacks could lead to availability threats,
including a denial-of-service (DoS) attack, where intruders
participate in a task but do not send any data or results, thereby
disrupting the service. Countermeasures could include
authenticating participants before they join the task and
implementing a system of rewards to encourage their loyalty.
Additionally, continuous monitoring of the network for
suspicious behavior and removing any suspicious entities was
suggested to further protect against these threats.

Capponi et al. (2019) studied different types of MCS
applications, classifying sensing applications into personal and
community categories based on the phenomena measured.
Personal sensing applications measure individual factors, such as
movement patterns (e.g., walking, exercising), while community
sensing applications measure large-scale phenomena through
numerous participants. Community sensing encompasses two
primary models: participatory sensing, where users actively
participate in data collection, and opportunistic sensing, which
automatically gathers data based on location and application

requirements without user involvement. Both models present
unique challenges regarding data ownership and control. They
addressed the fact that efficient scheduling and predicting energy
and bandwidth needs under constraints are critical to protecting
availability due to the varying capabilities of devices in MCS. They
also suggested mitigation to protect the security and privacy of MCS
needs while considering the resource constraints of devices. For
example, they argued that cryptographic methods could use more
energy than adding noise to the data.

Brahem et al. (2022) explored the privacy concerns associated
with monitoring individual sensing instruments, tracking daily
activities, recording habits, and assessing wellbeing. Privacy and
trust mechanisms in MCS require a holistic approach that combines
technical solutions with user behavior due to their complex
environments. To address privacy concerns, the personal data
store (PDS) is proposed as a secure repository for aggregating,
storing, processing, and sharing individual data, as a unified
data-sharing infrastructure supports seamless data exchange
through mobile devices. A PDS could implement local data
processing, filtering, and privacy-preserving techniques.
Incentives may be necessary to encourage users to engage with a
PDS and share their data.

Li et al. (2017) focused on security and privacy challenges in
handling multimedia data in MCS, highlighting three main
challenges: data reliability, participant privacy, and inadvertent
data. Data reliability refers to the accuracy of the sensor data
provided by the volunteer, where the participant might be
exposed to some malicious code that could infect the whole
sensing system. Participant privacy issues could occur because
participants have no control over the application that is
responsible for performing the sensing tasks where it collects,
stores, and uploads data, and the volunteers are not fully aware
of the data being collected from their devices. This issue would cause
another issue called inadvertent data. As the participant has no
explicit knowledge of who controls the application, some sensitive
personal informationmight be disclosed inadvertently. For example,
a pedestrian’s face could be shown in an image that has been sensed
by the application.

Thus, we could summarize that privacy, integrity, and
availability are important issues in MCS, and addressing these
issues must also consider resource constraints and complex
environments.

3.2 Threats in unmanned aerial vehicles

As UAVs fly over public environments, communication over the
wireless channel could be targeted by attackers to access, alter, or
inject harmful data into communication streams. Bera et al. (2021)
reported that the security challenges in UAVs are more difficult due
to the resource constraint conditions. Because battery-powered
UAVs may have lower processing power and storage capacity,
deploying strong security countermeasures into UAVs is more
difficult than in other environments.

He et al. (2018) analyzed the communication threats in UAV
systems in terms of confidentiality, integrity, and availability
perspectives. Unauthorized access to sensitive information in
UAVs, ground stations, and communication links poses a major
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threat to confidentiality. Security breaches can occur through attacks
such as viruses, malware, trojans, and keyloggers, particularly
targeting ground stations and compromising data integrity.
Additionally, communication links face risks from password
cracking, identity spoofing, cross-layer attacks, and multi-
protocol attacks. Implementing strong encryption, strict access
control measures, and regular security audits is suggested to
address these threats and prevent unauthorized access and
data breaches.

Threats to data integrity involve disrupting the accuracy and
consistency of information through alterations or the creation of
false data. Attackers may insert, delete, or modify critical
information, undermining the integrity of UAV operations.
Maintaining data integrity is vital for the reliability of UAV
systems. To mitigate these threats, employing data integrity
checks, digital signatures, and secure communication protocols is
essential to ensure the authenticity and reliability of data transmitted
and stored by UAVs.

Denial-of-service (DoS) attacks significantly threaten the
availability of UAV systems by overwhelming them with false
requests, causing network congestion and service disruption.
Further risks include flooding attacks, buffer overflows, and
smurfing attacks, which can disrupt UAV services. To mitigate
these threats, robust network monitoring tools, intrusion
detection systems, and firewalls should be utilized to detect and
counteract DoS attacks. Additionally, implementing load-balancing
techniques can help distribute traffic efficiently and maintain service
availability.

GPS spoofing involves transmitting false GPS data to UAV
receivers, leading to incorrect navigation and control. UAVs that
rely on GPS signals are especially at risk from deception and
interference, which can threaten flight safety. To counter GPS
spoofing, strategies include using information fusion techniques
that combine monocular sensors and inertial measurement units
(IMUs) to detect spoofing. Additionally, using error reduction
methods based on feature detection and matching can help
UAVs return safely, reducing the impact of GPS spoofing attacks
and ensuring safe operation.

Many researchers reported that ensuring robust encryption is
critical for maintaining network integrity and confidentiality, and
protecting controllers from such attacks is also essential for
maintaining network availability. Various countermeasure
approaches are being studied by researchers.

Boite et al. (2017) and McCoy and Rawat (2019) suggested that
adopting a software-defined network (SDN) into the UAV
ecosystem could enhance more optimal management and
utilization; however, SDNs also encounter several vulnerabilities
that cause serious damage to the operation of UAVs and their
applications. For example, an SDN relies on centralized control,
which could cause a single point of failure. Furthermore,
configuration errors, such as the dynamic configuration
capabilities of the SDN, can lead to misconfigurations or
inadequate security policies, which in turn create exploitable
vulnerabilities. API vulnerabilities could pose an additional
serious threat. SDN controllers could also be targeted by
distributed denial-of-service (DDoS) attacks, which can
overwhelm the controller and lead to network outages.
Furthermore, unsecured communications between the controller

and devices can result in data being intercepted and manipulated
by attackers.

Mohamed et al. (2020) explored the integration of unmanned
aerial vehicles (UAVs) within smart cities, emphasizing their diverse
applications, including environmental monitoring, traffic
management, and public safety. Their article outlines the
advantages of utilizing UAVs to improve resource efficiency,
streamline city operations, and enhance citizen engagement.
Furthermore, the paper tackles the challenges linked to this
integration, such as safety, privacy, and regulatory concerns,
while advocating for the establishment of strong regulatory
frameworks and further research to support the effective
deployment and incorporation of UAV technologies in
urban settings.

4 Threats of mobile crowd sensing in
UAV ecosystems

In this section, we show the comprehensive threat analysis in the
context of MCS and UAVs. First, we demonstrate the environment
with scenarios by presenting a proposed data flow diagram (DFD) in
Section 4.1. Then, we discuss the identified threats in Section 4.2,
providing a systematic evaluation of possible dangers and
weaknesses that are inherent in MCS and UAV operations.

This sequential methodology enables a comprehensive and
systematic study of security concerns within the context of MCS
and UAV deployments. It promotes a holistic awareness of the
system architecture and guides the subsequent identification and
analysis of risks. In order to assess the comprehensive threat
scenarios in UAV ecosystems, we performed the threat analysis
from the perspectives of confidentiality, integrity, and availability.

4.1 Modeling data flow of MCS in UAV
ecosystems

The UAV consists of internal hardware components and
software to be the flight controller with sensing modules and
wireless communication modules to use for the MCS application.
The ground control station (GCS) consists of infrastructures to
communicate with UAVs, to control UAVs, and to exchange
data with UAVs. They are interconnected through different
communication channels, including WiFi direct, Bluetooth,
cellular, WiFi, or even a wired connection. Section 4.2 shows the
threat analysis with the DFD of this scenario depicted in Figure 2.

The DFD includes two main entities: the UAV (E1) and the GCS
(E2). The communications channels are defined below.

• Direct wireless communication between GCS and UAV,
represented as the dashed line. (L1)

• Wireless communication through a third-party entity, that is,
cellular or satellite communication, represented as the dashed
line. (L2 & L3)

• Wired connection, represented as the continuous line. (L4,
used for maintenance)

• Wireless through Bluetooth, represented as the
dashed line. (L5)
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4.2 Threat analysis

This section is divided into three main subsections and examines
the risks in the context of MCS and UAVs. This text outlines a
variety of possible impacts that are naturally associated with these
areas, specifically highlighting how they might compromise the
integrity of a system, the confidentiality of data, and the
availability of services. Based on the DFD, this analysis focuses
on identifying potential dangers that may emerge during interfaces,
interactions, and communication processes. Referring to Spyros
(2022), we show comprehensive lists of threats in software,
hardware, and communication fields below.

4.2.1 Hardware-related threats
Table 1 summarizes the hardware-related threats, indicated by

threat ID T.H. Each threat is explained below, detailing the hardware
vulnerabilities that cause security threats, how adversaries launch
attacks, and the impacts and risks of these threats.

4.2.1.1 Tampering attack on physically captured UAVs
As UAVs operate in an unmanned state, a UAV can be

physically captured by an adversary. Captured UAVs risk

exposing sensitive data like secret keys, coordinates, a mission
plan, and security measures to adversaries. This intersects with
mobile crowd sensing (MCS), potentially compromising sensed
data integrity (Pundir et al., 2019).

Physical tampering also includes the act of making alterations to
the electrical hardware, such as modifying the hardware circuit or
changing the logic gate (Vosatka, 2018). Specifically, the act of
physically tampering with the flight controller exposes the UAV
system to several forms of attack. The tampering is intentionally
inserted by an untrusted third party in the semiconductor supply
chain of the flight controller (Rahman et al., 2020). The opponent
exploits these alterations to undermine the capabilities and security
attributes of the flight controller’s integrated circuit (IC) (for
example, reducing the propellers’ rotation speed or divulging the
cryptographic keys of the flight controller). An instance of such
manipulation was discovered in the Actel ProASIC chip of the
Boeing 787 aircraft (Yuvaraj and Velliangiri, 2023). The presence of
a backdoor enabled the intruder to observe and manipulate the
avionics system, thereby compromising the safety of the flight
mission (Mekdad et al., 2021).

Additionally, an adversary may have the ability to impair cables
to attempt to sabotage connections (Constantin et al., 2019).

FIGURE 2
Data flow diagram (DFD) of the UAV ecosystem for mobile crowd sensing.
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4.2.1.2 Physical collisions
UAVs operate within tangible environments where natural

obstacles like trees can complicate or obstruct their tasks. The
hurdles encountered by UAVs can impact the precision and
reliability of information gathered via MCS endeavors (Koubâa
et al., 2019).

During a flight mission that necessitates the cooperation and
collaboration of numerous UAVs, there is a possibility of physical
collisions occurring, which could lead to the drones crashing. In
order to avoid such accidents in the public airspace, UAVs primarily
depend on collision avoidance systems (CAS) (Yasin et al., 2020).
However, these systems lack inherent security measures and are
unable to effectively address the collision avoidance risk posed by
malevolent individuals (Hannah et al., 2020).

4.2.1.3 Technical failure
UAVs are equipped with rechargeable lithium-ion batteries

supported by a battery management system (BMS) to ensure a
reliable energy supply to various UAV components. These UAVs are
vulnerable to attacks during different operational phases, including
hovering, moving, takeoff/landing, charging, and standby mode.
Such attacks can quickly drain the battery, causing premature
returns to base or even crashes before mission completion
(Mohsan et al., 2022).

Malicious entities can deplete the battery’s energy through
hypothetical battery depletion attacks, compromising the
availability, integrity, and confidentiality of the batteries (Lopez
et al., 2017). Attackers can disrupt UAV batteries by physically
tampering with them or replacing them with defective ones, leading
to system failure. Another form of attack involves intentionally
causing rapid battery depletion by compromising other UAV
elements, such as falsifying sensors or introducing malicious
software, resulting in the depletion of the UAV batteries
(Mekdad et al., 2021). This undermines battery reliability by

altering genuine battery data transmitted to the operator via
UAV-2-GCS communication. Additionally, the privacy of UAV
batteries can be jeopardized by disclosing sensitive information,
such as the state-of-charge (SoC), which indicates the proportion of
available charge compared to the battery’s capacity.

Another hardware vulnerability arises when UAVs are exposed
to high-power microwave (HPM) radiation. Such exposure can
cause the UAV to lose control and sustain damage, potentially
resulting in it dropping to the ground (Zhao et al., 2022).

4.2.1.4 Human error
The human factor could influence the proficiency in flying skills,

including the ability to remotely control the speed, altitude, and
orientation of the UAV, is necessary. In such situations, the
operator’s deficiency in these technical abilities could result in
the drone crashing and leading to operational failure. As a result,
the UAVs are susceptible to physical theft. The human errors that
occurred could be significant, as investigation reveals 58% of fatal
accidents are attributed to these errors2. Injecting malicious USBs
could be performed with legitimate human users through either the
UAV or the GCS. Malicious software often spreads through infected
USB sticks. These infected USBs may be plugged into MCS devices
either intentionally by a hostile actor or unintentionally by an
unsuspecting legitimate user (Mohsan et al., 2022). To reduce the
impact of human error, the autopilot system can be enhanced by
including advanced decision-making capabilities, such as obstacle
recognition, collision avoidance, and course planning. This will
increase the autonomy of the system (Yasin et al., 2020).

TABLE 1 Threats and mitigation on hardware.

Threat ID Threat C I A Suggested mitigation Interaction

T.H.01 Physical capturing of UAV/tampering attack (§4.2.1.1) o o o • Hardware-based security
• Authenticated encryption
• Device locking
• Following standards

E1, L4

T.H.02 Physical collisions (§4.2.1.2 o • Hardware-based security
• Two-stage reinforcement learning
• Collision avoidance systems

E1, E2

T.H.03 Technical failure (§4.2.1.3) o • Power prediction systems
• Battery optimization
• Dynamic control power

E1

T.H.04 Human error (§4.2.1.4) o • Hardware-based security
• Reconfigurable flight control system
• HFACS

E1, E2

T.H.05 Airborne and land threats (§4.2.1.5) o • Hardware-based security
• Two-step GA-XGBoos
• Hijacking detection

E1

T.H.06 Supply chain attack (§4.2.1.6) o • Securing communication
• Anti-temper solutions
• Blockchain, ML, and PUF
• Controls at different levels

E1

2 Accident Statistics. spanning from January 1960 to December 2015.

Accessed: Sep. 13, 2019. [Online]. Available: http://www.planecrashinfo.

com/cause.htm
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4.2.1.5 Airborne and land threats
UAVs are susceptible to attacks from other armed UAVs, which

can inflict damage on vital telecommunication infrastructure
(Constantin et al., 2019).

Additionally, UAV swarms are being employed for military
offensives as a result of their technological advancements. Currently,
there is a deficiency in strategies to counteract such attacks. However,
GPS spoofing could be utilized as a countermeasure to trick the
position-sensing mechanism of armed UAVs. Using the open-source
tools ROS and Gazebo, a simulation environment was constructed for
the position perception of an armed swarm of UAVs (He et al., 2020).

Moreover, UAVs are vulnerable to hijacking due to their
visibility at low heights. Opponents can gain control by directly
taking over operations or using malicious software. Anti-drone
guns, used by law enforcement to disable unauthorized UAVs,
can also be exploited by attackers to hijack drones3.

4.2.1.6 Supply chain attacks
Supply chain attacks on UAVs are increasing as the drone

industry expands. Adversaries exploit weaknesses in the supply
chain, targeting sensitive components like propellers,
airframes, and actuators. Belikovetsky et al. (2017)
demonstrated a feasible attack by remotely manipulating the
design files of 3D-printed propellers, reducing their fatigue life
and causing delayed damage during flight. This highlights the
complexity of identifying sabotage in additive
manufacturing systems.

4.2.2 Software-related threats
Threats targeted to UAV software are identified as below.

Table 2 shows the threats related to software. Threat ID T.S.
indicates a threat related to software.

4.2.2.1 Malware attacks
Malware, a type of malicious software, is designed to disrupt the

regular operations of computers, servers, networks, or other system
elements. When malicious actors introduce malware into the
system, they carry out unauthorized activities, constituting a
malware attack (Pundir et al., 2019).

TABLE 2 Threats and mitigation on software.

Threat ID Threat C I A Suggested mitigation Interaction

T.S.01 Malware attack (§4.2.2.1) o o • System hardening
• Malware detection (static/dynamic)
• Intrusion detection systems

E2

T.S.02 Database attack (§4.2.2.2) o • Secure storage and anti-tampering E2

T.S.03 Snoopy attack (§4.2.2.3) o o • Secure storage and anti-tampering
• Blockchain-based access control

E1
L1

T.S.04 Skyjet attack (§4.2.2.4) o o • Fog computing in UAV env
• Permission-based access control and attestation

E1

T.S.05 Mal-drone attack (§4.2.2.5) o o o • Malware detection (static/dynamic)
• Intrusion detection systems
• Secure communication

L1,L2,L3

T.S.06 Malicious firmware update (§4.2.2.6) o o o • Lifecycle management
• Secure storage and anti-tampering
• Permission-based access control and attestation

E1

T.S.07 Vulnerabilities in drone OS (§4.2.2.7) o o o • System hardening
• Intrusion detection systems
• Secure communication

E1

T.S.08 PX4 and Ardupilot software bugs (§4.2.2.8) o • Permission-based access control and attestation
• System hardening
• Secure communication

E1

T.S.09 SQL & NoSQL Injection (§4.2.2.9) o o o • Secure storage and anti-tampering
• Intrusion detection systems
• ML-based detection

E2

T.S.10 Phishing (§4.2.2.10) o • Permission-based access control and attestation
• Intrusion detection systems

E2

T.S.11 System failures (§4.2.2.11) o • Fog computing in UAV env
• System hardening

E1, E2
L1,L2,L3

T.S.12 Backdoor attacks (§4.2.2.12) o • System hardening
• Malware detection (static, dynamic)

L1,L2,L3

T.S.13 Zero-day exploit (§4.2.2.13) o • Hardware-based security
• ML-based detection

E1, E1

3 K. Hodgkins, Anti-drone shoulder rifle lets police take control of UAVs with

radio pulses. (2015), (Online; Accessed 2 April 2022) (2015). https://www.

digitaltrends.com/cool-tech/battle-innovations-anti-drone-gun/.
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Within the context of MCS, viruses and Trojans are commonly
identified as threats to service providers and GCS systems. A
malware attack on cyber-physical systems such as GCS is more
critical, as Xu et al. (2023) addressed.

4.2.2.2 Database attacks
Within MCS, database infrastructures hosted in the cloud

become vulnerable to targeted attacks, potentially leading to
unauthorized data exposure. These threats are not confined to
wireless sensor networks (WSNs) or IoT communication
environments but extend to any cloud-based database systems.
Such attacks may result in the unauthorized disclosure of
information, with notable examples including cross-site scripting
(XSS) and cross-site request forgery (CSRF), as addressed by Malik
and Patel (2016) and Pundir et al. (2019).

4.2.2.3 Snoopy attacks
Utilizing a WiFi-enabled smartphone, the attacker gains the

capability to track and manipulate the navigation control of the
compromised UAV, thereby connecting the security breach to MCS
and the manipulation of sensed data.

4.2.2.4 Skyjet attacks
In Skyjet attacks, UAV navigation controllers are targeted. He

et al. (2017) reported that attackers install specialized software to
disrupt the connection, leading to the hijacking of the UAV during
flight. This malware enables the attacker to identify nearby wireless
networks. As a result, the pilot loses control as the compromised
UAV connects to the attacker’s network, facilitating device theft
(Yahuza et al., 2021). This scenario highlights the intersection of
UAV security vulnerabilities with the potential exploitation of
sensed data in MCS.

4.2.2.5 Maldrone attacks
Maldrone is a versatile software that acts as a backdoor, using

TCP ports to serve as a mediator between the flight controller and
sensor communication of the target UAV. Once a TCP connection is
established, the attacker gains access to tamper with the sensors,
ultimately enabling UAV theft. By awaiting a reverse TCP
connection, Maldrone empowers the attacker to control the
target UAV upon connection (Arteaga et al., 2019).

4.2.2.6 Malicious firmware updates
The attacker manipulates users into installing fake firmware

updates on UAVs, granting them control upon activation. These
vulnerabilities intersect with MCS, raising concerns about
compromised sensed data (Sidharthan et al., 2021).

4.2.2.7 Vulnerabilities in drone OSs
Despite UAVs’ widespread use, their operating systems lack

essential cybersecurity measures, with software vulnerabilities
posing risks of disruptions or significant consequences like theft
or crashes (Constantin et al., 2019).

4.2.2.8 PX4 and Ardupilot software bugs
PX4 and Ardupilot, widely used in UAVs and other unmanned

vehicles, have been found to contain numerous vulnerabilities that
endanger UAVs. An extensive analysis revealed 569 bugs (Wang

et al., 2021), including UAV-specific vulnerabilities, within these
autopilot software systems. This highlights the significant
intersection with MCS and the potential compromise of sensed data.

4.2.2.9 SQL & NoSQL injections
SQL injection involves exploiting SQL databases by executing

malicious queries, aiming to breach security and potentially access,
alter, or execute commands remotely. UAVs storing data on the
cloud, like surveillance footage, are vulnerable to such attacks.
NoSQL injections targeting databases such as MongoDB follow a
similar pattern (Gupta et al., 2020). These vulnerabilities underscore
the significant link with MCS and the risk of compromising
sensed data.

4.2.2.10 Phishing
Successful phishing attacks can lead to the theft of sensitive

information or the installation of malware on systems like GCS,
enabling further malicious actions. These risks intersect with MCS
and the potential compromise of sensed data (Mohsan et al., 2022).

4.2.2.11 System failures
System failure, including software failure, can cause network

disruption and affect operations (Constantin et al., 2019).

4.2.2.12 Backdoor attacks
Backdoor attacks involve attackers circumventing all existing

cybersecurity measures to gain unauthorized access to the target
system or application (Constantin et al., 2019).

4.2.2.13 Zero-day exploits
Attackers capitalize on vulnerabilities that are not yet known to

vendors or developers, known as zero-days, exploiting them before
any remedial actions, like patches, can be implemented (Constantin
et al., 2019).

4.2.3 Communication-related threats
Table 3 shows the communication-related threats. Threat ID

T.C. indicates the threat is related to the communication.

4.2.3.1 Communication interception attacks
This includes attacks like eavesdropping, traffic analysis, signal

capturing, and port scanning. All of them refer to the act of
intercepting and accessing information transferred between two
parties through unprotected network channels. An instance of
such communication that could be focused on in an MCS
architecture is the transmission of messages between the GCS
and the UAV (Pundir et al., 2019). The attackers could examine
traded communications to extract valuable information, such as the
communication frequency and the packet sizes. Additionally, the
attackers engage in unauthorized post-scanning activities within the
target network to find ports that may be running potentially
susceptible services.

Bera et al. (2021) reported that ephemeral secrets used in
communication sessions are the target of ESL attacks. Attackers
may be able to take over sessions and access the UAVs without
authorization if these transient secrets are exposed.

In 2009, insurgents in Iraq used SkyGrabber software to
intercept live video streams from U.S. UAVs. The tool, priced at
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only $26, enabled the attackers to capture satellite signals without
complex technology, exploiting the UAVs’ lack of encryption. This
encryption was intentionally omitted to prevent delays in real-time
transmission (Oruc, 2022).

4.2.3.2 Denial-of-service attacks, jamming, and flooding
The attacker performs a flooding attack by sending an

extensive number of requests, leading to the exhaustion of the
target system’s resources. Typical methods involve reducing the

TABLE 3 Threats and mitigation on communication.

Threat ID Threat C I A Suggested mitigation Interaction

T.C.01 Communication interception attacks (§4.2.3.1) o • Encryption
• Transmitting artificial noise
• Filter the flight paths

E1, E2
L1,L2,L3

T.C.02 Denial-of-service attack (DoS)
Jamming, flooding (§4.2.3.2

o • Monitoring packet flows to detect DDoS
• Mobility model for multi-UAV WSNs
• Network management protocol
• Direct sequence spread spectrum (DSSS)
• Frequency-hopping spread spectrum (FHSS)

E1, E2
L1,L2,L3

T.C.03 Data manipulation (§4.2.3.3) o • Encryption
• Blockchain technology

E.1
L2 (cellular),L3 (satellite), and L5

T.C.4 Autopilot attack (§4.2.3.4) o • Real-time autopilot E1

T.C.5 Acoustic attack (§4.2.3.5) o • Physical isolation
• Software analysis
• Signal processing techniques, Acoustic shielding

E1
L1, L2, L3, and L5

T.C.6 Byzantine attack (§4.2.3.6) o • redundancy and diversity
• Byzantine fault tolerance
• Monitoring and logging

L1, Lnor2, and L3

T.C.7 DNS cache poisoning attack (§4.2.3.7) o • Domain name system security extensions E2

T.C.8 Wormhole attack (§4.2.3.8) o • Position-based routing protocols
• Local monitoring

L1, L2, and L3

TABLE 4 Overview of hardware mitigations.

Mitigation
strategy

References Pros Cons Threat

Hardware-based
security

Jin (2015); Kaushal et al. (2022); Plooij et al.
(2015); Mekdad et al. (2021); SAE
International (2020); GlobalPlatform (2022);
Trusted Computing Group (2024)

• Leverages physical components like
crypto-accelerators to enhance security,
providing protection against remote
attacks while improving system
performance

• Expensive and less adaptable than
software-based approaches

T.H.01

Physical collision
mitigation

Wang et al. (2020); Yasin et al. (2020); Pan
et al. (2022)

• Uses reinforcement learning and
decentralized algorithms to handle
dynamic environments, improving
obstacle avoidance and flight navigation

• May lead to instability or oscillations in
rapidly changing scenarios

T.H.02

Technical failure
management

Prasetia et al. (2019); Abeywickrama et al.
(2018); Bentz and Panagou (2017); Shakhov
and Koo (2018); Shaikh et al. (2021); Tlili
et al. (2022); Seerangan et al. (2024)

• Implements predictive analytics, energy
optimization, and dynamic controls to
manage power limitations, avoid
technical failures, and improve overall
efficiency

• Dependent on IoT data integration and
may require coordination with external
energy systems

T.H.03

Human error
reduction

Kopyt and Żugaj (2020); Grindley et al.
(2024)

• Enhances operator performance through
reconfigurable systems and human factor
assessments, reducing the likelihood of
control mistakes

• Changes UAV control mechanics,
necessitating additional training and
algorithmic refinements

T.H.04

Hijack detection and
prevention

Feng et al. (2020); Jares and Valasek (2021) • Uses machine learning and flight path
monitoring to detect and mitigate GPS
spoofing or hijacking attempts in real
time with high accuracy

• Struggles with novel attack patterns
outside of known data

T.H.05

Supply chain
protection

Gurtu and Johny (2021); Mekdad et al.
(2021); Hassija et al. (2020); Rao et al. (2021)

• Protects UAV components through
tamper-resistant methods, blockchain,
and machine learning, ensuring strong
authentication and improving
transparency

• Requires extensive adoption, with
blockchain usage still limited and PUFs
challenging to deploy in complex
systems

T.H.06
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processing of GCS and the battery power of UAVs (Pundir
et al., 2019).

Bera et al. (2021) reported that denial of service (DoS) attacks try
to overload UAV communication systems and make them unusable,
and attackers can prevent UAVs from operating normally by
overloading the network with requests or jamming
communication signals.

In MCS applications and specifically within the UAV’s
network, this could happen in many forms, such as GPS, GCS,
and global navigation satellite system (GNSS) jamming. They all
primarily refer to the act of obstructing signals intended for the
designated UAV (Yahuza et al., 2021). This might lead to a loss of
control over the UAVs, which would put operational safety and
mission success in danger. This attack requires that the adversary
transmits discovery messages faster than the remaining nodes
within the infrastructure.

4.2.3.3 Data manipulation
Data manipulation assaults encompass various types of attacks,

including GPS spoofing, data injection, enlargement attacks,
reduction attacks, route injections, and blackhole attacks.

GPS spoofing is widely recognized as a prevalent form of assault
targeting UAVs. The assailant produces counterfeit GPS signals and
feeds them to the targeted UAV, so altering its course. The attacker first
disrupts communication between the UAV and the GCS through
different types of communication and then sends false signals
(Yahuza et al., 2021).

Bera et al. (2021) reported that sensitive information breaches,
data manipulation, and unauthorized control are all possible
outcomes of these attacks. Sending fake data packets to UAVs to
trick or control their behavior is known as packet spoofing.

He et al. (2018) reported that GPS spoofing involves transmitting
false GPS data to UAV receivers, leading to incorrect navigation and

TABLE 5 Overview of software mitigations.

Mitigation strategy References Pros Cons Threat

System hardening Barker et al. (2015); Pendleton
et al. (2016)

• Reduces vulnerabilities by disabling
unnecessary services

• Strengthens security with proper system
configurations

• Challenging to enforce
consistently across diverse
systems

• Needs frequent updates and
active monitoring

T.S.01, T.S.07,
T.S.08, T.S.11,
T.S.12

Secure storage and anti-
tampering

Wu et al. (2023); Lee (2020) • Safeguards sensitive information like
credentials

• Prevents unauthorized software changes

• Anti-tampering adds operational
complexity

• Secure storage may strain
resources

T.S.02, T.S.03,
T.S.06, T.S.09

Containerization and
virtualization

Chandramouli (2019) • Restricts attack impact through system
isolation

• Promotes security using microservices

• Can reduce performance
• Integration with legacy systems

can be tricky

T.S.08

Fog computing in UAV
environments

Habibi et al. (2020);
Al-Khafajiy et al. (2020)

• Cuts latency and saves bandwidth by local data
processing

• Protects sensitive data by localizing it
• Enhances resilience during network failures

• Demands additional
infrastructure and management
effort

• Dependent on available hardware
and networks

T.S.04, T.S.11

Blockchain-based access
control

Bera et al. (2021) • Detects and blocks unauthorized UAVs
• Ensures data legitimacy with transparent

records

• Expensive and complex to
implement

• Requires specialized
infrastructure

T.S.03

Machine learning-based
detection (e.g., SVM)

Shafique et al. (2021);
Selvarajan et al. (2024)

• Efficient in identifying spoofing and threats
automatically

• Adapts to evolving attack patterns

• Relies on extensive training
datasets

• Computationally intensive and
prone to false positives

T.S.09, T.S.13

Intrusion detection
systems (IDS)

Sedjelmaci et al. (2016) • Monitors real-time activities to spot threats
• Can be tailored to UAV networks

• Communication delays may
occur

• Struggles to scale with many
UAVs

T.S.01
T.S.05
T.S.09
T.S.10

Permission-based access
control and attestation

Iqbal et al. (2020); Dushku
et al. (2020)

• Verifies software integrity to block malicious
code

• Scales well for large IoT systems with remote
attestation

• Needs continuous updates and
oversight

• Vulnerable to bypass if poorly
implemented

T.S.04
T.S.06
T.S.08
T.S.10

Malware detection (static &
dynamic)

Ahsan et al. (2022); Niyonsaba
et al. (2023)

• Recognizes known and unknown malware
using diverse methods

• Offers a layered approach to detection

• Static detection misses novel
threats

• Dynamic detection requires high
resources and special setups

T.S.01
T.S.05
T.S.12

Privacy-preserving
techniques

Li et al. (2017); Brahem et al.
(2022); Mun et al. (2024)

• Protection for sensitive data
• Allows secure data aggregation and analysis,

ensuring data remain useful without exposing
sensitive details

• Require significant
computational power

• Integration can be complex

T.S.03
T.S.09
T.S.12
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control. UAVs heavily reliant on GPS signals are particularly vulnerable
to such deception and interference, which can jeopardize flight safety.
Mitigation strategies for GPS spoofing include using information fusion
techniques that integrate monocular sensors and inertial measurement
units (IMUs) to detect spoofing effectively. Additionally, employing
error reduction methods based on feature detection and matching can
support autonomous return functions, reducing the impact of GPS
spoofing attacks and ensuring safe UAV operations.

Data injection attacks are a malicious technique where an attacker
inserts or manipulates data in a system or flight control computer in
order to exploit vulnerabilities and gain unauthorized access or control
over the system. This type of attack can be classified into two main
categories: false/fake data injection attack and generic false data
injection attack. The first category pertains to situations in which
the attacker manipulates the estimation of the UAV’s direction state
by tampering with the correspondingmeasurement in a way that avoids
detection by a bad measurement detector. In the context of the generic
false data injection attack category, the attacker alters the position
estimation value of the UAVwithin a specific range (Khan et al., 2022).

A blackhole attack intercepts incoming data packets but refrains
from forwarding them to their intended destination. Alternatively,
the black hole discreetly discards the packets, so establishing a “black
hole” in the network where data vanishes without reaching its
intended destination (Chaari et al., 2020).

Lastly, the reduction attack refers to the assailant manipulating
the data of the UAV’s distance measurement to make it seem smaller
than its actual value and sending this altered data to the UAV. In
contrast, an enlargement attack manipulates the measured distance
to appear larger than the actual value and then sends the data to the
UAV (Yahuza et al., 2021). Singh et al. (2019) showed an

enlargement attack on ultra-wideband and proposed a detection
mechanism against the attack.

4.2.3.4 Autopilot attacks
An autopilot attack entails exploiting weaknesses in autopilot

software to manipulate the intended trajectory of the UAV (Yahuza
et al., 2021).

4.2.3.5 Acoustic attacks
An acoustic attack refers to the deliberate employment of a

hostile UAV that is equipped with specific equipment to generate
sounds that purposefully deviate from the resonance frequency of
the targeted UAV’s gyroscope. By manipulating the targeted
UAV, the acoustic position control algorithm is disturbed,
which compromises the integrity of its navigation (Yahuza
et al., 2021).

4.2.3.6 Byzantine attacks
A Byzantine attack involves a multifaceted assault where

attackers engage in various tactics simultaneously. These tactics
include creating routing loops, deliberately directing packets along
suboptimal paths, and selectively dropping packets to disrupt
network availability. The consequences of these actions are
significant, leading to both the destabilization and deterioration
of routing services (Chaari et al., 2020).

4.2.3.7 Domain name server (DNS) cache poisoning attacks
This attack seeks to capitalize on weaknesses in DNS servers in

order to redirect traffic to a malicious server rather than the intended
legitimate server (Gupta et al., 2020).

TABLE 6 Summary of secure communication strategies.

Mitigation strategy act Reference Pros Cons Threat

Secure communication channels (e.g.,
TLS, MAVLink) and policy measures

Han et al. (2024); GlobalPlatform
(2022)

• Protects confidentiality, integrity,
and authenticity

• High cryptographic overhead and
challenges in key management

T.C.01

Physical-layer security with artificial
noise and altering UAV flight paths

Liu et al. (2017); Zhang et al. (2017) • Strengthens resilience against
interception

• Requires additional resources and
complex implementation

T.C.01

Packet flow monitoring, GPS-based
algorithms, and SDN security measures

Tan et al. (2020); McCoy and Rawat
(2019); Ashraf and Latif (2014)

• Enhances system reliability and
reduces disruptions

• Resource-intensive for constrained
devices

T.C.02

Spread spectrum techniques (DSSS and
FHSS)

Kong (2021) • Effective against jamming attacks • High energy usage and increased
system complexity

T.C.02

Encrypting navigation and control
messages

Rodday et al. (2016) • Prevents unauthorized command
tampering

• Expensive and limited in civilian
applications

T.C.03

Blockchain technology for message
integrity

Ghribi et al. (2020) • Guarantees data authenticity and
integrity

• Computationally demanding and
lacks confidentiality

T.C.03

Intrusion detection systems (IDS) and
embedded markers

Stracquodaine et al. (2016) • Detects anomalies and ensures
operational integrity

• Susceptible to false alarms, requiring
constant monitoring

T.C.04

Physical shielding and filtering
techniques

Gao et al. (2022); Kong (2021) • Minimizes interference and
enhances accuracy

• Adds weight and struggles in
dynamic conditions

T.C.05

Byzantine fault tolerance (BFT) and
redundant routing

Taggu and Marchang (2019) • Ensures network functionality
despite faults

• Increases overhead and routing
delays

T.C.06

DNSSEC (domain name system security
extensions)

Anagnostis et al. (2024) • Cryptographically secures DNS
responses

• Infrastructure requirements limit
widespread adoption

T.C.07

Position-based routing with digital
signatures

Anagnostis et al. (2024); Selvarajan
(2024)

• Maintains data integrity and
mitigates routing anomalies

• Cryptographic reliance can create
inefficiencies

T.C.08
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4.2.3.8 Wormhole attacks
The attacker is responsible for recording the packets and

forwarding them to the second attack, as reported by Zhang (2023).
This could be similar to the replay attack, where valid

communication data are intercepted and then retransmitted to
generate reactions or actions that are not authorized.
Furthermore, it is similar to MITM attacks, where an adversary
eavesdrops on and potentially modifies the communications
between UAVs and their control centers, as reported by Bera
et al. (2021).

5 Holistic strategies for mitigating MCS
threats in UAVs

Existingmitigation techniques, as outlined in Section 3, are often
scenario-specific and insufficient to address the diverse threats
UAVs face discussed in Section 4. To address this gap, we
propose a comprehensive strategy that integrates multiple
countermeasures.

We begin by examining hardware-assisted security, which
enhances resilience against physical and remote attacks. Next, we
focus on system hardening, emphasizing software-based protections
to secure UAV operations. Finally, we address communication
countermeasures, targeting confidentiality, integrity, and
availability, especially against physical-layer attacks.

Each strategy is accompanied by an assessment of its advantages
and limitations, ensuring a balanced evaluation. These measures are
applied throughout the UAV lifecycle, from pre-deployment to post-
operation, and we discuss the adoption of a cybersecurity framework.
Relevant mitigation areas are summarized in Tables 4–6, correlating
specific threats to corresponding solutions.

5.1 Adopting hardware-assisted security
environments

5.1.1 Relevant threats
Physical capturing of UAV/tampering attack (T.H.01), Physical

collisions (T.H.02), Technical failure (T.H.03), Human error
(T.H.04), Airborne and land threats (T.H.05), and Supply chain
attack (T.H.06).

5.1.2 Mitigation
Hardware is traditionally considered a reliable component that

supports the entire computer system. Because modifying the
hardware requires physical contact, hardware-related methods are
utilized to mitigate cyberattacks, which are usually performed
remotely. Hardware components designed for a dedicated
purpose show higher performance than software-only methods,
such as hardware-based crypto-accelerators. Consequently,
hardware-based security research typically focuses on the
practical use of cryptographic techniques and the protection of
system integrity.

5.1.2.1 Physical capturing
As Jin (2015) reported, hardware-based security is used in

various ways to enhance the authenticity of the devices. Several

researchers, including Kaushal et al. (2022) and Plooij et al. (2015),
studied device-locking techniques to prevent unauthorized access
when a device is stolen. To avoid unauthorized access and hijacking
of the flying UAV, it is crucial to employ authenticated encryption to
secure both the GCS and the UAVs. Additionally, ensuring that they
are free from malware will greatly reduce the risk of bad actors
seizing control. By utilizing flight paths, it is possible to hinder the
adversary’s ability to discern the flying pattern, hence increasing the
level of difficulty for physical theft of the target (Mekdad et al., 2021).
As software-only protection cannot guarantee strong security
against physical attack, several standards, such as SAE
International (2020), GlobalPlatform (2022), and Trusted
Computing Group (2024), recommend deploying hardware-
assisted security environments as the trust anchor.

5.1.2.2 Physical collisions
Wang et al. (2020) introduce a decentralized collision avoidance

strategy for multi-UAV systems utilizing reinforcement learning
(RL) without depending on flawless sensing. The method proposes a
two-stage training approach to improve resilience and accelerate the
rate of convergence. The initial phase entails supervised training to
direct the agent toward achieving optimal collision avoidance, while
the subsequent phase uses traditional reinforcement learning to
enhance the policy. Although this strategy exhibits substantial
enhancements in success rate, trajectory length, and time cost
compared to existing policies, the current limitation of this
method, such as possible oscillations caused by sudden scenario
changes, requires investigating the use of recurrent neural network
architectures. Additionally, Yasin et al. (2020) classified collision
avoidance of autonomous systems in different approaches into two
categories: perception and action. Perception, specifically obstacle
detection, entails the utilization of sensors to identify impediments.
Active sensors emit signals, whereas passive sensors depend on
external sources such as sunlight. The actions for avoiding collisions
can be classified into four categories: geometric methods,
manipulation of force fields, optimizations based on known
obstacle parameters, and real-time judgments made through
sensing and avoiding. However, these systems lack inherent
security measures and are unable to effectively address the
collision avoidance risks posed by malevolent individuals (Pan
et al., 2022).

5.1.2.3 Technical failure
A number of strategies have been suggested for UAV battery

depletion attack mitigations, such as power prediction and analysis
(Prasetia et al., 2019), battery optimization (Abeywickrama et al.,
2018), and dynamic control power (Bentz and Panagou, 2017).
However, these approaches have limitations and frequently depend
on solutions derived from IoT and attacks on electric vehicle battery
depletion4. Several methods, such as the cumulative sums method
(Shakhov and Koo, 2018) and a probabilistic model checking
scheme (Shaikh et al., 2021), can detect aberrant energy use

4 Drones as the new “flying iot”: They’ll track people and deliver goods using

a new low-power architecture to juice the apps while staying aloft,

published by Lori Cameron in 2020, 2020.
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during attacks. Additional safeguards involve performing malware
analysis on the network, managing physical hardware interfaces, and
monitoring control channels for illegal activities (Tlili et al., 2022).
Seerangan et al. (2024) employed adaptive deep reinforcement
learning with a novel loss function to enhance energy efficiency.

5.1.2.4 Human error
Kopyt and Żugaj (2020) propose a reconfigurable flight control

system for UAVs that compensates for control surface failures by
utilizing other control surfaces and the engine. The system’s
effectiveness was validated through experiments with human
operators using a UAV flight simulator, testing various failure
configurations. The reconfigurable system, while effective in
critical failure scenarios, significantly altered UAV dynamics in
single failure cases, sometimes making it harder for operators to
control the UAV. This issue could be mitigated with improved
algorithms and additional operator training to adapt to the system.
Moreover, Grindley et al. (2024) employ human factors analysis and
classification system (HFACS) to methodically identify and analyze
the underlying causes of UAV mishaps. HFACS classifies these
factors as risky actions, preconditions, supervisory deficiencies, and
organizational impacts, offering a thorough structure to evaluate the
human and environmental aspects that contribute to UAV
accidents. The study examined 77 instances of UAV accidents
from accident investigation reports spanning a period of
12 years. The study specifically investigated the role of human
factors in 42 of these incidents. The main constraint identified in
the study is the relatively limited sample size of 42 occurrences
related to human factors, which may not encompass the complete
spectrum of UAV accident scenarios.

5.1.2.5 Hijack
Feng et al. (2020) present a method for identifying GPS spoofing

attacks on drones, which is called the two-step GA-XGBoost
method. The approach begins by training the model externally
using flight data. The training parameters are optimized using a
Genetic Algorithm (GA) to improve the performance of the
XGBoost model. After the model is trained, it is sent to the
drone, and additional training is performed using real-time
sensor data to ensure accurate predictions. Subsequently, the
model transitions to prediction mode, facilitating the immediate
identification of GPS spoofing assaults. However, the suggested
approach is dependent on learning-based detection; hence, it can
only identify attacks that exhibit behaviors comparable to those
observed during the training process. Jares and Valasek (2021)
introduced a hijacking detection technique for UAVs based on a
statistical analysis of typical flying patterns. They demonstrated its
efficiency against 20 potential hijacking cases through simulations
tested against 50 baseline flights. However, the method proves
ineffective when simulation factors, such as control instability,
are altered, indicating a need for further testing and
enhancement of simulation data accuracy.

5.1.2.6 Supply chain
To combat supply chain assaults, it is crucial to ensure the

security of the supply chain during the manufacturing process in
order to prevent the utilization of hacked UAV components (Gurtu
and Johny, 2021). In addition, tamper-proof microprocessors and

anti-tamper software can effectively prevent any unauthorized
alterations, whether physical or logical, that could potentially
jeopardize the legitimacy of the vital components of the UAV
(Mekdad et al., 2021). Hassija et al. (2020) suggested employing
blockchain, machine learning, and physically unclonable functions
(PUFs) to solve security problems in existing supply chain designs.
Blockchain is proposed as a means to increase transparency and
security, machine learning to enhance predictive capacities and
efficiency, and PUFs for strong authentication. The study
highlights the capacity of these technologies to fundamentally
transform supply chain processes by enhancing their security and
reliability. However, the constraint is in the extensive acceptance and
execution of these technologies. Although IoT and AI have been
widely adopted, blockchain technology is still not being fully
leveraged, and there is currently no established reference model
for PUFs in complex supply chains.

Rao et al. (2021) emphasize that in order to address supply chain
assaults in IoT, it is essential to apply controls at the device, network,
and organizational levels. It is crucial to thoroughly test products for
security at the device level before deploying them. Additionally, it is
important to use strong authentication mechanisms that use
cryptographic keys and to ensure that software updates are
secure by using permitted connections. At the network level, it is
crucial to divide important networks, follow secure integration
standards, install hardware firewalls, and set up warning systems
to quickly identify anomalous device behavior. It is crucial for
organizations to perform a thorough risk assessment to detect
weaknesses, follow industry standards for cybersecurity, and
utilize machine learning and artificial intelligence to analyze
network traffic for malicious activities. These combined actions
greatly enhance overall security and foster confidence in the
IoT ecosystem.

5.2 System hardening

5.2.1 Relevant threats
Malware attack (T.S.01), Database attack (T.S.02), Snoopy attack

(T.S.03), Skyjet attack (T.S.04), Mal-drone attack (T.S.05), Malicious
firmware update (T.S.06), Vulnerabilities in Drone OS (T.S.07),
PX4 and Ardupilot software bugs (T.S.08), SQL and NoSQL
injection (T.S.09), Phishing (T.S.10), System failures (T.S.11),
Backdoor attacks (T.S.12), and Zero-day exploit (T.S.13).

5.2.2 Mitigations
Hardening of the system, or system hardening, is a process

intended to eliminate a means of attack by patching vulnerabilities
and turning off nonessential services, as defined by Barker et al.
(2015). Pendleton et al. (2016) reported that system hardening
techniques are methods to reduce security vulnerabilities and
threats by configuring different functionalities, including
hardware and software in the target system.

5.2.2.1 Database attacks
Multiple security techniques must be adopted for system

hardening. For example, deploying secure data storage in UAV
clusters emphasizes the adoption of distributed storage methods to
enhance data protection. These techniques safeguard data against
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unauthorized access while ensuring its integrity and availability
across the UAV network (Wu et al., 2023). Also, device anti-
tampering applications could be deployed to detect, prevent, or
impede unauthorized modification of software (Lee, 2020).

5.2.2.2 PX4 and Ardupilot software
Bug system hardening is not limited to adopting the sole

technology but also includes designing the architectures.
Deploying isolation techniques such as containerization or
virtualization as microservices is recommended as an effective
way to limit the impact even when a certain part of the system is
compromised, as reported by Chandramouli (2019).

5.2.2.3 Skyjet attacks, system failures, and zero-day exploits
Deploying fog computing architecture into UAV environments

could be considered. Habibi et al. (2020) and Al-Khafajiy et al.
(2020) identified that fog computing could reduce security risks, not
only improving UAV operations by lowering latency and bandwidth
issues but also enabling faster data processing and decision-making.
Because fog computing also allows local data processing when
network bandwidth is limited, resiliency during network
disruptions could be improved. Additionally, fog computing
enhances data privacy and security by processing sensitive
information locally, thus mitigating some risks associated with
transmitting data over external networks.

5.2.2.4 Vulnerabilities in drone OSs
Regular updates to the operating system are essential for

preventing the compromise of UAVs and their payloads. By
implementing firewalls on the GCS, it is possible to prevent
harmful traffic from accessing the UAVs. Software solutions such
as antivirus programs and intrusion detection systems (IDSs) can
oversee network traffic in order to safeguard UAVs frommalevolent
actions (Mekdad et al., 2021).

5.2.2.5 SQL and NoSQL injections and phishing
In their study, Sedjelmaci et al. (2016) developed an IDS

specifically designed for UAV networks. The system
demonstrated an impressive detection accuracy of over 93% in
simulations while maintaining a false positive rate of under 3%.
However, the act of augmenting the quantity of UAVs has a
substantial impact on both the rate of incorrect negative
outcomes and the amount of energy consumed, hence
influencing the scalability of the network. Rabie et al. (2024)
presented an advanced IDS for IoT networks by integrating the
Decisive Red Fox (DRF) algorithm for feature selection with a
descriptive back-propagated radial basis function (DBRF)
classifier. Machine learning- (ML) based methods are also
considered as security countermeasures. Shafique et al. (2021)
proposed a spoofing detection mechanism based on the support
vector machine (SVM) and voting techniques. Other researchers,
including Li et al. (2017), Brahem et al. (2022), and Mun et al.
(2024), have proposed privacy-preserving mechanisms for the
data in MCS.

5.2.2.6 Snoopy attacks and backdoor attacks
Implementing permission measures for UAV system resources

can effectively prevent the execution of malicious code. Software-

based attestation methods, which guarantee the integrity of the
software operating on the flight stack, provide protection against
software-based attacks (Iqbal et al., 2020). Remote attestation
solutions are cost-effective and can efficiently verify the
authenticity of the software stack.

5.2.2.7 Mal-drone attacks and malicious firmware updates
Dushku et al. (2020) presented a secure asynchronous remote

attestation (SARA) protocol specifically for the purpose of verifying
a substantial amount of IoT devices. Based on their accurate
simulations, it was shown that SARA has a small storage need of
3.03 KB, a runtime of 19 s for 250 services, and a very low energy
usage of 0.196 mJ. Selvarajan et al. (2024) explored generative AI
techniques to enhance automated content creation, particularly in
identifying and filtering fraudulent or duplicated content. Emerging
technologies are also being adopted. Several researchers are
proposing blockchain-based methods as mitigation. For example,
Bera et al. (2021) proposed a blockchain-based access control
scheme to detect unauthorized UAVs, only allowing the genuine
data from a UAV to the GCS and storing the suspicious data for
detection of unauthorized UAVs in a private blockchain.

5.2.2.8 Malware
The categorization of virus detection technologies, as outlined in

Ahsan et al. (2022), is based on static and dynamic detection
methods. Static detection examines the code of files to identify
virus signatures, whereas dynamic detection executes files in a
virtual environment to monitor their behavior for any dangerous
activities. Virus detection methods encompass signature-based,
heuristic-based, behavior-based, and emulation-based detection
(Niyonsaba et al., 2023).

• Signature-based detection involves the comparison of known
viral signatures with files or email attachments.

• Heuristic-based detection involves analyzing the behavior or
attributes of a program in order to find previously unknown
malware or virus variants.

• Behavior-based detection involves monitoring the execution of
files and programs in order to identify any harmful actions.

• Emulation-based detection involves simulating the execution of
a file in a controlled environment to monitor and document its
behavior to identify any potential harmful intentions.

5.3 Securing communication

5.3.1 Relevant threats
Communication interception attacks (T.C.01), Denial-of-service

attack (DoS), Jamming, flooding (T.C.02), Data manipulation
attacks (T.C.03), Autopilot attack (T.C.04), Acoustic attack
(T.C.05), Byzantine attack (T.C.06), DNS cache poisoning attack
(T.C.07), and Wormhole attack (T.C.08).

5.3.2 Mitigations
To ensure secure communication, deploying authenticated and

encrypted channels with techniques such as transport layer security
(TLS) is essential. Han (2023) discusses various securing techniques
employed in UAV communication, including intra-drone secure
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messaging and drone external communication, as well as
technologies like MAVLink.

However, as discussed in Section 4.2, communication threats
extend beyond cryptographic vulnerabilities and include physical
interference aimed at disrupting communication availability. Efforts
to address these threats include SDN-based security measures that
counter physical attacks, including denial-of-service (DoS),
jamming, and spoofing attacks.

5.3.2.1 Jamming
Several studies, such as Tan et al. (2020) and Ashraf and Latif

(2014), have developed methods for monitoring packet flows to
detect DDoS attacks. In addition, McCoy and Rawat (2019)
introduced network management protocols within a monitoring
architecture that improves resilience and reduces outages caused by
jamming attacks alongside GPS-based algorithms for countering
spoofing attacks. Kumar et al. (2019) proposed a mobility model for
multi-UAV wireless sensor networks to detect DoS attacks. Li et al.
(2019) introduced a Dyna-Q-based reinforcement learning
algorithm for attack detection and response. Selecting sensors
that remain effective under environmental noise and equipping
onboard components with anti-tampering features is crucial.
Communication security can be further enhanced using direct
sequence spread spectrum (DSSS) and frequency hopping spread
spectrum (FHSS) techniques, which counter jamming attempts by
frequently shifting transmission frequencies (Kong, 2021). Access
control can be reinforced by restricting connections to approved
devices based on MAC addresses, hiding the UAV’s access point,
and encrypting authentication messages to prevent unauthorized
access and defend against Wi-Fi de-authentication attacks (He et al.,
2016). Additionally, Selvarajan (2024) reported that evolutionary
and swarm intelligence-based optimizers are particularly effective
for complex applications, offering faster convergence and superior
performance than physics-based and nature-inspired ones.

5.3.2.2 Interception
Cryptography plays an essential role in safeguarding UAV

communications, with symmetric encryption often being the
preferred choice for resource-limited systems. However, securely
distributing the keys used in symmetric encryption remains a
significant challenge. Rugo et al. (2022) proposed mitigation
strategies encompass both technological and policy measures.
These include evaluating current defenses against space
communication security (SCS) vulnerabilities and advocating for
global collaboration to create robust and comprehensive space
security policies. Furthermore, Podhradsky et al. (2017) proposed
a scheme using Galois Embedded Crypto, adapted for Arduino-
based systems, which enables secure key distribution over radio
control channels on standard radio modules without the need for
hardware modifications.

5.3.2.3 Eavesdropping
Both physical-layer security and cryptographic techniques are

used to protect against eavesdropping. One approach involves
transmitting artificial noise alongside the information signal, with
optimal power distribution to minimize interception risks (Liu et al.,
2017). Additionally, UAVs can alter their altitude and flight paths to
further secure communication. Despite these measures, challenges

remain when eavesdroppers are positioned near the transmission
source (Zhang et al., 2017).

5.3.2.4 Spoofing
Encrypting control messages prevents attackers from altering or

injecting malicious commands, such as those used in man-in-the-
middle attacks (Rodday et al., 2016). Cryptographic methods protect
navigation messages, although they are primarily used in military
contexts due to cost constraints. Encrypted GPS signals, such as the
Precise (P)-Code, are available to military users, while civilian GPS
signals (C/A-Code) are not encrypted (Rodday et al., 2016).

5.3.2.5 Message injections
Encryption not only ensures the integrity of messages but also

helps defend against message injection attacks by authenticating the
sender’s identity and confirming that the message has not been
tampered with (Rodday et al., 2016). Blockchain technology
enhances communication security by providing a verifiable
record of past interactions. Although it does not safeguard the
confidentiality of current messages, it ensures message integrity
through consensus among UAVs. In this system, messages are
encrypted and validated before delivery, ensuring secure
exchanges. Blockchain is also used for the distributed storage of
machine learning data, supporting collaborative decision-making
among UAVs (Ghribi et al., 2020).

5.3.2.6 Autopilot attacks
Stracquodaine et al. (2016) proposed a solution that embeds

markers within the UAVs to continuously monitor and record their
control flow. This recorded data, reflecting typical software behavior,
establishes a baseline profile. During flight, the IDS analyzes live
event data against this profile, identifying any irregularities. When
anomalies are detected, the system initiates various responses,
including sending alerts, switching to backup controls, or, in
critical situations, securely disabling sensitive components.

5.3.2.7 Acoustic attacks
Physical shielding and shock absorption protect against acoustic

and external disturbances (Gao et al., 2022). Signal processing
techniques, like filtering, enhance data accuracy by isolating noise
from valid measurements. Redundant sensors and external reference
systems help detect and reject erroneous data from acoustic
interference. Acoustic shielding, using enclosures and sound-
absorbing materials, further limits sound exposure to the sensors
(Kong, 2021).

5.3.2.8 Byzantine attacks
Introducing redundancy and diversity in routing paths and

network protocols helps reduce the impact of malicious or faulty
nodes. Byzantine fault tolerance (BFT) algorithms enable the system
to remain operational, even if parts are compromised. Additionally,
monitoring and logging mechanisms can detect abnormal activities,
ensuring the identification of network disruptions or malicious
behavior (Taggu and Marchang, 2019).

5.3.2.9 DNS cache poisoning attacks
To protect against DNS cache poisoning, one effective

countermeasure is the use of domain name system security
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extensions (DNSSECs). This security mechanism employs
cryptographic techniques to sign DNS responses to ensure their
authenticity and prevent unauthorized alterations (Anagnostis
et al., 2024).

5.3.2.10 Wormhole attacks
To counter wormhole attacks, it is crucial to authenticate UAV

communications and verify the integrity of routing information.
Approaches such as position-based routing and local network
monitoring assist in detecting anomalies in the network topology.
Additionally, the use of cryptographic methods like digital
signatures ensures message integrity, preventing attackers from
tampering with data exchanged between distant UAVs
(Anagnostis et al., 2024).

5.4 Secure lifecycle management

Effective security management must encompass the entire
lifecycle of a UAV—not only during operations but also before
and after.

In the initial stage, UAVs may lack the capabilities for
authentication or encryption. To address this, provisioning of secrets
or software is conducted during themanufacturing phase in a physically
protected environment. By installing secrets in hardware-based security
environments, a more hardened system is achieved. For instance,
system integrity can be protected through secure boot mechanisms
that verify software using the provisioned secret.

During deployment, devices must undergo a registration process,
which includes associating symmetric or asymmetric keys. Once
registered, devices can be managed and controlled by central
management entities. Researchers such as Han et al. (2024) have
detailed key provisioning scenarios for UAVs. For fleet operations,
registered devices can retrieve fleet mission details from the ground
control station (GCS), a process known as fleet provisioning.

During operation, it is crucial to address incidents and ensure
systems remain up to date. Researchers such as Al Blooshi and Han
(2022) have demonstrated secure methods for software updates in
UAV environments.

At the conclusion of operations, systems may reach end-of-life
(EOL). In such cases, decommissioning is necessary. This includes
scenarios such as completing or aborting fleet missions, key
revocation or expiration, or the physical end of a device’s
lifecycle. The operational data of fleet missions must be securely
erased. Certificate revocation or key updates are required for key
EOL. Device EOL disposal processes should include sanitization or
zeroization of data.

Adopting a recognized cybersecurity framework, such as the
NIST Cybersecurity Framework (CSF), is critical to managing and
reducing cybersecurity risks. The CSF, applicable across industries
regardless of technical sophistication, is also suitable for UAV
environments. Version 1.1 of the CSF defines five core functions:
identify, protect, detect, respond, and recover. CSF 2.0 expands on
these principles, emphasizing governance and supply chain security.

To effectively secure mobile crowd sensing in UAV
environments, it is essential to consider not only specific
technical measures but also the broader ecosystem, including
governance and supply chain management.

6 Case study on secure UAV design

In this section, we present a case study of a specific scenario
involving MCS with UAVs, utilizing the model defined in Section 5.

6.1 General operations

An operator assigns a group of UAVs to an MCS mission for a
specific time period.

FIGURE 3
(A) A UAV stores credentials in hardware-protected security environments; (B) An operator assembles a group of UAVs for a specific mission; (C)
UAVs establish a secure channel; (D) A new UAV joins the mission; (E) A suspicious UAV is monitored, and its reputation level is adjusted.
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As shown in Figure 3A, UAVs maintain unique identifiers and
credentials, such as public key pairs and certificates, within
hardware-assisted security environments (e.g., TPM and HSM),
as discussed in Section 5.1.

Figure 3B illustrates the operator configuring a group of UAVs
for a specific mission. Information about the session, including
session ID, time period, UAV privileges, and UAV IDs, is collected
and signed by the operator. This signed information is stored in each
UAV, as described in Section 5.1.

Figure 3C depicts two UAVs establishing a secure channel.
Methods such as mTLS are already suggested, as outlined
in Section 5.3.

After mutual authentication, the UAVs performMCS within the
mission field over secure communication channels.

6.2 Maintaining MCS operability with
missing UAVs

During the mission, UAVs may experience a temporary or
permanent loss of connection due to environmental conditions.
Losing UAVs can impact MCS performance. To maintain
operability, the operator may assign new UAVs as replacements.
When new UAVs are introduced, they might also locate the missing
UAVs. In such cases, securely integrating new UAVs into the group
and reconnecting with “found” UAVs are the primary security
objectives.

6.2.1 Establishing secure connection with
new UAVs

Figure 3D illustrates a new UAV joining an existing group by
presenting verifiable information. For example, the operator may
sign updated session information, including details about the new
UAV, similar to the process depicted in Figure 3B. Upon
verification, the new UAV can integrate into the group.

6.2.2 Restoring secure connections with
missing UAVs

As shown in Figure 3E, a previously missing (lost) UAV may be
exposed to threats, as discussed in Section 4.2.1. Although the
credentials of the found UAV may remain valid due to
protections outlined in Section 5.1, it is prudent to treat it as
suspicious.

If the credentials of the “found” UAV are intact, a secure
connection can be reestablished. However, its status as potentially
compromised necessitates monitoring its sensing data. Intrusion
detection systems or machine learning-based detection methods, as
described in Section 5.2, may be employed.

Based on observed behavior, the UAV’s reputation level may
increase or decrease. A high reputation level would render its
collected data more trustworthy for MCS operations.

6.3 Case study summary

This section presented a case study utilizing the threat
analysis and mitigation strategies described in Sections 4.2, 5.
The focus was on establishing secure communication among

authenticated UAVs and handling suspicious UAVs. Efficient
monitoring to detect intrusions is crucial for MCS in UAV
environments. The detailed design and analysis of methods for
effectively and securely handling missing UAVs in MCS will be
addressed in future work.

7 Conclusion

The increasing use of unmanned aerial vehicles (UAVs) in
mobile crowd sensing (MCS) brings forth significant challenges in
ensuring data security and reliability. As UAVs are equipped with
increasing numbers of sensors, the potential risks to data privacy
and security are amplified. Although extensive research has been
conducted on the security and privacy issues of MCS, this paper
specifically focuses on the integration of MCS applications within
UAV ecosystems. We presented a comprehensive review of the
security and privacy challenges both within MCS and UAV
contexts, followed by an in-depth threat analysis of MCS
applications in UAV environments. Our analysis covered a
range of attacks targeting software, hardware, and
communication systems, underscoring the multifaceted nature
of security threats.

Our findings indicate that relying on a single countermeasure is
insufficient to address these security and privacy challenges. To
effectively mitigate risks, a holistic approach is necessary—one that
includes system hardening, the integration of hardware-based
security solutions, secure communication protocols ensuring
confidentiality, integrity, and availability, the implementation of a
robust cybersecurity framework, and thorough lifecycle
management practices. Additionally, our case study demonstrates
how the proposed framework can enhance the security of UAV
systems, particularly in scenarios where UAVs go missing, a
situation that occurs periodically in UAV operations. A practical
implementation of this case study is an avenue for future work,
which will further explore its real-world applicability and
effectiveness in mitigating UAV security issues.
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