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In this paper, a fast temporal multiple sparse Bayesian learning (FTMSBL)-based
channel estimation method for underwater acoustic (UWA) orthogonal
frequency division multiplexing (OFDM) systems is proposed, which is
optimized using the fast marginalized likelihood maximization method. The
algorithm fully uses the consistent sparse structure and time-domain
correlation properties of channels to improve the reconstruction performance
and computational efficiency, offering better performance and higher
computational efficiency than the traditional Bayesian learning algorithms. At
the same time, the FTMSBL algorithm does not require computing the inverse of
large matrices and consumes very little storage resources in the operation,
making it suitable for hardware implementation. Simulation and sea trial
results show that the FTMSBL-based underwater channel estimation algorithm
achieves higher channel estimation accuracy than the orthogonal matching
tracking algorithm, and the system bit error rate (BER) is significantly reduced;
specifically, the FTMSBL algorithm can achieve optimal performance in strong
time-dependent channels.
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1 Introduction

In the last few decades, orthogonal frequency division multiplexing (OFDM) has made
significant progress in the development of underwater acoustic communication technology
(Li et al., 2008; Mason et al., 2008; Qiao et al., 2020, 2019; Wang et al., 2015). However, the
OFDM system is more sensitive to symbol interference and Doppler frequency offset (Ma
et al., 2015; Qarabaqi and Stojanovic, 2013). Exploiting the estimated channel matrix and
incorporating a preprocessing step consisting of coarse timing estimation can notably
reduce the input size and improve the computational efficiency (Naoumi et al., 2024).
Therefore, the acquisition of UWA channel state information is an indispensable and
critical part of the communication system and represents one of the research difficulties.

Traditional channel estimation algorithms include the least squares (LS) algorithm and
the minimum mean square error (MMSE) algorithm. The LS algorithm is very sensitive to
environmental noise, and the accuracy of channel state information is poor. The MMSE
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algorithm utilizes the second-order statistics of the channel, which
greatly improves the quality of channel estimation. However, this
algorithm requires known channel statistics and high algorithm
complexity. In recent years, the sparsity of the underwater acoustic
channels has been exploited. The channel impulse response presents
an obvious sparse structure, and the energy is concentrated in a few
paths. Therefore, the sparse channel estimation method based on
compressed sensing (CS) theory has been proposed (Berger et al.,
2010; Huang et al., 2010). Berger constructed the channel
observation matrix with residual Doppler frequency offset using
an orthogonal matching pursuit (OMP) algorithm to jointly
estimate the UWA channel impulse response and Doppler factor.
As we know, the UWA channel is a typical time-varying sparse
channel; thus, the temporal correlation can be used to improve the
accuracy of channel estimation (Huang et al., 2013; Tan et al., 2011).
Zhou et al. (2017) proposed a multipath selection SOMP algorithm
based on the correlation between adjacent data block channels,
which achieves relatively obvious improvement in signal-to-noise
ratio and bit error rate (BER) performance. However, these methods
merely focused on using path delays of the OFDM block, ignoring
temporal correlation for gains, which is more common in
underwater acoustic channels.

Recently, sparse Bayesian learning has been used in underwater
acoustic OFDM channel estimation methods (Prasad et al., 2014; Jia
et al., 2022). Qiao et al. (2018) proposed a temporal multiple SBL
(TMSBL)-based channel estimator to jointly estimate the channels.
This method exploits the prior distribution and space–time
information of the channel, adopting time correlation between
OFDM block channels to improve the performance of channel
estimation. However, the TMSBL algorithm has low
computational efficiency, and the complexity of matrix inversion
is high. Therefore, it is necessary to obtain an algorithm with high
accuracy and low complexity (Cho 2022; Feng et al., 2023; Wang
et al., 2021; Guo et al., 2014).

In this paper, we propose a fast temporal multiple sparse
Bayesian learning-based channel estimation method in the UWA
OFDM system. The method is optimized using the fast marginalized
likelihood maximization method, which can optimize the
computational efficiency of TMSBL. At the same time, the
proposed method adopts channel coherence between consecutive
OFDM blocks to improve the performance of bit error rate. We
investigate the performance of the proposed channel estimator
through simulations and experimental data.

2 System model design

2.1 CP-OFDM system

A passband transmit cyclic prefix (CP)-OFDM signal in
continuous time can be expressed as follows:

~w t( ) � 2Re ∑K/2−1
k�−K/2

wke
j2πfktq t( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭,

where wk is the transmitted symbol; K is the number of subcarriers
in one OFDM block, including data subcarriersKd, pilot subcarriers
Kp, and null subcarriers Kn. fk � fc + k/T is the frequency of the

kth subcarriers; and fc is the carrier frequency. Let T denote one
OFDM symbol duration, and Tcp denote the length of the circular
prefix. q(t) is the pulse-shaping filter:

q t( ) � 1, t ∈ −Tcp,T[ ]
0, otherwise

{ .

Figure 1 shows the systemmodel of UWAOFDMcommunication.
Each vertical column in a frame represents an OFDM block; each grid
in one vertical column represents each subcarrier frequency; the blue
grids indicate the position of the inserted pilots; the white grids indicate
the position of the transmitted data. The comb-shaped pilots are
integrated into each OFDM block at the same interval in the
frequency domain, which can better estimate and compensate for
UWA channels in OFDM communication.

In OFDM communication, a frame signal contains multiple
OFDM blocks. Each block needs to be estimated and demodulated
individually. The cycle prefixes are in the front of the blocks to
prevent symbol interference. Pilots are inserted into each block at
four equal intervals. The specific frame structure is shown
in Figure 2.

2.2 Receive processing

We assume that the time-varying underwater acoustic channel is
a multipath channel containingM paths; βm and τm are the gain and
delay of the mth path, and a is the Doppler factor. In addition, we
assume that these parameters are constant within one CP-OFDM
block duration. Then, the channel impulse response can be written
as follows:

h τ, t( ) � ∑M
m�1

βmδ τ − τm − at( )( ).

The received passband signal is as follows:

FIGURE 1
Structure of data and pilot subcarriers.
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FIGURE 2
Structure of one-frame OFDM signal.

TABLE 1 Process of TMSBL channel estimation.

Start: Input: The received symbol matrix �Y, the dictionarymatrixΦ, themaximum iteration number r, the
threshold e, and the noise variance σ2.

1. Initialize: The hyperparameter matrix Γ0 � IM , the iteration counter r � 0, and the time correlation matrix B � IM .

2. E-step: Σ � (σ−2ΦH
P ΦP + Γ(r)−1 )−1

M � [μ[1], . . . , μ[N]]� σ−2ΣΦH
P
�Yp

3. M-step: γi � 1
MMiB−1MH

i + Σii

B � ∑M
i�1

MH
i Mi

γi
+ ηIN

4. Return to E-step: Increase r, if r< rmax or ‖γ(r+1) − γr‖22 < e, end the iteration.

5. Output: The estimated sparse channel vector ĥ � �μ and the estimated hyperparameters vector Γ 。

TABLE 2 Process of FTMSBL channel estimation.

Start: Input: The received vector �Y, the dictionarymatrixΦ, themaximum iteration number r, the
threshold e, and the noise variance σ2.

1. Initialize: The hyperparameter matrix Γ0 � IM , the iteration counter r � 0, and the time correlation matrix B � IM .

2. Calculate the cost function: CA � σ−2IM +ΦH
P ΓΦP si ≜ ΦH

i C
−1
−i Φi qi ≜ ΦH

i C
−1
−i Y

3. Update the hyperparameter matrix γi : γi � qiB
−1qHi /N−si

s2i

4. Update the covariance and mean: M � [μ[1], . . . , μ[N]]� σ−2ΣΦH
P
�Yp

Σ-1A � Γ-1 + σ-2ΦH
PΦP

5. Update the B matrix: B � �YH
P C

−1
A
�Yp

M

6. Return to step 2: Increase r, if r< rmax or ‖γ(r+1) − γr‖22 < e, end the iteration.

7. Output: The estimated sparse channel vector ĥ � �μ, and the estimated hyperparameters vector Γ 。

TABLE 3 UWA CP-OFDM settings.

Algorithm LS OMP SBL FTMSBL TMSBL

Time consumption/ms 4.1540 67.8896 24,337.2053 12,865.048 26,290.971
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~y t( ) � ∑M
m�1

βm ~w 1 + a( )t − τm( ) + ~z t( ),

where ~z(t) is the additive noise. The method of CP self-correlators is
used to estimate Doppler block by block, and then the received signal
is resampled with Doppler factor a. After Doppler estimation and
resampling, the Doppler effect of the signal is considered to have
been removed. We can model theK × 1 received signal Y for the nth
block as follows:

Y n[ ] � W n[ ]Fh n[ ] + Z n[ ],

whereW[n] is theK × K dimensional diagonal matrix consisting of
transmitted symbols. Z[n] is the noise vector. F is the K × M
discrete Fourier transform (DFT) matrix. The overall channel is
represented as h[n] � [h1[n], h2[n], . . . , hM[n]], where most of the
multipath delay amplitude parameters are 0. One frame consists of
N consecutive OFDM blocks, so n ∈ [1, N]. The received model
considering only P pilot subcarriers can be written as follows:

Yp n[ ] � Wp n[ ]Fph n[ ] + Zp n[ ],
where Yp[n] is the K × 1 dimensional pilot reception vector, the
diagonal matrix of the transmission pilot isWp[n], and Zp[n] is the
noise vector.

3 Sparse channel estimation

3.1 Joint channel model

The underwater acoustic channel is a typical time-varying sparse
channel, with a small number of sparse non-zero paths. The
consecutive OFDM symbols have a stable multi-path structure of
the channel, which has a temporal correlation for gains. Therefore,
we model a sparse channel matrix ofN consecutive OFDM symbols
as follows:

�h≜ h 1[ ], . . . , h n[ ], . . . , h N[ ][ ],
where h[n]n ∈ [1, N] represents the channel impulse response of the
nth OFDM symbol. For each channel vector, the non-zero path

TABLE 4 UWA CP-OFDM settings.

Bandwidth B 1.5 kHz

Sampling frequency fs 12 kHz

Carrier frequency fc 3 kHz

No. of subcarriers K 256

Cyclic-prefix length Tcp 20 ms

No. of data subcarriers Kd 200

No. of pilot subcarriers Kp 32

No. of null subcarriers Kn 14

Symbol duration T 170 ms

Blocks in one frame Nb 4

FIGURE 3
Comparison of MSE performance in strong temporal correlated channels.
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shows joint sparsity. The P × M dimensional dictionary matrix is
shown as follows:

Φp n[ ] � Wp n[ ]Fp.

The consecutive OFDM symbols have the same pilots.
Therefore, we can model a joint estimation model for N
consecutive OFDM blocks as follows:

�Yp n[ ] � Φp
�h + �Zp, (1)

where

�Yp � Yp 1[ ], . . . ,Yp n[ ], . . . ,Yp N[ ][ ],

�Wp � Wp 1[ ], . . . ,Wp n[ ], . . . ,Wp N[ ][ ].

3.2 TMSBL-based multi-block joint
processing

For the estimation problem in Equation 1, we adopt the TMSBL
algorithm to jointly estimate the channel matrix �h. First, wemodel �hi
as the ith sparse block of �h, and assume that all sparse signal blocks
are independent. The parametric form of the prior of each �hi is
as follows:

FIGURE 4
Comparison of decoded BER performance in strong temporal correlated channels.

FIGURE 5
Schematic diagram of the distribution of the sea trial.
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p �hi; γi,Bi( ) ~ CN 0, γiBi( ) i � 1, . . . ,M,

where γi is a non-negative hyperparameter that determines the
sparsity of the current block and the channel length is M. Bi is a
positive definite time correlation matrix, representing the time
correlation structure of �h. γi and Bi are unknown
hyperparameters that can be estimated in the TMSBL algorithm.
We denote Γ as aM × M diagonal matrix with γ. Through the prior
distribution of each sparse block, the overall prior distribution of all
sparse blocks can be obtained as follows:

p �hi; Γ,Bi( ) � ∏M
i�1

p �hi; γi,Bi( ).

According to the prior distribution �hi and likelihood function
p(�Yp|�h), using Bayesian criterion, we can obtain the posterior
probability density of �h as follows:

p �h n[ ]∣∣∣∣�Yp; Γ( ) � CN μ n[ ],Σ( ) n ∈ 1, N[ ].

The covariance and mean are

Σ � σ−2ΦH
P ΦP + Γ r( )−1( )−1, (2)

M � μ 1[ ], . . . , μ N[ ][ ]� σ−2ΣΦH
P
�Yp. (3)

The μ[n] is the estimated h[n], and the hyperparameter γi and
time correlation matrix Bi can be estimated using the EM algorithm,
which obtains the parameter by iterative calculation. In the rth
iteration, the E step calculates the expectation of variables under
conditional probability distribution using Equations 2, 3, and the
M-step is expressed via the following updated rule:

γi �
1
M

MiB
−1MH

i + Σii.

It is worth noting that if each Bi is estimated independently, it
will lead to overfitting by limited samples and too many parameters;
therefore, we use one positive definite matrix B to model all the
temporal correlation matrices Bi (Zhang and Rao, 2011; Cawley and
Nicola, 2007; Guyon et al., 2010):

B � ∑M
i�1

MH
i Mi

γi
+ ηIN.

The noise variance can be calculated using null subcarriers
as follows:

TABLE 5 UWA CP-OFDM settings in the sea trial.

Bandwidth B 4 kHz

Carrier frequency fc 8 kHz

Sampling frequency fs 48 kHz

No. of subcarriers K 681

Cyclic-prefix length Tcp 20 ms

No. of data subcarriers Kd 571

No. of pilot subcarriers Kp 86

No. of null subcarriers Kn 24

Symbol duration T 170 ms

Blocks in one frame Nb 8

FIGURE 6
Estimated CIR in the sea trial.
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FIGURE 7
Comparison of decoded BER performance in the sea trial.

FIGURE 8
Temporal correlation coefficients in the sea trial.
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σ2 � E �Yn

∣∣∣∣ ∣∣∣∣2{ }.
The steps of the TMSBL algorithm are provided in Table 1.

3.3 FTMSBL-based multi-block joint
processing

For the estimation problem in Equation 1, we directly list the
posterior probability density and likelihood function as follows:

p �h n[ ]∣∣∣∣�Yp; Γ,B( ) � CN μ n[ ],Σ,B( ) n ∈ 1, N[ ],
p �Yp

∣∣∣∣Γ,B( ) � CN 0,CA,B( ),

where Γ � diag−1( γi{ }) is the M × M diagonal hyperparameter
matrix and the covariance and mean are Σ-1A � Γ-1 + σ-2ΦH

PΦP

and μ � σ−2ΣAΦH
P Y, respectively. We define the parameter

CA � σ-2IM +ΦH
P ΓΦP, where the noise variance is σ2. The cost

function L of the temporal correlation MMV model can be
obtained using the type-2 maximum likelihood estimation
method (Tipping, 2001):

L � Mlog B| | +Nlog CA| | + Tr B−1�YH
P C

−1
A
�Yp],[

� L B( ) + L γi, σ
−2,B{ }( ),

where one frame consists of N consecutive OFDM blocks and the
channel length is M.

L B( )∝Mlog B| | + Tr B−1�YH
P C

i+1( )
A −1�Yp],[

L γi, σ
−2,B{ }( )∝Nlog CA| | + Tr B i( )−1�YH

P C
−1
A
�Yp].[ (4)

Through the optimization ofL, we can obtain the updated formula
of parameter estimation. First, we calculate the partial derivative of
L(B) to update the formula of the time domain correlation matrix B:

∂L B( )
∂B

� MB−1 − B−1�YH
P C

−1
A B−1.

We adopt the learning rule for B using ∂L(B)
∂B � 0:

B � �YH
P C

−1
A
�Yp

M
.

Furthermore, the noise variance σ2 is obtained using the null
subcarriers. We rewrite Equation 4 using the Woodbury formula to
obtain the model as follows:

L γi{ }( ) � Nlog C−i| | + Tr B−1�YH
P C

−1
−i �Yp][

+Nlog 1 + γisi( ) − Tr
B−1

γ−1 + si
qHi qi[ ],

� L −i( ) + L i( ),
where

L −i( ) ≜ Nlog C−i| | + Tr B−1�YH
P C

−1
−i �Yp],[ (5)

L i( ) ≜ log 1 + γisi( ) − Tr
B−1

γ−1 + si
qHi qi[ ], (6)

which only depends on γi. From Equations 5, 6, we can obtain
the following:

C−i ≜ σ2I + ∑M
j,j ≠ i

γjΦjΦ
H
j ,

si ≜ ΦH
i C

−1
−iΦi,

qi ≜ ΦH
i C

−1
−iY.

Setting ∂L(i)
∂γi

� 0, we have the following updated rule:

γi �
qiB

−1qHi /N − si
s2i

. (7)

It should be noted that the updated result obtained from
Equation 7 is a scalar, where qiB

−1qHi is ‖qi‖2B, which is the
norm of the covariance matrix B.

The steps of the FTMSBL algorithm are provided in Table 2.

3.4 Complexity

The computational complexity of the TMSBL algorithm mainly
consists of covariance Σ and mean. The covariance can be solved
with marginal cost O(M3).The computational complexity of mean
is O(NPM2).

The computational complexity of the proposed method is much
lower than that of FMLM optimization and Woodbury
decomposition. The main calculation quantities are covariance Σ
and mean μ.

Σ � σ−2ΦH
P ΦP + Γ r( )−1( )−1,

� Γ − ΓΦH
P C

−1
A ΦPΓ,

where the covariance Σ can be solved using cost O(P3 + PM2), and
the total cost of formula μ is O(NPM2). Therefore, the complexity
of the FTMSBL algorithm for one iteration is O(P3 +NPM2). The
average of the statistical results of algorithm time consumption were
calculated and are provided in Table 3.

Table 3 shows the average time consumption of different
algorithms. All algorithms are simulated using an Intel (R) Core
(TM) i7-8750H CPU@2.2GHz. In terms of computation time, the
LS algorithm has very high computational efficiency and the shortest
time consumption among all algorithms. The average simulation
time of the OMP algorithm is 10 times more than that of LS. Among
the SBL algorithms, the FTMSBL algorithm takes the shortest time,
approximately 12 s, while the rest of the algorithms take far more
than 20 s. This is mainly because the SBL algorithm has a relatively
high number of iterations under high accuracy requirements,
followed by the high complexity of calculating complex
measurement matrices and solving the inverse of matrices during
each iteration process. The FTMSBL algorithm essentially avoids the
partial matrix inversion process in the traditional SBL algorithm,
effectively shortening the computation time.

4 Simulation results

For numerical simulations, we adopt the UWA CPOFDM
system settings provided in Table 4.

We assume that the channel has 10 random paths, where the
inter-arrival times are distributed exponentially with a mean of
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0.5 ms, and the multipath amplitude follows Rayleigh distribution
with negative exponential attenuation of average power. Each
OFDM frame has four blocks, and the temporary correlation
coefficients of the channel within each block are greater than 0.7.
Furthermore, the data subcarriers are encoded using 1/2 non-binary
low-density parity check (LDPC) code with quadrature phase shift
keying (QPSK) modulation. In this section, we adopt least square
(LS), OMP, and SBL algorithms to estimate the channel block-by-
block, then we use the TMSBL and FTMSBL algorithms for joint
estimation across four blocks in each frame, and we also model a
curve of perfect channel state information (CSI) as a benchmark in
BER performance. According to the path loss model (Stojanovic and
Preisig, 2009):

A l, f( ) � l

lr
( )k

a f( )l−lr ,
where f is the signal frequency and l is the transmission distance,
taken in reference to some lr. The path loss exponent k models the
spreading loss. a can be obtained using an empirical formula
(Stojanovic and Preisig, 2009), and its usual values are between
1 and 2 (for cylindrical and spherical spreading, respectively). We set
k � 1, a(f) � 5dB/km, and l � 2 ~ 3km. So, A(l, f) ≈ 5dB.

The performance comparison of MSE and BER is shown in
Figure 3 and Figure 4, respectively. Figure 3 shows that the MSE
performance of the LS method is the worst. The performance of the
SBL algorithm is better than that of the OMP algorithm but less than
that of the TMSBL and FTMSBL methods. Both TMSBL and
FTMSBL use four OFDM blocks for joint processing, and the
MSE performance of FTMSBL is close to that of TMSBL.

Figure 4 shows that the BER performance trend of each
algorithm is consistent with the MSE figure. The BER
performance of the LS method is still the worst, and the OMP
method outperforms the LS method by approximately 1 dB. Based
on the joint estimation, the FTMSBL method achieves better
performance than the OMP and SBL methods, and it is close to
the TMSBL method. Meanwhile, the performance of the FTMSBL
method is close to the perfect CSI curve.

In summary, the temporal joint processing uses the joint sparse
structure to estimate the channel of multiple OFDM blocks at the same
time. The performances of MSE and BER of the FTMSBL algorithm are
similar to those of the traditional Bayesian learning algorithm TMSBL,
and the computational efficiency is higher than that of the TMSBL
algorithm.Considering the channel correlation in time domain of several
consecutiveOFDMblocks, the TMSBL and FTMSBL algorithms can not
only exploit the sparse structure of channel paths but also use the
temporal correlation from multiple received signals to achieve the best
performance in strong temporal correlated channels.

5 Experiment results

The simulation diagram of the Qingdao sea test scenario is
shown in Figure 5. In the shallow sea experiment, ship A was
anchored, while ship B floated naturally on the water surface at a
speed of 1.5 knots. The seawater depth is 50 m, the distance between
the two ships is 2 km, and the depth of the transmitting and
receiving transducer is 30 m.

Simulation results show that the proposed method is effective in
the UWA channel. Next, we use real experimental data to further
verify the performance. The UWA CP-OFDM system settings are
shown in Table 5. In the experiment, the distance between the two
transducers is 2 km, and the depth of the transducer is 30 m
(Figure 3). We sent 10 consecutive OFDM signal frames and set
the linear frequency modulation (LFM) signal before each frame for
synchronization.

Figure 6 shows the estimated CIR by TMSBL and the proposed
methods for the first block. In addition, we also provide a rough
estimate of CIR based on the correlation between the received LFM
signal and the local template. The results show that the channel is
sparse, which has multiple effective paths, and the total delay spread
is approximately 20ms. The channel impulse responses estimated by
the two joint estimation methods are very similar in terms of delay
and amplitude.

Figure 7 shows the performance comparison of different
algorithms in sea trials. The BER of the TMSBL method is still
the lowest, followed closely by that of FTMSBL. In frames 5, 7, 9, and
10, the performance advantage of TMSBL and FTMSBL over SBL
and OMP is clearly seen. In addition, in frames 1 and 3, the
performance of the four algorithms is close. Then, we combine
this BER result with channel parameters for analysis.

Figure 8 shows the temporal correlation coefficients between
different blocks in the 6-frame OFDM signal. We adopted FTMSBL-
4 and TMSBL-4 algorithms, where four blocks were used as a group
(the first four blocks and the back four blocks) to jointly estimate
channel impulse response. Then, we calculated the temporal
correlation coefficients of four blocks within one group,
respectively. We can find that the temporal coefficients of most
blocks in frames 5, 7, 9, and 10 are above 0.5, which corresponds to
the low bit error rate of FTMSBL and TMSBL in Figure 7. The
temporal coefficients of frames 1 and 3 are mostly less than 0.5, and
FTMSBL also shows good performance in the time-varying channel,
which has a close recovery to TMSBL.

6 Conclusion

In this paper, we propose a fast temporal multiple sparse
Bayesian learning-based channel estimation method for the
UWA OFDM system. Compared with the TMSBL algorithm, the
FTMSBL algorithm improves computational efficiency. At the same
time, the channel estimation performance of the time-domain joint
FTMSBL algorithm has a close recovery performance to that of
TMSBL. Compared with the SBL and OMP algorithms of block-by-
block, FTMSBL improves the accuracy of sparse channel estimation
and demonstrates good performance and strong robustness in time-
varying channel estimation. In addition, the algorithm has low
computational complexity, which helps save running time.
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