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Introduction: The Internet of Things (IoT) is a new technology that connects
billions of devices. Despite offering many advantages, the diversified architecture
and wide connectivity of IoT make it vulnerable to various cyberattacks,
potentially leading to data breaches and financial loss. Preventing such attacks
on the IoT ecosystem is essential to ensuring its security.

Methods: This paper introduces a software-defined network (SDN)-enabled
solution for vulnerability discovery in IoT systems, leveraging deep learning.
Specifically, the Cuda-deep neural network (Cu-DNN), Cuda-bidirectional
long short-term memory (Cu-BLSTM), and Cuda-gated recurrent unit (Cu-
DNNGRU) classifiers are utilized for effective threat detection. The approach
includes a 10-fold cross-validation process to ensure the impartiality of the
findings. The most recent publicly available CICIDS2021 dataset was used to
train the hybrid model.

Results: The proposed method achieves an impressive recall rate of 99.96% and
an accuracy of 99.87%, demonstrating its effectiveness. The hybrid model was
also compared to benchmark classifiers, including Cuda-Deep Neural Network,
Cuda-Gated Recurrent Unit, and long short-term memory (Cu-DNNLSTM and
Cu-GRULSTM).

Discussion: Our proposed technique outperforms existing classifiers based on
various evaluation criteria such as F1-score, speed efficiency, accuracy, and
precision. This shows the strength of the approach in threat detection and
highlights the potential of combining SDN with deep learning for IoT
vulnerability assessment.
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1 Introduction

The widespread use of IoT devices has transformed how we interact with our
surroundings in recent years. These gadgets have enabled seamless automation and
communication in a range of industries, including smart homes, healthcare, and
transportation. However, preserving the security and privacy of data transported across
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these networks is a considerable challenge, given their
interdependence. Deep learning, a type of artificial intelligence
(AI), has emerged as a powerful tool for increasing the
effectiveness and security of IoT connections. Deep learning
algorithms can spot abnormalities, anticipate potential threats,
and respond quickly to security breaches by analyzing massive
amounts of data using powerful neural networks. Because of the
large quantity and variety of connected devices, traditional security
methods may be insufficient in Internet of Things environments.
This is why this feature is so vital. The objective of this paper is to
provide a basic introduction of deep learning technology and how it
might be applied to secure Internet of Things connections. And on
this research provides a software-defined networks (SDN)-enabled
solution for vulnerability discovery in Internet of Things systems
based on deep learning. The most recent Cuda-deep neural network,
Cuda-bidirectional long short-term memory (Cu-BLSTM), and
Cuda-gated recurrent unit (Cu-DNNGRU) classifiers are used for
successful threat detection. We will look at the fundamental ideas
behind deep learning, the components that make up its architecture,
and how these methods can be tailored to meet the unique
challenges that come with IoT environments. We will also
discuss specific use cases and real-world applications in which
deep learning techniques have enhanced the security and
reliability of Internet of Things networks. Deep learning
technology has the ability to maintain safe and resilient
communication infrastructures, and understanding its principles
and capabilities will help IoT ecosystem players—from developers
and engineers to policymakers and end users—appreciate this
promise. Through this analysis, we seek to highlight deep
learning’s transformative impact on future IoT security and
stimulate innovation in linked technologies. To uncover relevant
information for “Deep Learning Technology: Enabling Safe
Communication via the Internet of Things,” look for research
and articles that discuss the relationship between machine
learning, specifically deep learning, and IoT security. The
following are some important fields and similarly related topics:

• IoT Security Challenges: This segment of the literature
focuses on the specific security difficulties that IoT
devices provide, such as resource restrictions,
heterogeneous networks, and the need for scalable
security solutions. Research on Deep Learning for IoT
Security In particular, researchers are looking into how
deep learning technologies may improve IoT security, such
as IoT device behavior analysis, anomaly detection, and
intrusion detection. Edge computing and IoT publications
are those that address edge computing paradigms for IoT
security using deep learning models that can perform well
on edge devices with limited resources. The work focused
on developing secure communication protocols, such as
encryption algorithms, authentication schemes, and key
management, primarily for Internet of Things applications.

• Case Studies and Applications: Examples of practical usage or
case studies in which deep learning technologies were
successfully deployed to increase IoT system security.

• IoT Privacy and Data Protection: Discusses how deep learning
may assist safeguard sensitive data and ensure privacy in
IoT contexts.

• Cyber-Physical Systems Security: Because the Internet of
Things commonly involves the interaction of cyber and
physical systems, research utilizing deep learning
methodologies to address security concerns in cyber-
physical systems (CPS) is relevant.

The term IoT refers to an international network of individually
addressable networked things. Its popularity has increased
dramatically in recent years. IoT devices use several
communication protocols and sensor functions. Because of their
powerful CPUs, these devices can analyse data and provide services.
Smart factories, smart ecosystems, smart health systems, smart
cities, and automotive networks are just a few of the intelligent
settings enabled by the IoT, a paradigm that connects millions of
digitally aware devices (Tyagi, 2024). Although IoT has many
advantages, it also poses a lot of security vulnerabilities. The
constantly rising data of the IoT exposes IoT networks to a wide
range of threats and assaults (Cherbal et al., 2024; Ahmed et al.,
2024).The Internet of Things includes both heterogeneous and
homogeneous networks, as well as networking devices that use a
range of protocols. This suggests that faults may constitute an
undetectable threat to both Internet of Things devices and the
infrastructure. Cybersecurity employs a variety of approaches,
such as distributed denial-of-service (DDoS) attacks, denial-of-
service (DoS) assaults, and other malware types, to exploit
different faults in the properties of these dynamic devices
(Rehman et al., 2024). Almost 80% of specialists try to fix at least
one security issue in a single day, and 60% of cybersecurity experts
manage network security and operations for one or 2 h every day
(IslamM.M. et al., 2024). There are further reported attacks that use
deception and replay. A review of attack detection methods and
industrial-level security measures may be found in (Meylani, 2024).

Protocol-obedient devices occur in a vast variety, and each one
necessitates a distinct set of security procedures. These security
measures, however, are insufficient considering how seamless IoT
devices are. The overarching architecture of the Internet of Things is
not yet safeguarded by a cohesive strategy. IoT security is complex
and still requires a significant amount of security.

Today, an SDN-enabled architecture may simplify network
management while also improving the dynamic and diverse
environment of the Internet of Things. It provides platform
support for underlying devices with limited resources, preventing
security solutions from overloading and delivering effective and
efficient detection without becoming outdated. One of the most
effective ways to monitor SDN is to combine IDS with SDN (Peelam
et al., 2024). Because AI is rapidly evolving and SDN is
programmable, combining AI-based security solutions with SDN
can improve security levels. Various AI techniques, including fuzzy
logic, artificial neural networks (ANNs), decision trees, k-nearest
neighbor, genetic algorithms, and naïve Bayesian algorithms, have
been used to achieve accurate and optimal network traffic results
(Hussain, 2024). Finally, our proposal for an SDN-enabled, deep-
learning-based intrusion detection system is motivated by the need
to provide a dependable and customizable architecture for threat
detection in IoT devices.

The key novelties of the presented deep learning architecture lie
in its application to IoT security through a hybrid model enabled by
SDN for threat detection. By integrating advanced classifiers such as
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Cuda-deep neural networks (Cu-DNN), Cuda-bidirectional long
short-term memory (Cu-BLSTM), and Cuda-gated recurrent units
(Cu-DNNGRU), the architecture excels at discovering
vulnerabilities within highly connected IoT systems. Leveraging
these novel deep learning mechanisms allows for both temporal
and sequential data analysis, crucial for detecting complex
cyberattacks. Additionally, the model’s use of 10-fold cross-
validation and training on the latest CICIDS2021 dataset ensures
robust and unbiased threat detection with remarkable performance,
achieving a 99.87% accuracy rate. These innovations are particularly
beneficial for cybersecurity applications, providing real-time IoT
threat monitoring with superior recall and precision over traditional
models. The following are the paper’s main contributions:

• A highly scalable and cost-effective deep learning-driven
system with support for SDN is proposed for risk detection
in Internet of Things scenarios.

• IoT devices employ Cu-DNNGRU and Cu-BLSTM classifiers
to successfully identify threats.

• To allow for comparison of your results, the same data set is
treated to Cu-GRULSTM and Cuda-Cu-DNNLSTM.

• We introduced a novel gating mechanism within the
DNNGRU layer, allowing better control of gradient flow
compared to standard GRU layers. Similarly, the Cu-
BLSTM layer was modified to incorporate an optimized
initialization technique, enhancing convergence speed.

• The proposed Cu-DNNGRU + Cu-BLSTM architecture was
initially designed with a fixed number of nodes per layer, based
on previous studies and initial experiments that demonstrated
promising results. To explore the impact of network size on
performance, the number of nodes in each layer is
parameterized and analyzed

• The proposed method is validated against previous research to
improve performance evaluation utilizing the CICIDS data set.

• Finally, 10-fold cross-validation is employed in this study to
verify the objectivity of our findings.

• The assessment results show that the proposed method
surpasses the others in terms of detection accuracy and
computational complexity while also allowing for
multiclass detection.

This paper has been organized as follows. Section 2 provides
background information and references to relevant works.
Section 3 contains additional information about the data set,
the suggested strategy, and other aspects. Section 4 shows the
experimental design and assessment measures. Section 5 has a
full description of the findings. Section 6 marks the conclusion of
the paper.

2 Related work

Network topologies like SDN will become more powerful in the
future. It is divided into three layers: data, control, and application
plane, each with its own set of APIs (northbound and southbound
respectively). The SDN control plane can be extended into the SDN
data plane to support a wide range of networks, including the
internet of things, fog, and edge (Anwar et al., 2024). The control

plane can be adjusted in a variety of ways to provide additional
capabilities. It outlines the process of creating heterogeneous IoT
nodes by connecting connected IoT devices to SDN controllers
using Open-Flow switches. The SDN architecture’s separation of the
control and data planes promotes flexibility and usability.
Furthermore, by offering a global perspective and central control
functions, it simplifies the process of gathering network information
(Paramesha et al., 2024). SDN enables dynamism, scalability, and
centralized management. It is critical to improve control decision-
making. It is recognized as a critical facilitator of flexible network
solutions (Wang, 2024). The combination of SDN and IoT provides
accurate network inspection to detect threats, malware, suspicious
activity, and assaults. Therefore, SDN implies that the Internet of
Things has a bright future. Academics have developed a range of
methodologies and tactics to identify potential dangers in the body
of existing research. The authors of (Uzoka et al., 2024) created an
IDS for a network using a convolutional neural network (CNN).

Using Modbus-TCP network traffic data and long short-term
memory (LSTM) analysis, the authors of (Hemamalini et al., 2024)
suggested a collection of repeating families for Internet of Things
attack and threat detection. In reference (Shafik, 2024), a recurrent
neural network (RNN) is used to detect and categorize an assault.
The authors compare both non-RNN and RNN approaches. The
authors of (Zainuddin et al., 2024) used Wireshark to create
Random Forests (RF) classifiers on a self-generated data set to
detect DDoS attacks in the Internet of Things. DARPA data sets
are used to build support vector machine (SVM) classifiers for
intrusion detection systems (IDS) in SDNs (Ullah et al., 2024). The
purpose of (Siddique et al., 2024) is to detect compromised
intelligent devices in an Internet of Things network using a self-
learning algorithm. They employed a Gated Recurrent Unit (GRU)
classifier to detect hacked devices. The authors of (Hajlaoui et al.,
2024) employed real-time traffic from Czech Technical University
(CVUT) to detect botnets with LSTM. The authors of (Adil et al.,
2024) found the IRC botnet using a combination of Bayesian, J48,
and Naïve Bayes techniques. However, the authors did not specify
how accurate their detection was. The inventors of (Vishwakarma
et al., 2024) used LSTM to discriminate between attacks and
legitimate communications. Multilayer ANN demonstrates a
network’s anomaly detection capacity (Wang et al., 2024).

According to the authors, the proposed technique detects DoS
assaults 99.4% of the time. The authors of (Mu et al., 2024) used a
deepmodel to detect pervasive attacks on the Internet of Things. The
system was trained on the NSL-KDD data set and achieved an
accuracy of 98.27% (Rejeb et al., 2024). Protects IoT infrastructure
with a deep learning-driven SDN solution. Using the KDD99 data
set, the scientists trained a Restricted Boltzmann Machine (RBM)
that achieved 95% detection accuracy. The authors of (Hakiri et al.,
2024) proposed using a flow-based detection technique in the SDN
gateway to reduce and identify DoS attacks. However, this technique
lacks efficiency analysis and performance statistics to back it up. In
recent years, threat detection employing SDN in conjunction with
AI-based approaches has shown promise (Van Hoang, 2024). The
authors of (Singh and Dwivedi, 2024) proposed an intrusion
detection system with training and testing accuracy of 96.22%
and 92.73% respectively. Before developing an intrusion detection
system (IDS) based on the most relevant security characteristics, the
technique ranks the security features.
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In (Wen et al., 2024), the authors used SVM, DNN, Naïve Bayes,
and j48 classifiers to detect intrusions. The NSL-KDD dataset is used
to train these classifiers. DNNs are considered to outperform other
classifiers. The authors published a mechanism for packet level
identification in botnet research and the Internet of Things (Zormati
et al., 2024). The authors achieved 99.3% accuracy with CNN and
RNN classifiers trained on the CTU-13 and ISOT datasets. For
crossfire attacks, the authors of (Prasad and Thyagaraju, 2024)
presented an SDN-based bio-inspired intrusion detection system
with an accuracy of 80%. The authors of (Awad et al., 2024) used
DeepDefence, a deep learning-based approach, to detect DDoS
activity. Various deep learning methods are used to distinguish
between harmful and secure communication. In addition, the
authors employed LSTM, CNN, RNN, and Blocked-Recurrent-
Unit-Neural-Network (GRU) to significantly reduce the rate of
traditional techniques. The authors of (Khan et al., 2024)
demonstrated that DL and SDN could prevent DDoS attacks
with 99% and 98% accuracy, respectively, using the ISCX data set.

The authors of (Eusufzai et al., 2024) developed a source-based
DDoS avoidance approach that obtained 98.88% accuracy on the
Hogzilla data set. The authors of (Singh K. et al., 2024) offer a
DDoS attack detection system that was developed using a layered

deep learning methodology. The overall purpose of the intelligent
network is to detect DDoS attacks with greater accuracy and
success. The authors’ progressive transfer learning model in
(Casillo et al., 2024) outperformed earlier methods in dealing
with DDoS threats. The authors of (Singh S. et al., 2024)
created the DADMCNN framework, which employs deep
learning to detect DDoS attacks. The authors also suggested an
MC-CNN model that optimizes feature information for better
recognition. The authors of (Abdi et al., 2024) described an
autonomous learning technique based on SDN capabilities.
Sophisticated learning strategies employ CNN, LSTM, and ANN
to construct the learning model. In addition, the performance of
the suggested model will be evaluated using the Mininet Wi-Fi
emulation platform. To boost efficiency, the authors of (Owen,
2024) created a deep neural network model including LSTM and
an attention mechanism. The model’s accuracy was 96.2%. The
authors of (Rahman et al., 2025) presented a hybrid technique for
early DDoS detection based on CNNs and actual network data. The
study employed over 319 million CDRs from Italia Telecom’s free
CDR data gathering. The results demonstrated that the projected
framework can identify under attack cells with greater than 91%
accuracy and normal precision.

TABLE 1 A review of the present literature.

Ref Algorithm Approach Data set D.
Accuracy

Time
complexity

Hemamalini et al.
(2024)

LSTM Cyber threats detection in a smart device using a deep
learning model

Modbus-TCP High High

Shafik (2024) RNN, LSTM, and GRU Presented ML and DL techniques for intrusion
detection

KDDCUP99 Low N/A

Zainuddin et al.
(2024)

RF Presented a technique using ML classifier for DDoS
attack detection in IoT

Self-generated data set by
using Wireshark

High N/A

Ullah et al. (2024) SVM Proposed an ML technique for IDS in SDN DARPA Medium N/A

Siddique et al.
(2024)

GRU Proposed a self-learning distribution for identifying
infected smart devices

Real Shelf Consumer IoT
devices

Low Medium

Siddique et al.
(2024)

LSTM Proposed a deep-learning-driven technique for botnet
detection

CVUT real-time traffic High N/A

Adil et al. (2024) Bayesian, J48, naïve
Bayes

Presented a machine learning approach for IRC botnet
detection

Dartmouth wireless
network

Low N/A

Vishwakarma et al.
(2024)

LSTM-RNN Propose anML-driven approach to detected known and
unknown threats

NSL-KDD Low N/A

Wang et al. (2024) ANN Presented ANN learning procedures for intrusion
detection by using feed-forward and back learning
algorithms

Internet packet traces High N/A

Mu et al. (2024) Deep model Presented a DL-driven scheme in IoT for the detection
of DoS attacks.

NSL-KDD Medium Medium

Rejeb et al. (2024) RBM SDN-based DL technique for DoS attacks detection in
intelligent devices

KDD99 Low N/A

Hakiri et al. (2024) RTS-DELM-CSIDS Presented ML-based approach to develop an intrusion
detection system

NSLKDD Low High

Wen et al. (2024) DNN, SVM, J48 and
Naive Bayes

Presented different algorithms to improve the learning
rate of the algorithm, which can predict attacks in IDS

NSL-KDD Low N/A

Zormati et al.
(2024)

CNN and RNN The proposed methodology can detect botnets at the
packet level

ISOT and CTU-13 Low H
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Paper (Oliveira et al., 2024) describes a unique CNN
architecture based on a multilayer convolution feature-fusion
process and categorical crossentropy, which is used to the
NSLKDD data set with loss. Based on experimental data, the
suggested approach improves accuracy and reduces false alarms.
The network design must be tuned for better detection results.
Using CAIDA data, the authors of (Kaur et al., 2024) showed a
CNN-based anomaly detection method for DDoS attacks.
87.35% of the time, the authors’ anomaly detection system
detected DDoS attacks. In conjunction with Snort IDS (Islam
Z. et al., 2024), proposes a DL-based detection model for
detecting IoT-based DDoS attacks. The authors evaluated
their findings using a data set acquired from network-based
traffic using a variety of methodologies and were able to achieve
less than 4% FPR and 95% TPR detection accuracy. The BoT-
IoT data set reported by the authors in (CheSuh et al., 2024) is
novel and valuable. The data set was created using a realistic
testbed and includes both real and simulated Internet of Things
network traffic with various attack types. The authors of (Hasan
et al., 2024) developed a data set called MQTT set, which is
linked to the MQTT protocol. The writers use a range of
machine learning methodologies. To validate the data set,
they compared the outcomes of balanced and unbalanced
data sets. Because there are so many benign disease records,
the imbalanced data set compares quite well to other data sets.
Finally, a collection of behavioral data from IoT tags, including
both benign and (Kaleem et al., 2024) generate dangerous traffic.
The data set was compiled from real-time traffic on a medium-
sized network including 83 devices. Table 1 presents a detailed
summary of the extant literature.

3 Proposed work and methodology

The purpose of this research project is to develop a hybrid deep
learning-based intrusion detection solution for Internet of Things
devices. This section discusses the suggested work method for the
project, the suggested network model, preprocessing, data collecting,
and the DL-driven hybrid framework. The motivation behind selecting
Cu-DNNGRU and Cu-BLSTM layers in the proposed architecture lies
in their combined strengths in handling sequential data and improving
the model’s efficiency. Firstly, the Gated Recurrent Unit (GRU),
specifically in its CUDA-accelerated (Cu-DNNGRU) form, was
chosen because of its ability to efficiently process long sequences
without suffering from the vanishing gradient problem often
encountered in traditional Recurrent Neural Networks (RNNs).
GRU is computationally lighter than Long Short-Term Memory
(LSTM) networks while still retaining the essential gating
mechanisms for controlling the flow of information. This makes
Cu-DNNGRU ideal for fast training and testing in resource-
constrained environments, such as IoT systems, where timely
detection of threats is critical. On the other hand, Bidirectional
LSTM (BLSTM) layers were included to capture dependencies in
both forward and backward directions in the data. IoT network
traffic often exhibits complex temporal patterns, and using BLSTM
allows the model to account for future as well as past dependencies,
enhancing themodel’s ability to detect intricate patterns in cyberattacks.
The combination of Cu-DNNGRU and Cu-BLSTM layers leverages the
strengths of both techniques—GRU’s efficiency and BLSTM’s
comprehensive sequence learning capability—creating a hybrid
model that offers higher accuracy, robustness, and faster processing
times compared to using either approach in isolation.

FIGURE 1
Proposal for network model.
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3.1 Network model suggestion

The motivation for selecting an SDN-capable, DL-driven
architecture lies in SDN’s simplicity, flexibility, and ability to
separate the control and data planes. This design offers
programmability, a global network view, and centralized
control, facilitating easier network data collection. The hybrid
model (Cu-DNNGRU + Cu-BLSTM) is positioned on the control
plane to efficiently handle the expansion and heterogeneity of IoT
devices, ensuring effective threat detection while maintaining cost
efficiency and scalability in diverse IoT environments. SDN has
emerged as a useful technique for integrated network design in
recent years. Because the control and data planes are kept separate,
SDN design is simple and flexible. It also includes features like
global network view and central control, which make collecting
network data easier. We offer a hybrid, SDN-capable, DL-driven

architecture for IoT intrusion and threat detection. Figure 1 shows
the suggested hybrid model (Cu-DNNGRU + Cu-BLSTM) in the
control plane. The hybrid threat detection model is located on the
control plane for several reasons. First, SDN’s data plane provides
complete programmability and the expansion of Internet of
Things devices. Second, it makes use of open-flow switches,
which provide tools for managing heterogeneity in SDN
controllers and Internet of Things devices. Third, the ability to
use the key IoT devices without growing exhausted is what truly
distinguishes the control plane in the IoT space. The combination
of SDN and IoT integration allows for effective analysis of network
data to detect threats, assaults, and unlawful conduct. The
structure being offered is fairly priced and conveniently located.
Furthermore, the data plane of SDN is comprised of a diverse set of
IoT devices, including smart gadgets, sensors, and other wireless
technologies.

FIGURE 2
A framework for hybrid detection is presented.
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3.2 Dual-mode DL-powered
detection system

The motivation for selecting the hybrid Cu-DNNGRU + Cu-
BLSTM architecture is its ability to deliver a versatile, high-

performing, and cost-effective solution for IoT intrusion detection.
This design enhances malware and threat detection accuracy while
minimizing false positives, leveraging deep learning models optimized
with GPU processing. The use of different neuron layers and activation
functions further refines the model’s performance, ensuring efficient
and scalable threat detection across various IoT environments. The
authors present a hybrid solution to IoT intrusion detection powered by
DL. IoT networks use Cu-DNNGRU + Cu-BLSTM, which is powered
by DL, to identify threats. A versatile, powerful, and reasonably priced
threat detection module is designed to identify threats across multiple
categories. Figure 2 provides a detailed summary of the proposed
paradigm. The proposed technique detects intrusions in Internet of
Things environments by utilizing the CU-DNNGRU and Cu-BLSTM
models for malware and advanced threat detection. The proposed
model is tested and trained using hybrid approaches that reduce
false positives (FP) while improving detection accuracy. The model
consists of numerous layers; Cu-DNNGRU, for example, comprises
200 neurons in a single layer. Cu-BLSTM, on the other hand, has a
single layer and 100 neurons. The activation function in the output layer
is softmax, while the Relu function is used in the other levels. To achieve
satisfactory findings, we ran trials throughout five epochs with batches
of thirty-two participants each. We experimented with Cuda-enabled
versions that use GPU processing to improve performance.

Furthermore, the proposed endeavor combined TensorFlow for
Python’s backend with the Keras framework. The comparison uses
two classifiers: the Gated Recurrent Unit Long Short-Term Memory
(GRU-LSTM) classifier, which has two layers: an LSTM layer with
100 neurons and a GRU layer with 200 neurons. One layer of the
deep neural network (DNNLSTM) classifier has 200 neurons in the
DNN layer and 100 neurons in the LSTM layer. Furthermore, as
Table 6 shows, we have compared our hybrid model to earlier
research. Cu-DNNGRU + Cu-BLSTM performs rapid matrix

TABLE 2 An explanation of hybrid algorithms.

Algorithm Layers AF Neurons LF Optimizer Batch-size Epochs

Cu-DNNGRU + Cu-BLSTM Cu-DNNGRU (1) Relu (200) CC-E

Cu-BLSTM (1) Relu (100) CC-E

Dropout – (0.3) – Adamax 32 05

Output Layer (1) Softmax 07

Dense (3) – (200,100,50) –

Cu-GRULSTM GRU Layer (1) Relu (200) CC-E

LSTM Layer (1) Relu (100) CC-E

Dropout – (0.3) – Adamax 32 05

Dense (3) – (200,100,50) –

Output Layer (1) Softmax 07

Cu-DNNLSTM DNN Layer (1) Relu (200) CC-E

LSTM Layer (1) Relu (100) CC-E

Dropout – (0.3) – Adamax 32 05

Dense (3) – (200,100,50) –

Output Layer (1) Softmax 07

TABLE 3 CICIDS2021, description of the data set.

Classes Attack Instances

Benign – 69,654

Bot – 2,977

Brute force FTP 3,066

DDoS Loic-UDP 3,015

Hoic 3,037

Infiltration – 3,043

Total 84,702

TABLE 4 Configuring an experiment.

CPU 7700, i7, 7th generationwith 2.80 GHz processor

OS Windows 10, 64 Bit

GPU Nvidia GeForce 1060 6 GB

RAM 16 GB

Libraries Pandas, TensorFlow, Numpy, Scikitlearn, and Keras

Language Python with version 3.8
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multiplication, increasing the system’s overall efficiency. Table 2
contains a full overview of the suggested DL classifiers. The
proposed scheme uses Cu-DNNGRU and Cu-BLSTM layers
instead of more complex architectures like LSTMs. GRU (Gated
Recurrent Unit) layers are often more computationally efficient than
LSTM layers because they use fewer gates and have simpler
computations, resulting in lower computational overhead.

3.3 Set of data

Choosing the correct data collection method is an effective way to
analyze the efficacy of a threat detection strategy. The authors of the
recently published literature used a variety of data sets for threat
detection in the Internet of Things environment, including
NSLKDD, KDD99, and others. Nonetheless, the majority of these
data sets lack the IoT’s advantageous qualities. Some scammers
utilize websites to locate and control nearby Internet of Things
devices. They also use DNS rebinding and malicious JavaScript to

detect and target adjacent IoT devices (Musarat et al., 2024). As a result,
the proposed effort relied on the cutting-edge, publicly accessible
CICIDS 2021 data collection (Gozuoglu et al., 2024). The network
flow aspects in this data collection contribute to the Internet of Things.
Furthermore, it is multiclass, with both benign and hazardous samples.
There are over 80 traffic features, seven categories, and fourteen current
threats (including DDoS, botnet, brute force, and bot). Nonetheless, the
proposed study separates the general distribution into six groups, which
include both benign and aggressive varieties. Furthermore, we selected
every attribute in this dataset. The data collection includes 84,702 cases,
of which 15,138 are considered assaults and 69,654 are benign. Table 3
provides complete information on the various attack and benign
classifications.

3.4 Preparing the data set

Feeding the data directly into a categorization system is unreliable
due to the data set’s presentation. We first deleted any rows with blank

FIGURE 3
Confusion metrics for Cu-DNNGRU + Cu-BLSTM, Cu-GRULSTM, and Cu-DNNLSTM.

TABLE 5 The outcomes of a cross-validation ten times.

.Parameter DL models 1 2 3 4 5 6 7 8 9 10

Accuracy (%) Cu-DNNGRU + Cu-BLSTM 99.81 99.77 99.85 99.91 99.88 99.90 99.90 99.90 99.92 99.87

Cu-GRULSTM 98.85 99.83 99.81 98.86 98.59 99.72 99.15 99.56 99.84 99.85

Cu-DNNLSTM 99.81 99.85 99.81 99.74 99.72 99.71 99.72 99.74 99.62 99.71

F1-score (%) Cu-DNNGRU + Cu-BLSTM 99.97 99.91 99.98 99.98 99.91 100 100 100 100 99.94

Cu-GRULSTM 99.89 99.92 99.95 99.95 99.96 99.98 99.65 99.95 99.91 99.95

Cu-DNNLSTM 99.92 99.89 99.95 99.89 99.97 99.91 99.94 99.88 99.81 99.82

Recall (%) Cu-DNNGRU + Cu-BLSTM 99.97 99.91 99.98 99.98 99.91 100 100 100 100 99.94

Cu-GRULSTM 99.89 99.92 99.95 99.95 99.45 99.86 99.95 99.89 99.91 99.95

Cu-DNNLSTM 99.92 99.89 99.95 99.89 99.83 99.87 99.86 99.89 99.90 99.91

Precision (%) Cu-DNNGRU + Cu-BLSTM 99.79 99.81 99.84 99.91 99.94 99.88 99.88 99.88 99.91 99.89

Cu-GRULSTM 99.85 99.87 99.81 99.18 99.66 99.84 99.85 99.78 99.76 99.51

Cu-DNNLSTM 99.84 99.85 99.85 99.88 99.69 99.76 99.69 99.88 99.82 99.87
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or Nan values to ensure that they did not have an impact on the data’s
quality or the evaluation model. Because DL techniques work with
numerical data, we employed the label encoder, also known as sklearn,
to convert any non-numerical objects to numerical values.
Furthermore, one-hot encoding was used for the output label since
category ordering may have an inadvertent detrimental impact on
model performance. Additionally, data normalization is performed to
improve the model’s efficacy. When obtaining data, we used the
MinMax scalar function.

4 Setup for an experiment

For our investigation, we used an Intel Core i7-7700 processor
and a graphics processing unit (GPU). Furthermore, the

recommended module was trained with Keras and Python 3.8.
Table 4 has a full description of both the hardware and software.

4.1 Common assessment criteria

For the suggested design, standard performance assessmentmeasures
include recall, precision, accuracy, F1-score, and so on. To acquire the
required numbers, we must first compute the following: false positive
(FP), true positive (TP), false omission (FOR), Matthews correlation
coefficient (MCC), false negative (FN), and true negative (TN).

5 Findings and discussion

This section shows the whole output of the proposed hybrid
model (Cu-DNNGRU + Cu-BLSTM). We thoroughly evaluated the

FIGURE 4
ROC curves for Cu-DNNGRU + Cu-BLSTM, Cu-GRULSTM, and Cu-DNNLSTM.

FIGURE 5
Accuracy, recall, precision, and F1-score.

FIGURE 6
Obtained values for FPR, FNR, FDR, and FOR.
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performance of our proposed hybrid model by comparing it to two
other studies and two DL-driven hybrid models that we had
previously developed, Cu-GRULSTM and DNNLSTM. The
proposed model is evaluated using the usual assessment metrics
provided below.

5.1 Analysis of confusion matrix

It is used to present the results of the categorization model.
When the confusion matrix is properly analyzed, it is clear that Cu-
DNNGRU + Cu-BLSTM accurately identifies classes. The figure
displays the confusion metrics for each of the three models. Figure 3
shows that the suggested model, Cu-DNNGRU + Cu-BLSTM,
outperforms Cu-GRULSTM and Cu-DNNLSTM in terms of data
classification accuracy.

5.2 Cross-checking

The 10-fold cross-validation was used to verify the
impartiality of our findings. Table 5 provides a full description
of each fold. However, for assessment measures, the study
project displays the average results of ten times the number
of parts.

5.3 Analysis of Roc curves

The Roc is a key component of any intrusion detection
system (IDS). When comparing true negative rates (TNR)
and true positive rates (TPR), the results are shown with
the Roc. Figure 4 exhibits the Roc curves for our proposed
models, highlighting the link between true positives and
true negatives.

5.4 Precision, F1-score, accuracy, and recall

Accuracy determines a classifier’s efficacy and efficiency. It
displays how many samples the model properly identified.
Figure 5 shows the accuracy of our suggested model, Cu-
DNNGRU + Cu-BLSTM. 99.96% recall and 99.87% accuracy
demonstrate that the hybrid model functioned well. The
precision indicates the number of records that were
accurately detected. With an F1-score of 99.96% and a
precision of 99.87%, our proposed model works well. Table 5
shows the memory, F1 score, accuracy, and precision scores
for each fold.

FIGURE 7
TNR, MCC, and TPR.

FIGURE 8
Testing times for Cu-DNNGRU + Cu-BLSTM, Cu-DNNGRU, and
Cu-DNNLSTM.

TABLE 6 The proposed model is contrasted with the corpus of recent research.

Ref Data set Accuracy T.Time Algorithm 10 fold Cu-
E

Precision F1-
score

Recall

Proposed model CICIDS2018 99.87% 18.9 ms Cu-DNNGRU + Cu-
BLSTM

√ √ 99.87% 99.96% 99.96%

Abbas et al. (2024) CICIDS2018 91.50% – CNN – – – – –

Abdallah et al. (2024) CICIDS2017 89.00% – GRU-RNN – – 99.00% 99.00% 99.00%

Namakshenas et al.
(2024)

CICIDS2017 98.60% 296 ms LSTM-CNN √ √ 99.37% 99.35% 99.50%

Ouaissa et al. (2024) CICIDS2018 96.11% – 2L-ZED-IDS – – 93.20% – 96.90%
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5.5 Analysis of FPR, FOR, FNR, and FDR

We calculated the false positive rate (FPR), false omission rate
(FOR), false discovery rate (FDR), and false negative rate (FNR)
to provide a more comprehensive evaluation of our proposed
hybrid model. The Cu-DNNGRU + Cu-BLSTM model we gave
has FPR and FOR values of 0.0554% and 0.0129%, respectively,
with FNR and FDR values of 0.0025% and 0.0117%, as shown in
Figure 6. As illustrated in Figure 6, the suggested model
outperforms the other two models. In addition, DNNLSTM
outperforms GRULSTM.

5.6 Analysis of TNR, TPR, and MCC

To thoroughly study and evaluate the proposed model,
the values of TNR, TPR, and MCC are calculated using a
confusion matrix. Figure 7 shows the Tpr, Tnr, and MCC
scores, which are 99.96%, 99.43%, and 99.60% respectively.
Figure 7 shows that the suggested paradigm produces
superior results.

5.7 Velocity and effectiveness

Figure 8 depicts the suggested model’s testing timeframe.
Because the training part is mostly conducted offline, it is not
taken into account. Nonetheless, because testing demonstrates the
model’s usefulness and efficiency, it is regarded to be critical. The
proposed hybrid model, which combines Cu-DNNGRU and Cu-
BLSTM, demonstrates computational efficiency with an acceptable
testing time of 18.90 ms. Furthermore, DNNLSTM takes less testing
time than GRULSTM.

5.8 Comparison of the suggested model
with current DL algorithms

To show the effectiveness of our suggested model, Cu-
DNNGRU + Cu-BLSTM, we compared it to the two hybrid DL
models currently in use in this study, Cu-GRULSTM and Cu-
DNNLSTM. Each of these models is trained using the CICIDS
2021 data set, which uses identical assessment metrics. Table 2
displays the complete architecture of these vehicles. We also
conducted a comparison examination of our proposed model and
the current benchmark methodologies. Table 6 shows a comparison
with the most recent benchmarks. The suggested model, Cu-
DNNGRU + Cu-BLSTM, outperforms the other models on
assessment criteria such as accuracy, precision, F1-score, and
speed efficiency. Furthermore, Cu-DNNGRU + Cu-BLSTM has a
testing time of only 18.9 (ms), much less than the current
benchmarks.

6 Conclusion

IoT requires a flexible, reliable, and secure infrastructure. Due to
its successes, deep learning has recently drawn attention from all

across the world. In order to defend the Internet of Things
environment from malware and cyberattacks, such as DDoS,
brute force, bot, and infiltration, this study suggests a hybrid DL-
driven architecture made possible by SDN. We have used the
existing models, Cuda-DNNGRU and Cuda-BLSTM classifiers, to
effectively identify threats. The suggested architecture is very
scalable and reasonably priced. Additionally, two alternative
hybrid algorithms that are trained and assessed on the same
dataset, Cuda-GRULSTM and Cuda-DNNLSTM, are compared
to the performance of our suggested model. The data
unequivocally demonstrates that the suggested model performs
better than the two hybrid models as well as the current
benchmarks. By contrasting the evaluation criteria of accuracy,
recall, precision, F1 20, and speed efficiency, the model’s
performance benefits are verified. Our suggested model is more
efficient than those found in the literature in terms of speed
efficiency and detection accuracy, as evidenced by its testing time
of only 18.9 ms and accuracy of 99.87% with an FPR of 0.0554%. In
the future, the authors intend to use blockchain technology, SDN,
and hybrid deep learning algorithms to identify security flaws and
intrusions in Internet of Things systems. Finally, we draw the
conclusion that hybrid deep learning models significantly affect
Internet of Things security.
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