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Zero-touch networks (ZTNs) can provide autonomous network solutions by
integrating software-based solutions for various emerging 5G and 6G
applications. The current literature does not provide any suitable end-to-end
network management and resource-slicing solutions for service function
chaining (SFC) and user intent–based (time and cost preference) 6G/non-6G
application execution over ZTNs enabled by mobile edge computing, network
function virtualization, and software-defined networking. To tackle these
challenges, this work initiates an end-to-end network management and user
intent–aware intelligent network resource–slicing scheme for SFC-based 6G/
non-6G application execution over ZTNs, taking into account various virtual and
physical resources, task workloads, service requirements, and task numbers. The
results depicted that at least 25.27% average task implementation delay gain,
6.15% energy gain, and 11.52% service monetary gain are realized in the proposed
scheme over the compared schemes.
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1 Introduction

With the growth of mobile devices, virtualized networks receive great attention from
researchers due to their ability to provide flexibility and service agility for next-generation
applications while incorporating a massive number of IoT devices (Ashraf et al., 2022).
According to current statistics, by 2025, there will be over 27 billion IoT devices (Multiple
Authors et al., 2022). One important point to note is that managing and orchestrating such a
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communication; URLLC, ultra-reliable low-latency communication; ELPC, extremely low-power
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large number of IoT devices using traditional manual processes is
impractical. Zero-touch networks (ZTNs) can address this issue by
using software-based solutions instead of hardware-based platforms
(Multiple Authors et al., 2022). A ZTN can be defined as a network
that provides autonomous network and management operations, as
well as end-to-end network programmability for various
information and communication technology services, without
requiring human intervention (Coronado et al., 2022). The
primary goal of ZTNs is to enable autonomous services for
current (5G) and future (6G) generation applications, cutting-
edge technology infrastructure, computing, caching, routing,
resource allocation, and self-healing facilities based on customer
demands and available resources.

Currently, ZTNs face several challenges such as proper security
measures for network management and application services,
automated end-to-end solutions, network resource–slicing
facilities for heterogeneous applications by taking into account
diverse customer demands (e.g., time-saving and cost-saving
demands), proper service coordination for different applications
that require services from different technologies such as mobile edge
computing (MEC), software-defined networking (SDN), network
function virtualization (NFV), service function chaining (SFC),
blockchain, federated learning (FL), and efficient resource and
work node allocation, among others. To address the high
communication latency and bandwidth shortage limitations of
traditional centralized cloud computing technology, MEC is
viewed as an edge cloud computing technology that offers cloud
and storage services at the user network’s edge (Tseng et al., 2021).
SDN is a networking approach that uses centralized software-based
controllers or applications to configure all of the underlying
hardware or network elements (VMware, 2024). Instead of using
proprietary hardware elements for network services [e.g., firewall
(FW) and network address translation (NAT)], NFV technology
provides virtualized network services through the use of virtual
machines (Red Hat, 2024). NFV enables service providers to run
multiple virtual network functions (VNFs) on different servers
rather than rely on a dedicated server. SDN and NFV technology
both support SFC (a connected chain of network services within an
application), which allows connected service functions to be
completed sequentially (Chen et al., 2022).

There is currently some work being done in the area of ZTNs.
Theodorou et al. (2021) used blockchain technology to automate
ZTN service assurance in multi-domain network slicing. However,
they only looked at bandwidth prediction accuracy results, not
different types of 5G and 6G application execution performance
results. Coronado et al. (2022) presented a survey article on various
enabling technologies for ZTN-based automated network
management solutions, such as SDN, NFV, and artificial
intelligence techniques. The authors also discussed some research
challenges for ZTN, such as SFC for 5G/6G applications, network
slicing and resource allocation, proper work node selection, security
and privacy, and appropriate computing and caching solutions for
various applications, among others. Xu et al. (2022) developed a
Markov game and a reinforcement learning–based optimization
solution for wireless power control and spectrum selection in
industrial applications. Angui et al. (2022) discussed the
challenges for automated cloud radio access networks (RANs) in
6G ZTNs, which included resource discovery, antenna capability,

network coverage issues, and computation resource availability.
Grasso et al. (2021) proposed a ZTN management technique
based on deep reinforcement learning (DRL) for load balancing
and computation offloading in an unmanned aerial vehicle (UAV)–
aided edge network. Yoshino et al. (2021) developed a multi-service
provisioning test bed for zero-touch optical access networks,
utilizing access network virtualization technologies and pluggable
module-type optical line terminals (OLTs). They did not, however,
look into the network slicing–based resource orchestration problem
or conduct a performance analysis for 5G and 6G
application execution.

Ksentini (2021) investigated the resource management and
orchestration operation of ZTN with heterogeneous network
slices. However, their work faces significant challenges in terms
of quality of service (QoS) guarantee, scalability, and sustainability
due to the presence of multiple cross-platforms and domains in
B5G/6G systems, which include the RAN network, core network,
edge cloud, and remote cloud. Dalgkitsis et al. (2020) proposed a
DRL-based VNF placement solution for zero-touch–based 5G
networks that incorporate both SDN and NFV technologies.
Demchenko et al. (2015) explored automated network services
for zero-touch cloud computing applications, such as network
slicing and resource management. Mohammadpour et al. (2022)
used a ZTN to automate monitoring and traffic generation for
virtualized network services. Niboucha et al. (2023) created a
zero-touch security management framework for massive
machine-type communications (mMTC) network slices in 5G,
which include DDoS attack detection. Basu et al. (2022) used a
machine learning–based ZTN management framework with
dynamic VNF allocation and SFC embedding for 5G
applications. Luque-Schempp et al. (2022) developed an
automata learning–based smart controller with suitable
configuration to predict and satisfy the requirements of time
sensitive networking traffic in ZTNs. El Houda et al. (2022)
examined the performance of an ensemble learning–based
intrusion detection model in SDN-based zero-touch smart grid
systems. Wang et al. (2022) describes a framework for optimizing
UAV formation and tracking to capture 360-degree views of moving
targets in ZTN-based VR applications. Martini et al. (2022) created
an intent-based service chain layer for dynamically deploying service
chain paths over SDN-based edge cloud networks. Intent-based
networking refers to a dynamic or intended approach (i.e., digitized,
automated) for network configuration and problem solving rather
than a manual process. To reduce network and computation latency,
Sebrechts et al. (2022) proposed using a fog-native approach rather
than a remote cloud-based approach for executing intent-based
workflows. Abbas et al. (2020) used a deep-learning model (e.g.,
generative adversarial neural network) to manage core and
RAN resources.

To that end, SDN is a critical enabling technology for executing
user requirements–based tasks over a ZTN. Okwuibe et al. (2021)
proposed an SDN-based resource orchestration scheme for
industrial IoT application execution, facilitating collaboration
among edge and remote cloud networks. In addition to SDN,
Wang et al. (2021) identified NFV as a key technology for
automated service execution in 5G and 6G applications.
However, in order to meet the requirements for SFC in SDN/
NFV networks, VNFs must be properly selected and deployed.
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To get the most out of an SDN-/NFV-based network with the least
amount of delay and cost, SFC (logical or virtual chain) properly
connects different service functions one after the other during
application execution. These authors demonstrated an SFC with
the following VNF execution order: 1) FW, 2) deep packet
inspection, 3) encryption, 4) data monitoring, and 5) decryption.
Zhong et al. (2019) proposed an SFC solution for NFV-enabled
inter-data center networks that considers service financial costs and
reliability. However, they did not look into service costs or
dependable performance for both 5G and 6G applications.

Lin et al. (2023) present integer linear programming (ILP)–
based heuristic algorithms for energy-efficient resource allocation
and SFC embedding in NFV networks. Wei et al. (2022) used a
quantum genetic algorithm to solve a multi-objective optimization
problem for delay-aware resource provisioning and parallel SFC
orchestration in NFV networks. To predict the traffic flow rate of
SFC in NFV networks, Gu et al. (2019) incorporated an online
learning algorithm–based VNF scaling. Pei et al. (2020) proposed a
deep learning algorithm for two-phase VNF selection and chaining
activities to generate efficient routing paths in SDN/NFV networks.
Saha et al. (2020) developed an ILP problem to optimize the number
of NFV nodes and IoT devices in SDN/NFV networks. Chen et al.
(2022) proposed a Q-learning–based SFC embedding scheme for
SDN/NFV-enabled wireless networks to reduce network delay and
increase SFC acceptance ratio.

The above discussion mentions network slicing and resource
management as critical research challenges for intent-based ZTNs.
To offer low latency and high resiliency, Thiruvasagam et al. (2021)
proposed a genetic algorithm–based network resource–slicing
scheme for multi-connectivity–based and MEC-enabled 5G
networks. Feng et al. (2020) developed a Lyapunov
optimization–based short- and long-timescale bandwidth
allocation scheme for 5G ultra-reliable low-latency
communications (URLLC) and enhanced mobile broadband
(eMBB) application execution to provide energy and cost-
efficient solutions for RANs. To reduce latency and energy
consumption, Tang et al. (2021) proposed a DRL slice selection
for computation offloading operations in vehicular networks. Brik
et al. (2020) proposed an FL-based approach for predicting service-
oriented key performance indicators (KPIs) for 5G networks.
Chergui et al. (2021) presented a statistical FL method for slice-
level KPI prediction in energy-efficient 6G networks.

However, previous research on ZTNs with or without cloud, SDN,
and NFV technologies did not present a task execution performance
analysis that considered both 6G and non-6G/5G applications. For
example, Salameh et al. (2022) mentioned three main types of 5G
applications: (i) eMBB (e.g., video streaming and immersive gaming
applications via HoloLens), (ii) mMTC (e.g., smart video surveillance
and smart agriculture via IoT and cloud computing technologies such as
optimal plans for irrigation or fertilizer frequency determination based
on plant health), and (iii) URLLC (e.g., industrial automation, circular
manufacturing, and collaborative human–robot interaction-based
applications). Alwis et al. (2021) identified and discussed several
promising 6G applications with their task execution requirements.
They categorized 6G applications as follows: (i) further-eMBB
(FeMBB) [e.g., metaverse-based social avatar applications,
holographic telepresence, and haptic feedback-based extended reality
(XR) applications], (ii) long-distance high-mobility communications

(LDHMC) (e.g., high-speed railway applications, space travel, and deep-
sea sightseeing applications), (iii) extremely URLLC (eURLLC)
application (e.g., FL-based fully automated driving applications), (iv)
extremely low-power communication (ELPC)–type application (e.g.,
blockchain, IoT, and digital twin–based electronic healthcare), (v) ultra-
massive machine-type communications (umMTC) (e.g., wireless power
transfer, electronic vehicle charging, and brain–computer interface-
based applications such as wheelchair control by using brain signals)
application (Rico-Palomo et al., 2022).

1.1 Gaps or limitations in existing studies

Based on the previous research-work discussion, it is clear that
earlier related works did not investigate a proper intent-aware and
service requirement–aware intelligent network resource–slicing
scheme for SFC based on both 6G and non-6G application
execution over SDN-, NFV-, and MEC-driven ZTN. Without an
appropriate network resource–slicing scheme and proper virtual
resource node selection, SFC-based 6G and non-6G applications
over the ZTN may experience significant SFC execution time
latency, user energy expense latency for SFC execution, service
execution monetary cost, lower QoS satisfaction ratio, and low
throughput, among other things.

Furthermore, the question of how to coordinate SDN and NFV
technology, as well as edge cloud technology, for SFC-based 6G and
non-6G application execution in ZTNs is beyond their scope.
Furthermore, their analyses excluded time-first and cost-first
intent-based 6G and non-6G service provisioning for SDN- and
NFV-based ZTNs. Furthermore, previous research did not present
any suitable network infrastructure for time-first and cost-first
service-aware resource slicing for SFC-based 6G and non-6G
application execution over SDN- and NFV-based ZTNs. Existing
works did not investigate latency, QoS satisfaction, and cost
performance analysis by taking SFC for multiple 6G applications
such as metaverse-based social avatar applications, holographic
telepresence, haptic feedback-based XR applications, high-speed
railway applications, FL-based fully automated driving applications,
blockchain, IoT, and digital twin–based electronic healthcare, wireless
power transfer, electronic vehicle charging, and brain–computer
interface-based wheelchair control by using brain signals.

Similarly, the existing works did not investigate performance analysis
for multiple non-6G applications such as video streaming, immersive
gaming applications via holoLens, smart video surveillance, and smart
agriculture via IoT and cloud computing technologies such as optimal
plans for irrigation or fertilizer frequency determination based on plant
health, or industrial automation work such as circular manufacturing or
collaborative human–robot interaction-based applications.

The SFC-based task implementation delay analysis associated
with various existing works did not take into account different delays
such as network inauguration phase delay, user request and resource
gathering phase delay, network slicing phase delay, and task work
realization delay (all of which include computation, caching,
communication, and waiting time). Existing research did not
provide a suitable mathematical model that included task
implementation delay, energy expense, QoS guarantee ratio,
achievable throughput, service execution monetary cost for users
and service providers, service provider profit, user and service

Frontiers in Communications and Networks frontiersin.org03

Chowdhury 10.3389/frcmn.2024.1385656

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1385656


provider welfare, alive node number, and survived energy amount
for users, among other things.

1.2 Motivations and contributions of
our work

To tackle these existing issues, this article proposes a service
requirement–aware intelligent network resource–slicing scheme
(i.e., accelerator) for SFC-based multiple 6G and non-6G
application execution over SDN-, NFV-, and MEC-based and
intent-driven ZTNs. Previous research works did not create an
end-to-end network management system with proper resource
allocation procedures for 6G and non-6G application
execution over SDN- and NFV-based ZTNs. SDN- and NFV-
based 6G and non-6G applications require proper resource
allocation and network systems to meet diverse requirements,
such as low task implementation deadlines, time preferences, and
cost preferences. Because of a lack of intelligent network
architecture and resource-slicing schemes, the current scheme
incurs significant task implementation delays, energy costs, and
service execution expenses.

The aforementioned limitationmotivates us to present a resource-
slicing scheme that maximizes the task implementation delay gain,
energy gain, and monetary cost gain for SFC-based multiple 6G and
non-6G application executions over the ZTN. Our work’s main
innovation and contribution is that it develops a resource-slicing
scheme (for both communication and computation resources) that
considers both time-priority and cost-priority service requirements
for various applications. Furthermore, unlike previous research, this
paper investigates ZTN performance for both 6G and non-6G
application execution by taking different resource and task types
into consideration. For the first time, it brings together SDN, NFV,
blockchain, IoT, and MEC technologies to enable ZTN-based
application execution. The significant contributions of this work
are mentioned below:

• This work inaugurates an intent-based (time preference first and cost
preference first) network resource–slicing scheme for different SFC-
based 6G and non-6G applications by considering different virtual
and physical resources, digital twin, blockchain, edge computing,
caching, and FL services and different SFC workloads, different task
data sizes, different service execution budgets, energy values, service
execution deadlines, task count, and available resource statuses.

• This work develops an intelligent virtual and physical work node
(e.g., NFV, cloud server) assignment along with a network resource
(bandwidth) assignment scheme for different 6G application
execution (e.g., metaverse, holographic telepresence, XR
applications, FL, blockchain, IoT, digital twin, and
brain–computer interface-based applications) and different non-
6G application execution (e.g., video streaming, smart video
surveillance, and industrial automation) over MEC-, SDN-, and
NFV-enabled ZTNs.

• This work provides an intelligent network model that incorporates
SDN technology, NFV technology, blockchain, digital twin, FL, MEC
technology, and wired and wireless networks, along with different user
devices [e.g., mobile phones, XR devices, holographic telepresence
screens, haptic feedback sensors or devices, brain sensors, health
sensors, robots, IoT devices, video cameras, and electric vehicles).

• The primary goal of the proposed resource-slicing scheme is to
maximize task implementation delay gain, energy gain, and
monetary gain for various 6G and non-6G application executions
over a ZTN. This work introduces an accelerator algorithm that
coordinates application execution steps and appropriate resource
selection (time slot, work nodes, computing, and communication
link) for both time-first and cost-first SFC application (6G and non-
6G) execution over ZTNs.

• This paper delivers a mathematical analysis model for 6G and non-
6G application execution over ZTNs, which includes task
implementation delay, energy expense, QoS guarantee ratio,
achievable throughput, service execution monetary cost for users
and service providers, service provider profit, and user and service
provider welfare. Unlike previous works, our task implementation
delay includes additional delays such as network inauguration, user
request and resource gathering, network slicing, and task work
realization delay (such as computation, caching, communication,
and waiting delay).

• To demonstrate the suitability, the proposed accelerator scheme
simulation results (for both time-first and cost-first schemes) are
presented with proper analysis in the Simulation results and analysis
section, along with a performance comparison with the
traditional scheme.

Next, Section 2 includes the related works. The proposed accelerator
scheme is depicted in Section 3 with an algorithm, working steps, and
network model. Section 4 holds the mathematical analysis model that
includes different performance metrics. The simulation results are
investigated in Section 5. The conclusion associated with the
proposed scheme is highlighted in Section 6.

2 Related works

This section discusses the existing literature on SDN-, NFV-,
and MEC-enabled ZTNs. Ma et al. (2022) developed a zero-touch
management scheme for IoT devices using digital twins. Brik et al.
(2020) proposed a FL-based approach to predict network slice
performance for 5G applications. Boškov et al. (2020) introduced
a software-enabled access point and a Bluetooth-based automated
zero-touch service provisioning solution for IoT devices.

To enable automated network fault management services, Sousa
and Rothenberg (2021) discussed a closed loop–based ZTN
management framework. Yoshino et al. (2021) discussed the
feasibility of automated line opening and zero-touch
provisioning–based multiple service provisioning with pluggable
module-type OLT for access network virtualization. Liyanage et al.
(2022) presented a detailed survey regarding the ZTN and service
management concept, architectures, components, and key technical
areas. Shaghaghi et al. (2021) discussed a DRL-based and age-of-
information–aware failure recovery scheme for an NFV-enabled
ZTN. Coronado et al. (2022) presented a survey regarding ZTN
management solutions that included both automated and zero-touch
management techniques for both wireless and mobile networks. To
provide scalable and fast ZTN-slicing operations and service
provisioning, Roy et al. (2022) presented a cloud-native and service-
level agreement (SLA)–driven stochastic FL policy. To ensure proper
execution of industrial IoT applications, Lin et al. (2022) presented a
machine learning-based end-to-end solution for ZTN-based traffic
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steering and fault management issues. Sebrechts et al. (2022) developed
a fog native architecture for microservice application provisioning and
workflow management in intent-based networking.

To design loss functions in regression tasks, Collet et al. (2022)
presented a deep learning-based prediction scheme for intent-based
networking. Okwuibe et al. (2021) presented constraint satisfaction
problem solving based on resource orchestration scheme, inwhich SDN
is used as an orchestrator for industrial IoT application execution in
collaborative edge cloud networks. Alwis et al. (2021) discussed a
detailed survey regarding 6G applications, requirements,
technologies, 6G enablers, and research challenges, among others.
Rico-Palomo et al. (2022) discussed several new services for the 6G
ecosystem, such as FeMBB, LDHMC, eURLLC, ELPC, and umMTC.
Salameh et al. (2022) discussed different challenges, technologies, and
applications related to both 5G and 6G networks. Song et al. (2020)
discussed constrained Markov decision process (CMDP)–based
network-slicing solutions for different types of 5G applications (e.g.,
eMBB, URLLC, and mMTC). To maximize the network’s long-term
throughput, Suh et al. (2022) investigated a DRL-based network slicing
solution for B5G applications. Adhikari et al. (2022) proposed a
cybertwin-driven DRL scheme for dynamic resource provisioning in
6G edge computing networks. Cao et al. (2021) presented a resource

availability–based SFC scheduling scheme for 6G application execution
with virtualization. Alsabah et al. (2021) discussed a comprehensive
survey regarding the 6G vision, key enabling technologies, key
applications, and technical challenges for the 6G wireless
communication networks. Thiruvasagam et al. (2021) presented a
failure-resilient resource orchestration and network-slicing scheme
for multi-connectivity and MEC-empowered 5G networks.

To guarantee latency and reliability, Feng et al. (2020) discussed
a Lyapunov optimization–based resource scheduling scheme for 5G
URLLC and eMBB services. To optimize latency and energy cost,
Tang et al. (2021) presented a DRL-based slice selection and
computation offloading framework for vehicular networks. By
leveraging both SDN and NFV technologies, Hermosilla et al.
(2020) presented a dynamic security management framework in
MEC-powered UAV networks. Sun et al. (2020) developed a
breadth-first search–based SFC optimization scheme. Lin et al.
(2023) presented an energy-aware SFC-embedding scheme in
NFV networks. Zhang et al. (2019) investigated the longest
common sequence (LCS)–based flexible framework for SFC
executions. To maximize the utility value for SFC embedding, a
Markov chain–based optimization scheme was presented by Lin
et al. (2022). Saha et al. (2023) utilized the Brown–Gibson model for

TABLE 1 Comparison with existing works.

Scheme Considered both
network and
mathematical
model for ZTN

Considered SDN,
NFV, MEC, FL,
BC, and DT
technology

Both 6G and
non-6G
application
performance

Minimize
delay, energy
cost, and
monetary cost

Service requirement–aware
and intent-based task and
resource scheduling for
ZTNs

Ma et al. (2022) Not considered Not considered Not considered Not considered Not considered

Boškov et al.
(2020)

Not considered Not considered Not considered Not considered Not considered

Sousa and
Rothenberg
(2021)

Not considered Not considered Not considered Not considered Not considered

Yoshino et al.
(2021)

Not considered Not considered Not considered Only minimize time
delay

Not considered

Shaghaghi et al.
(2021)

Not considered SDN and NFV
considered

Only 6G application
considered

Not considered Not considered

Roy et al. (2022) Not considered MEC and FL considered Only 6G application
considered

Only time delay
considered

Not considered

Lin et al. (2022) Not considered MEC only considered Only 6G application
considered

Only time delay
considered

Not considered

Martini et al.
(2022)

Not considered SDN, NFV, and MEC
considered

Only 6G application
considered

Not considered Not considered

Abbas et al.
(2020)

Not considered NFV and MEC
considered

Only non-6G application
considered

Only time delay
considered

Not considered

Theodorou
et al. (2021)

Not considered NFV, BC, and MEC
considered

Only non-6G application
considered

Not considered Not considered

Xu et al. (2022) Not considered NFV, SDN, and MEC
considered

Only non-6G application
considered

Not considered Not considered

Lin et al. (2023) Not considered NFV and MEC
considered

Only non-6G application
considered

Not considered Not considered

Our proposed
accelerator
scheme

Yes, considered all Yes, considered all Yes, considered all Yes, considered all Yes, considered all
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efficient cloud service provider selection for different IT-based
applications. Tianran et al. (2023) presented a reputation-based
collaborative intrusion detection system (IDS) using blockchain
technology. Huang et al. (2023) used fuzzy C-means clustering
and a bat optimization algorithm for optimizing IoT-based smart
electronic services. Chowdhury (2022) highlighted an energy-
harvesting and blockchain-aware healthcare task coordination
policy for IoT-assisted networks. Fathalla et al. (2022) presented
a preemption choice–based physical machine allocation policy
for cloud computing tasks. Chen et al. (2023) discussed a non-
cooperative game-based computation task offloading policy for
MEC environments. A multi-objective–based evolutionary
algorithm was presented by Wang et al. (2022) for joint task
offloading operations, power, and resource allocation in MEC-
based network. Chen et al. (2019) presented a distributed deep
learning–based parameter updating and synchronization model
for a video surveillance system. Hu et al. (2021) formulated a
coalition game for multi-customer resource procurement in the
cloud computing environment. However, most of the
aforementioned related works (e.g., that of Fathalla et al.,
2022; Chen et al., 2023; Wang et al., 2022; Chen et al., 2019;
Hu et al., 2021) are limited only to a single type of MEC task
rather than both SFC-based 6G and non-6G application
execution. They also did not utilize multiple technologies
such as SDN, NFV, IoT, and MEC at the same time for
different intents (e.g., time-first and cost-first) based on
resource-slicing policies for ZTN-based 6G and non-6G
application execution.

To predict the VNF flow rate, Gu et al. (2019) proposed an online
learning algorithm for SFC execution. To minimize the total SFC
embedding cost, Chen et al. (2021) formulated mixed ILP (MILP)–
based VNF mapping and scheduling problems in edge cloud networks.
Zhou et al. (2019) presented a bidirectional offloading scheme for SFC-
and NFV-enabled space–air–ground integrated networks. To minimize
the latency of all SFC requests and satisfy the service level agreements,
Tamim et al. (2020) utilized an MILP model for SFC placements in
NFV networks. To lower the rejection rate in terms of SFC request
execution, Mohamad et al. (2022) discussed a prediction-aware SFC
placement and VNF-sharing scheme. To satisfy the application
execution requirements, Tseng et al. (2021) utilized the MEC server
for VNF placement and scheduling decisions for augmented reality
application execution in NFV networks. Hantouti et al. (2020)
presented a detailed survey regarding SFC execution in 5G networks
that includes several use cases, key enabling technologies, and potential
research problems. Zahoor et al. (2022) identified different research
challenges and potential solutions associated with network slicing
for 5G applications. Zahoor et al. (2023) discussed the
performance evaluation of hypervisor-based virtualization
technologies for NFV deployment.

Table 1 depicts the comparison between the proposed scheme
and existing schemes. The existing work did not investigate both 6G
and non-6G application execution for MEC-, SDN-, and NFV-
empowered ZTNs. They also did not investigate proper resource-
slicing schemes by taking into account both service requirements
and different intents (time-first and cost-first schemes) for ZTN-
based applications. In differing from the existing works, this article
presents a service-aware and double intent–based (time-first and
cost-first) network resource–slicing scheme for SFC-based 6G and

non-6G application execution over MEC-, SDN-, and NFV-
empowered ZTNs.

1: for network slicing manager do

2: sends the network’s first beacon message to users.

3: gets UCR (internet connectivity request) and UMSR

(service registration message) from the users and

dispatches URR (internet connectivity response) and

UAA (user authentication and service registration

response) to the users

4: broadcasts SMTRS message (user slot assign for task

request dispatch) to users and receives request

messages during UTR slot from users

5: sends RURS (request for resource update) message to

resource and work nodes and gets resource-update

response message (URIS) from work nodes. Sends

ISDR message (inter SDN/slicing controllers

request message for task/resource node

information) and receives ISRES message (response

message) from other slicing managers

6: computes resource slicing and SFC scheduling

information during CNRS slot and sends NSD message

to users (selected time slot and resource

information) and RSD (resource/time slot

information) to selected work nodes

7: if SFC request = = 6G application then

8: executes before the non-6G application. Offers

resources to the time-first task before the cost-

first priority task for all 6G tasks (FeMBB,

eURLLC, umMTC, LDHMC, and ELPC).

9: again sorts each time-first/cost-first priority

task based on their shortest task time limit.

10: selects the best resources (physical and virtual

work node with network communication link) for each

sorted time-first priority task with the lowest

predicted task implementation delay (min Δi
tid).

Selects the best resources (physical and virtual

work node with network communication link) for each

sorted cost-first priority task with lowest

predicted user service execution monetary value

(min μi
secu) basis with min task implementation

delay (min Δi
tid) among lowest cost resources

11: else if SFC request = = non-6G application then

12: executes after the 6G application. Offers

resources to the time-first task request first

before the cost-first priority-based task for

all non-6G task types (URLLC, eMBB, and mMTC).

13: again sorts each time-first/cost-first priority

task based on their shortest task execution time

limit. Selects the best resources for each sorted

time-first priority task with lowest predicted

task implementation delay (min Δi
tid) and for each

sorted cost-first priority task with the lowest

predicted user service execution monetary value

(min μi
secu) basis with minimum possible task

implementation delay (min Δi
tid)

14: end if

15: Go to step 1

16: end for

Algorithm 1. Proposed accelerator-based algorithm.
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3 Proposed accelerator-based network
slicing for ZTN

3.1 Network model and considerations

Figure 1 represents the network model for the SFC-based 6G and
non-6G application execution over the SDN-/NFV-empowered ZTN.
The virtualized work nodes (e.g., MEC and caching devices, FL server,
blockchain server, NFV server, and digital twin server) have resided
near the cellular base station. The service requests that are from user
nodes (e.g., robot, mobile phone, electric vehicles, video camera,
brain–computer sensors, XR users, IoT-based electronic health users,
haptic devices such as haptic jackets or glass, and holographic screens)
are located within the coverage range of cellular base stations and
wireless access points. The SFC task request applications are generated
by the user devices and dispatched to the network slicingmanager at the
cellular base station. The network slicingmanager decides the best work
node selection (e.g., virtual and physical work nodes) for each user task
implementation. The user devices can be attached to the internet via
both the wireless cellular base station and WLAN access point devices.
Three different types of wireless communication links are available.
They are terahertz communication (IEEE 802.15.3d based, bandwidth
of 5 THz, link range 1–10 m), microwave communication (IEEE
802.11b based, link range 1–300 m, bandwidth 7.2 GHz), and
millimeter/millimeter wave (mmWave) link (IEEE 802.11ad based,
link range 1–50 m, bandwidth 1.25 GHz). Along with the cellular
link, the user devices can transfer their data by using the WLAN

link (IEEE 802.11be-based data transfer, 2.4/5/6 GHz radio frequency).
The best wireless communication link is selected by the network slicing
manager for data transfer based on link availability and the data
transfer rate.

The decentralized SDN controller is located near the cellular
base station (network slicing manager) that offers NFV monitoring,
routing path selection, automatic network device configuration, and
node/link failure monitoring purposes. The central SDN controller
is located three or four hops away from the decentralized SDN
controller. The central SDN controller monitors and manages the
network resource status and device configuration centrally. The
decentralized SDN controller (at the cellular base station) can
perform their work by receiving the central SDN controller’s
command and can contact the central SDN controller regarding
any query associated with the network node, resource status, or
remote services. The connectivity between the cellular base station/
core network and the core network/central SDN controller is done
via an IEEE 802.3cd-based dedicated fiber link. Similarly,
connectivity between the cellular base station/central SDN
controller and edge servers/remote cloud servers is offered via
the IEEE 802.3cd-based fiber communication link. The edge
server located near the cellular base station contains different
types of virtualized devices, such as MEC and caching servers, FL
servers, blockchain devices, digital twin servers, and NFV servers.
The electronic vehicle (EV) charging station can be located within
the cellular base station/WLAN access point communication range.
In this paper, initially, the SFC task execution request is dispatched

FIGURE 1
Proposed SDN-/NFV-empowered ZTN model for 6G and non-6G application execution.
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from the user nodes to the network slicing manager. The slicing
manager collects the resource and task information from the work
nodes (virtual and physical devices) and users. After that, the slicing
manager selects a suitable communication time slot along with the

best work nodes (virtual and physical work nodes) for users’
different 6G and non-6G application executions. After the task
processing or implementation, the users receive the task result
from the work nodes via the wireless or wired communication links.

FIGURE 2
(A) Proposed timing model; (B) overall pipeline of the proposed model.
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3.2 Accelerator-based network-slicing
scheme and work node selection scheme

This section elaborately discusses all steps associated with the
proposed network slicing scheme. Figure 2A highlights the timing
model, and Algorithm 1 shows the proposed accelerator-based work
node selection scheme. Figure 2B shows the overall pipeline of the
proposed model. As shown in Figure 2A, our proposed accelerator
scheme includes four phases. The first phase is the network
inauguration phase. The second phase is the user request and
resource information gathering phase. The third phase is the
network slicing phase. The fourth phase is a different 6G- and
non-6G-based task realization or implementation phase. At the
first network inauguration phase, the network slicing manager
(cellular base station) first transmits the beacon messages (NIB
messages) to the surrounding users. The users who receive the
beacon messages send or transfer an internet connectivity request
message (UCR) to the network-slicing devices. The network slicing
manager sends an internet connectivity response (URR) to users.
Next, the users prepare and send a network service registration
(UMSR) message to the slicing manager that includes registration
requests for different services such as blockchain, computing, caching,
FL, SFC execution, EV charging and sharing, and digital twin–based
prediction services. After that, the network slicingmanager dispatches
user authentication and registration response messages (UAA) to the
users. Moreover, the slicing manager schedules a control slot for users
for their 6G and non-6G application requests and dispatches SMTRS
(scheduling message task request control slot) to the users.

Next, the second phase of our proposed scheme becomes operable
(i.e., the user request and resource gathering phases). After that, the
user dispatches or sends the 6G and non-6G application or task
execution service requests to the slicing manager during their UTR
(user slot for dispatching task requests) slot. The scheduling manager
next dispatches a RURS (resource information request slot) message
to the resource nodes or workers. The work nodes and resource
devices send a URIS message (a work node response about their
resource status) to the slicing manager. It can be noted that only the
URIS message within a time deadline will be accepted. After the time
deadline, the remaining URIS message will not be accepted. Similarly,
RURSmessages are sent tomultiple work nodes and resource nodes. If
one RURSmessage is unsuccessful, the slicingmanager will try to send
another RURS message within the RURS message exchange time
deadline (set before the time cycle begins). If all the RURS messages
are unsuccessful, the slicing manager will rely on its previous resource
information for scheduling (step 5 of Algorithm 1). Similarly, if one
URIS message is unsuccessful, the slicing manager will rely on the
other nodes’ URIS response messages for resource scheduling.

Next, the host decentralized SDN controller that resides within the
network slicing manager sends an ISDR message (inter SDN controller
query message about information like resource link or work node and
routing information, task, and resource scheduling information) to the
other decentralized SDN controller and central SDN controller. The
other SDN controller sends an ISRES message (other SDN controllers
respond to a query like task scheduling information for a network
slicing node) about their resource scheduling information and other
resource link or node status. After that, the third phase starts (i.e., the
network resource–slicing phase). In this phase, by using the collected
information (e.g., different resource node status, other slicingmanagers’

task scheduling information, available virtual and physical resources,
and 6G and non-6G task requests), the host slicing manager at the
cellular base station completes the SFC, work node, task scheduling, and
resource-slice assignment process during the CNRS slot time (i.e., the
computation time slot for network resource slicing and work node
selection for 6G and non-6G applications). In this work, two different
schemes are used for resource slicing. The first one is a time-first scheme
and the second one is a cost-first scheme. The user can select one
approach during their task request message dispatch process. For the
time-first scheme, the suitable virtual/physical work node and wired/
wireless link combination are selected for each SFC task request based
on the lowest predicted task implementation delay (min Δi

tid) with the
highest QoS guarantee ratio (i.e., task deadline or task execution time
limit satisfaction). The cost-first scheme receives resources after the
time-first scheme based on users.

For the cost-first scheme, the suitable virtual/physical work
node and wired/wireless link combination are selected for each
SFC task request based on the lowest predicted user service
execution monetary value (min μisecu) with minimum task
implementation delay (min Δi

tid) and the highest QoS guarantee
ratio (i.e., task time limit satisfaction). The readers may look into
Sections 4.1 and 4.5 for the Δi

tid and μ
i
secu calculations, respectively.

After resource slicing or scheduling completion, the network
slicing node dispatches NSD (i.e., network resource and work
node scheduling information for users) messages to the user
devices. Next, the network slicing node dispatches an RSD
(network resource and work node scheduling information for
resource nodes) message to the resource nodes. The last phase
of our proposed scheme is the accelerator-based task realization or
implementation phase. In this phase, the work node executes the
task work during the assigned computation slot, and the user
device dispatches or receives task input and output data during
their assigned communication slot. The user’s 6G and non-6G
time-first/cost-first tasks are executed during their assigned 6G
application and non-6G time-first/cost-first time slot (that
includes both communication and computation time slots),
respectively.

It can be noted that in this work, different 6G and non-6G
application execution performances are analyzed. The considered
6G applications are metaverse-based social avatar applications,
holographic telepresence, haptic feedback-based XR applications,
high-speed railway applications, FL-based fully automated
driving applications, blockchain, IoT, and digital twin–based
electronic healthcare, wireless power transfer, electronic vehicle
charging, and brain–computer interface-based wheelchair control
by using brain signals. The considered 6G applications are video
streaming, immersive gaming applications via the holoLens,
smart video surveillance, and smart agriculture via IoT and
cloud computing technologies, such as optimal plans for
irrigation or fertilizer frequency determination based on plant
health, and industrial automation work such as circular
manufacturing or collaborative human–robot interaction-based
applications.

For example, during a 6G application time slot
(i.e., brain–computer interaction-based wheelchair movement
application), the selected work node and users have to perform
several activities. Initially, the user’s task request is transferred to
the slicing manager for the brain–computer interaction-based
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application. Before receiving the task request, the slicing manager
executes different VNFs, such as FW, digital packet inspection (DPI),
and NAT. Next, the slicing manager sends the task implementation
instructions to the selected work nodes (users’ head sensors and
sensing devices, MEC server) and user devices. After receiving the task
instructions, the head-sensing devices capture the users’ brain signals
[via electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI)] and offload the captured data to the
MEC server for processing. Before receiving the dispatched data, the
MEC server executes two VNFs, such as IDS and NAT. Next, the
MEC/virtual server performs processing of brain signals from the
collected data and signals, feature extraction, pattern recognition, and
translation commands (from brain signals). After that, the MEC/
virtual server sends a processed command to the user’s wheelchair.
Before receiving the processed result, the wheelchair device performs
FW, NAT, and IDS operations. Then, the user’s wheelchair device
operates or moves based on MEC-processed commands from the
brain signal. After the completion of these activities, the
brain–computer interaction-based wheelchair movement work is
complete. Furthermore, during a non-6G application time slot
(e.g., IoT-based smart agriculture assistance), the work node and
users have to perform several activities. Initially, the user’s task request
is transferred to the slicing manager for the IoT-based smart
agriculture assistance application. Before receiving the task request,
the slicing manager executes different VNFs, such as FW, DPI, and
NAT. Next, the slicing manager sends the task implementation
instructions to the selected work nodes (IoT sensors and sensing
devices in the agriculture field, MEC server) and user devices. After
receiving the task instructions, the IoT devices and sensors collect
different crop and environment data (e.g., crop image, humidity, soil
data, moisture, temperature) and dispatch or offload the captured data
to the MEC server for processing. Before receiving the dispatched
data, the MEC server executes two VNF operations, such as IDS and
NAT. Next, the MEC/virtual server performs captured data
processing and produces irrigation and fertilization frequency
plans for farmers based on the crop data. After that, the MEC/
virtual server sends processed data (task-processing results
regarding irrigation/fertilization frequency plan) to the user
devices. Before receiving the processed result, the user device
performs FW and IDS VNF operations. Next, the MEC-processed
task result data are visualized on the screen or used on amobile device.
It can be noted that in Figures 2B, if any message dispatch activity or
task execution is unsuccessful, the slicing manager will consider only
successful tasks or messages. The unsuccessful task will not be
included in the performance evaluation process. For resource
scheduling, the slicing manager will rely on its own information
along with the work node information.

4 Mathematical model

This section presents the important performance metrics
calculation model with a proper explanation. The considered
performance metrics are task implementation delay, energy
expense, service execution monetary cost for users and service
providers, service providers’ profit, and survived energy amount
for users. First, we will discuss the average task implementation delay.

4.1 Task implementation delay

The task implementation delay calculation (Δi
tid) includes all

delays associated with network inauguration phase (Δi
nid), resource

information gathering phase (Δi
urg), network slicing phase (Δi

nsd),
and task work realization delay (Δi

twrd). The average task

implementation delay for the total number of tasks (Δi
atid �

∑y

i�1Δ
i
tid

y ) is investigated by Δi
atid � ∑y

i�1Δ
i
tid

y � ∑y

i�1Δ
i
nid+Δi

urg+Δi
nsd+Δi

twrd

y ,

where the network inauguration phase delay is Δi
nid. The user

request and resource information gathering phase delay is Δi
urg.

The network slicing phase delay is Δi
nsd. y is the total number of users

with 6G and non-6G task requests. Δi
twrd is the total arrived 6G and

non-6G task work realization delay. The network inauguration

phase delay (Δi
nid) includes an initial beacon transfer delay, a

network connectivity request and response delay, a network
service registration and response delay, and a control slot

allocation delay. Δi
nid is computed by using Eq. 1 as follows:

Δi
nid �

Γinib + Γiucr + Γiurr + Γiumsr + Γiuaa + Γismtrs

δwl
p zwh

+ Γinib + Γiucr + Γiurr + Γiumsr + Γiuaa + Γismtrs

δfl
p zfh

+ γinmwip

Ωcp
+ γiuwip

Ωlp
+ Θi

pnd + Θi
wgd.

(1)

Γinib, Γiucr, Γiurr, Γiumsr, Γiuaa, andΓismtrs are the network inauguration
phase beacon message size, user-to-slicing manager internet
connectivity request message size, connectivity response message
size, user device–based service registration and access request,
network slicing manager–based user authentication, service
creation, and user approval message size, and task service
implementation request message size sending slot schedule
message size (from the network slicing manager to user device),
respectively. Θi

pnd and Θi
wgd are the total propagation and waiting

delays, respectively. In this work, the M/D/1 queuing model is
incorporated to calculate both queuing and waiting delays
(Amreen et al., 2017). γiuwip and γiuwip are network slicing manager
workloads and user device workloads for the network inauguration
phase, respectively, where δwl, δfl, zfh, and zwh are the wireless link
speed, fiber link speed, hop distance per fiber link transfer, and hop
distance per wireless link transfer, respectively. Ωcp and Ωlp are the
work processing speeds for the virtual worker/cloud server and user
device, respectively. The resource information gathering phase delay
(Δi

urg) includes different delays, such as user SFC-based application
request reception delay, resource update request delay, resource
update response delay, and inter-SDN controller information
exchange delay. Δi

urg is investigated by using Eq. 2 as follows:

Δi
urg � Γiutr + Γirurs + Γiuris + Γiisdr + Γiisres

δwl
p zwh

+ Γiutr + Γirurs + Γiuris + Γiisdr + Γiisres
δfl

p zfh

+ γnsmurg

Ωcp
+ γwdurg
Ωlp

+ Θi
pnd + Θi

wgd.

(2)

Γiisdr and Γiisres are inter-SDN controller tasks and resource information
requests and responsemessages, respectively. Γiutr, Γirurs, and Γiuris are the
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message size regarding users’ task service request message, resource
update request message, updated resource information reply message,
respectively. γnsmurg and γwdurg are network slicing manager workloads and
worker device workloads for the resource information gathering phases,
respectively. The network slicing phase delay (Δi

nsd) includes slice
allocation computing delay, schedule transfer delay to users, and
schedule transfer delay to the worker nodes. The network slicing
phase delay Δi

nsd is estimated by using Eq. 3 as follows:

Δi
nsd �

Γinsd + Γirsd
δwl

p zwh + Γinsd + Γirsd
δfl

p zfh + γinsd
Ωcp

+Θi
pnd + Θi

wgd,
(3)

where Γinsd is the broadcaster network slice, resource, and worker
allocation message size for the users. Γirsd is the broadcaster network
slice, resource, and worker allocation message size for the worker
nodes. γinsd is the workload for the network slicing manager
regarding SFC ordering, priority checking, scheduling slot for
each task, and best physical/virtual work node allocation.

Next, the total task work realization delay Δi
twrd is appraised by

using Eq. 4 as follows:

Δi
twrd � ∑

y

i�1
Θi

ma + Θi
ht + Θi

ec + Θi
bc + Θi

hf + Θi
ia(

+Θi
hr + Θi

ad + Θi
eh + Θi

vs + Θi
xa

+Θi
sa + Θi

su + Θi
pnd + Θi

wgd),
(4)

where Θi
ma,Θi

ht,Θi
ec,Θi

bc,Θi
hf,Θi

ia,Θi
hr,Θi

ad,Θi
eh,Θi

vs,Θi
xa,Θi

sa, and
Θi

su are task work realization delay for metaverse tasks, holographic
telepresence tasks, EV charging, brain–computer interaction-based
tasks, haptic feedback, industrial automation, high-speed railway, FL-
based automated driving, blockchain and digital twin–based electronic
healthcare, video streaming, XR-based applications, smart agriculture,
and video surveillance tasks, respectively. Θi

pnd and Θi
wgd are the total

propagation and waiting (for resource) delays, respectively.
Our first 6G task is metaverse-based social avatar creation and

avatar interaction (e.g., 6G FeMBB use case). The SFC delay (task
realization delay) associated with social avatar–based metaverse task
Θi

ma execution is given by using Eq. 5.

Θi
ma � ∑

y

i�1
Θi

urs + Θi
vnf + Θi

tis + Θi
ucd + Θi

ofd + Θi
svnf(

+Θi
cam + Θi

am + Θi
usc + Θi

stm + Θi
tvnf + Θi

pma

+Θi
susc + Θi

sstm + Θi
fvnf + Θi

psma),
(5)

where Θi
urs is a task request convey delay to slicing manager for

metaverse-based social avatar creation and avatar interaction

(Θi
urs � Γitm

δwl
p zwh + Γitm

δfl
p zfh + Θi

pnd + Θi
wgd).

Γitm, δwl, δfl, zfh, and zwh are the user’s metaverse task request size,
wireless link data transfer speed, fiber link data transfer speed, hop
distance per fiber link–based transfer, and hop distance per wireless
link–based transfer, respectively.

Θi
vnf is the initial VNF processing delay that includes FW, DPI,

and NAT delays for metaverse-based social avatar creation and

avatar interaction tasks. (Θi
vnf � γifw+γidpi+γinat

Ωcp
+ Γitds

δtl
p htl), where

γifw, γ
i
dpi, γ

i
nat are the workloads for FW, DPI, and NAT

operation, respectively. Ωcp is the virtual server processing speed.

Γitds, δtl, and htl are the transferred data size from server to server
during VNF processing, link rate, and hop distance, respectively.

Θi
tis is task instruction and virtual/physical work node selection-

related information convey delay to the worker node from slicing

manager device. (Θi
tis � Γiiid

δwl
p zwh + Γitid

δfl
p zfh + Θi

pnd + Θi
wgd), where

Γiiid is the data size associated with task instruction and virtual/physical
work node selection.Θi

ucd is the client-based avatar creation data capture
delay that includes the users’ image, pose, and position. (Θi

ucd � γildc
Ωlp
),

where γildc is the user workload for client device–based avatar creation
data capture.Ωlp is the client device’s task work processing power.Θi

ofd is
avatar creation data offload delay to a virtual worker at MEC server.
Θi

ofd � Γitid
δwl

p zwh + Γitid
δfl

p zfh + Θi
pnd + Θi

wgd, where Γitid is the offloaded
avatar interaction task input data size.

Θi
svnf is the second VNF processing delay that includes IDS and

NAT operation delays. (Θi
svnf � γiids+γinat

Ωcp
+ γiids+γinat

δtl
p htl), where γiids

and γinat are the workloads for IDS and NAT operation processing,
respectively. Ωcp is the virtual MEC server processing speed. Θi

cam is
avatar creation delay at the MEC for metaverse-based social avatar
creation and avatar interaction tasks. (Θi

cam � γiac
Ωcp

), where γiac is the
workload for avatar creation by the MEC server.

Θi
am is the avatar movement delay at the metaverse.

(Θi
am � γiam

Ωcp
+ diam

Ωms
), where γiam is the MEC server workload for

avatar movement in the metaverse. diam is the distance from one
avatar to another during movement. Ωms is the avatar
movement speed.

Θi
usc is the first client device–based data capture delay for avatar

interaction. (Θi
usc � γiusc

Ωlp
), where γiusc is the user workload for

conversation data capture for an avatar. Ωlp is the client device’s
task work processing power. Θi

stm is the user conversation data
offload delay from the user to metaverse avatar.
Θi

stm � Γiacd
δwl

p zwh + Γiacd
δfl
pzfh + Θi

pnd + Θi
wgd, where Γiacd is the

offloaded data size regarding avatar conversation.
Θi

tvnf is the third VNF processing delay that includes IDS, DPI,
and NAT delays before offloaded task data are received at the MEC
server for avatar creation and interaction tasks.

(Θi
tvnf � γiids+γidpi+γinat

Ωcp
+ γiids+γidpi+γinat

δtl
p htl), where γiids, γ

i
dpi, and γinat

are the workloads for IDS, DPI, and NAT operation, respectively.
Θi

pma is the virtual node–based avatar conversation

message–playing operation. (Θi
pma � γipma

Ωcp
), where γipma is the

workload for virtual node–based avatar conversation

message–playing work.
Θi

susc is the second user-based conversation data capture delay.

(Θi
susc � γisusc

Ωlp
), where γisusc is the second user workload.

Θi
sstm is the second user conversation data offload delay to the

avatar. Θi
sstm � Γisacd

δwl
p zwh + Γisacd

δfl
p zfh + Θi

pnd + Θi
wgd, where Γisacd is

the offloaded data size regarding second user avatar conversation.
Θi

fvnf is the fourth VNF processing delay that includes DPI, IDS,
and NAT processing delays before offloaded task data are received at

the MEC server. (Θi
fvnf � γidpi+γiids+γinat

Ωcp
+ γidpi+γiids+γinat

δtl
p htl), where

γidpi, γ
i
ids, and γinat are the workloads for DPI, IDS, and NAT

operation, respectively, at the virtual-node MEC server. Θi
psma is

the virtual node–based second avatar message–playing operation.
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(Θi
psma � γipsma

Ωcp
), where γipsma is the workload for the second avatar

conversation message–playing operation.
Next, this paper investigates the SFC delay (task realization

delay) Θi
ht associated with holographic telepresence-related 6G

applications using Eq. 6.

Θi
ht � ∑

y

i�1
Θi

urs + Θht
vnf + Θi

tis + Θht
ucd + Θht

ofd + Θht
svnf(

+Θht
mp + Θht

str + Θht
tvnf + Θi

rpr + Θht
vd),

(6)

where Θi
urs is a task request sending delay to the network slicing

manager. Θht
vnf is the initial VNF processing delay that includes FW,

DPI, and NAT processing delays for holographic telepresence tasks.

(Θht
vnf � γifw+γidpi+γinat

Ωcp
+ Γitds

δtl
p htl), where γifw, γ

i
dpi, γ

i
nat are the

workloads for FW, DPI, and NAT operation processing, respectively.
Θi

tis is task instruction and work node selection-related
information convey delay to the worker node. Θht

ucd is the user
client device–based user data collection (e.g., user image, audio,
pose, and eye position) delay for a holographic telepresence task.

(Θht
ucd � γhtldc

Ωlp
), where γhtldc is the user workload for client device–based

holographic task data capture work that includes users’ image, pose,

position, audio, and characteristics data input.
Θht

ofd is a user-captured holographic task data offload delay to a
virtual worker at MEC for a holographic telepresence task.
Θht

ofd � Γhttid
δwl

p zwh + Γitid
δfl

p zfh + Θi
pnd + Θi

wgd, where Γhttid is the
offloaded holographic telepresence task input data size. Θht

svnf is
the second VNF processing delay that includes IDS and
NAT processing delays at the MEC server.

(Θht
svnf � γhtids+γhtnat

Ωcp
+ γhtids+γhtnat

δtl
p htl), where γhtids and γhtnat are the

workloads for IDS and NAT operation processing, respectively.

Θht
mp is the virtual work node–based holographic task data

processing delay (3D construct, rendering, compress, and

encoding) at the MEC server. (Θht
mp � γhtmp

Ωcp
), where γhtmp is the

workload for holographic task data processing at the MEC server.

Θht
str is the MEC processing data transfer delay to the user device

from the virtual server. Θht
str � Γhttod

δwl
p zwh + Γhttod

δfl
p zfh + Θi

pnd + Θi
wgd,

where Γhttod is the MEC-processed holographic data size. Θht
tvnf is the

third VNF processing delay that includes IDS, FW, and NAT

processing delay at user receiver device.

(Θht
tvnf � γiids+γifw+γinat

Ωlp
+ γiids+γifw+γinat

δtl
p htl), where γiids, γ

i
fw, and γinat

are the workloads for IDS, FW, and NAT operation, respectively,

at a receiver. Θi
rpr is the receiver device–based data processing delay

that includes reprocessing, reconstruction, decompression, and

decoding operations for holographic telepresence tasks.

(Θi
rpr � γhtrp

Ωlp
), where γhtrp is the workload for receiver device–based

holographic data processing. Θht
vd is the receiver device-based data

visualization operation delay on a screen or projector with audio.

(Θht
vd � γhtvd

Ωlp
), where γhtvd is the workload for receiver device-based

holographic data visualization operations.

Next, this paper investigates the SFC delay (task realization
delay) associated with EV charging related to 6G applications using
Eq. 7.

Θi
ec � ∑

y

i�1
Θi

urs + Θec
vnf + Θi

tis + Θec
ucd + Θec

ofd + Θec
svnf(

+Θec
mp + Θec

str + Θec
tvnf + Θec

um + Θec
up),

(7)

where Θi
urs is a task request sending delay to the network slicing

manager from the user device. Θec
vnf is the initial VNF processing

delay that includes FW, DPI, and NAT operation for EV charging

tasks. (Θec
vnf � γifw+γidpi+γinat

Ωcp
+ Γitds

δtl
p htl), where γifw, γ

i
dpi, γ

i
nat are the

workloads for FW, DPI, and NAT operation processing,
respectively. Θi

tis is task instruction and work node selection
information convey delay to the worker node.
Θi

tis � Γiiid
δwl

p zwh + Γitid
δfl

p zfh + Θi
pnd + Θi

wgd), where Γiiid is the data
size associated with task instruction and work node selection
information.

Θec
ucd is the user client device–based user data collection (e.g.,

user movement, vehicle charging requirement, location, endpoint,

and starting point) delay for the EV charging task. (Θec
ucd � γecldc

Ωlp
),

where γecldc is the user workload for the client device–based electronic
vehicle task data capture work. Θec

ofd is user-captured EV charging
task data offload delay to a virtual worker at MEC for EV charging
task. Θec

ofd � Γectid
δwl

p zwh + Γectid
δfl

p zfh + Θi
pnd + Θi

wgd, where Γectid is the
offload or EV charging task input data size. Θec

svnf is the second
VNF processing delay that includes IDS, FW, and NAT processing
delays at the MEC server for EV charging tasks.

(Θec
svnf � γiids+γinat+γifw

Ωcp
+ γiids+γinat+γifw

δtl
p htl), where γiids, γ

i
fw, and γinat

are the workloads for IDS, FW, and NAT operation.
Θec

mp is the virtual work node–based EV charging task data
processing delay that includes users’ EV charging station selection

delay at theMEC server. (Θec
mp � γecmp

Ωcp
), where γecmp is the workload for

EV charging task data processing at the MEC server.Θec
str is the MEC

processing data transfer delay to the user device from the virtual
server. Θec

str � Γectod
δwl

p zwh + Γectod
δfl

p zfh + Θi
pnd + Θi

wgd, where Γectod is the
MEC-processed or EV charging task data output size. Θec

tvnf is the
third VNF processing delay that includes IDS and NAT delay
processing delay at the user receiver device.

(Θec
tvnf � γiids+γinat

Ωlp
+ γiids+γinat

δtl
p htl), where γiids and γinat are the

workloads for IDS and NAT operation processing at the receiver.
Θec

um is the user electronic vehicle movement (from the starting to

charging station) delay. (Θec
um � devsc

Ωmsu
), where devsc is the distance

from the starting point to charging station point. Ωmsu is the client
device’s movement speed. Θec

up is the EV charging delay at the

selected charging station. (Θec
up � arq−aav+abdt p b

Ωech
), where arq, aav, abdt,

b, and Ωech are charging requirements, available charge, battery
depletion threshold, battery capacity, and EV charging rate,
respectively.

Next, this paper investigates the SFC delay (task realization
delay) Θi

bc associated with brain–computer interaction-based 6G
applications using Eq. 8 (e.g., umMTC task).
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Θi
bc � ∑

y

i�1
Θi

urs + Θbc
vnf + Θi

tis + Θbc
ucd + Θbc

ofd + Θbc
svnf(

+Θbc
mp + Θbc

str + Θbc
tvnf + Θbc

rpr),
(8)

where Θi
urs is a task request sending delay to the network slicing

manager from the user device. Θbc
vnf is the initial VNF processing

delay that includes FW, DPI, and NAT delays for the

brain–computer interaction task. (Θbc
vnf � γifw+γidpi+γinat

Ωcp
+ Γitds

δtl
p htl).

Θi
tis is task instruction and work node selection

information sending delay to the worker node.

(Θi
tis � Γiiid

δwl
p zwh + Γitid

δfl
p zfh + Θi

pnd + Θi
wgd). Θbc

ucd is the user head

sensor device-based user data collection (e.g., EEG, fMRI, andMEG)

delay for the brain–computer interaction task. (Θbc
ucd � γbcldc

Ωlp
), where

γbcldc is the user workload for brain data capture work.Ωlp is the client

device/brain sensors’ task work processing power.
Θbc

ofd is user-captured brain–computer interaction task data
offload delay to a virtual worker at MEC server.
Θbc

ofd � Γbctid
δwl

p zwh + Γbctid
δfl

p zfh + Θi
pnd + Θi

wgd, where Γbctid is the
offloaded data size for the brain–computer interaction task. Θbc

svnf

is the second VNF processing delay that includes IDS and NAT
processing delays at the MEC server. (Θbc

svnf � γiids+γinat
Ωcp

+ γiids+γinat
δtl

p htl),
where γiids and γinat are the workloads for IDS and NAT operation

processing; Θbc
mp is the virtual work node–based brain–computer

interaction task data processing delay that includes brain signal
acquisition from collected data, feature extraction, pattern
recognition, and translation command delay at the MEC server.

(Θbc
mp � γbcmp

Ωcp
), where γbcmp is the workload for brain–computer

interaction task data processing at the MEC server. Θbc
str is the

MEC processing brain–computer interaction task result or
command data transfer delay to the user device (wheelchair).
Θbc

str � Γbctod
δwl

p zwh + Γbctod
δfl

p zfh + Θi
pnd + Θi

wgd, where Γbctod is the MEC-
processed brain–computer interaction task result or command data
size. Θbc

tvnf is the third VNF processing delay that includes IDS, FW,
and NAT delay processing delay at the user receiver device.

(Θbc
tvnf � γiids+γifw+γinat

Ωlp
+ γiids+γifw+γinat

δtl
p htl), where γiids, γifw, and γinat

are the workloads for IDS, FW, and NAT operation processing at
the receiver wheelchair device, respectively. Θbc

rpr is the user/receiver
wheelchair device–based data processing delay that includes
wheelchair movement operation based on MEC-processed

commands from brain signals. (Θbc
rpr � γbcrp

Ωlp
), where γbcrp is the

workload for receiver device–based wheelchair movement
operation based on the transferred command.

After that, this paper investigates the SFC delay (task realization
delay)Θi

hf associated with haptic feedback-based immersive gaming
6G applications using Eq. 9 (e.g., FeMBB).

Θi
hf � ∑

y

i�1
Θi

urs + Θhf
vnf + Θi

tis + Θhf
ueg + Θhf

ucd + Θhf
ofd(

+Θhf
svnf + Θhf

mp + Θhf
str + Θhf

tvnf + Θhf
rpr),

(9)

whereΘi
urs is a task request sending delay to the network slicingmanager

from the user device. Θhf
vnf is the initial VNF processing delay that

includes FW, DPI, and NAT processing delays.

(Θbc
vnf � γifw+γidpi+γinat

Ωcp
+ Γitds

δtl
p htl). Θi

tis is task instruction and work

node selection-related information sending delay to the worker node
from network slicing manager device for haptic feedback-based

immersive gaming task (Θi
tis � Γiiid

δwl
p zwh + Γitid

δfl
p zfh + Θi

pnd + Θi
wgd).

Θhf
ueg is the time required for the user device entering the game and

connectivity with the MEC (Θhf
ueg � γhfueg

Ωlp
), where γhfueg is the user

workload for entering the game state. Θhf
ucd is the user haptic input

collection delay from hand gloves or haptic devices or game state input

information collection. (Θhf
ucd � γhf

ldc
Ωlp
), where γhfldc is the user workload for

haptic feedback task input data collection (e.g., touch a ball). Θhf
ofd is the

user-captured data offload delay to the virtual worker at MEC server.

Θhf
ofd � Γhf

tid
δwl

p zwh + Γhf
tid
δfl

p zfh + Θi
pnd + Θi

wgd, where Γ
hf
tid is the offloaded

data size. Θhf
svnf is the second VNF processing delay that includes IDS

and NAT processing delays at the MEC server.

(Θhf
svnf � γiids+γinat

Ωcp
+ γhf

ids
+γhfnat
δtl

p htl), where γiids and γinat are the

workloads for IDS and NAT operation, respectively. Θhf
mp is the

virtual work node–based haptic input task data processing delay that
includes rendering, game data processing, and audio/visual haptic

feedback data generation delay at the MEC server. (Θhf
mp � γhfmp

Ωcp
),

where γhfmp is the workload for haptic input task data processing at

the MEC server. Θhf
str is MEC-processed haptic feedback task result data

transfer delay to the user device (haptic gloves or jacket) from the virtual

MEC server. Θhf
str � Γhf

tod
δwl

p zwh + Γhf
tod
δfl

p zfh + Θi
pnd + Θi

wgd, where Γ
hf
tod is

the MEC-processed haptic feedback task result or data size. Θhf
tvnf is the

third VNF processing delay that includes IDS and NAT processing

delays at the user receiver device. (Θhf
tvnf � γiids+γinat

Ωlp
+ γiids+γinat

δtl
p htl),

where γiids and γinat are the workloads for IDS and NAT operation at

the receiver haptic device, respectively. Θhf
rpr is the user/receiver haptic

device-based data processing delay that includes feeling processed haptic
sensory feedback data or sensation via the haptic devices such as haptic

jackets, gloves, and eyeglasses. (Θhf
rpr � γhfrp

Ωlp
), where γhfrp is the workload

for receiver device–based haptic feedback reception.
Next, this paper investigates the SFC delay (task realization

delay)Θi
ia associated with human–robot processing-based industrial

automation non-6G applications using Eq. 10 (e.g., URLLC).

Θi
ia � ∑

y

i�1
Θi

urs + Θia
vnf + Θi

tis + Θia
sm + Θia

rm + Θia
ofd(

+Θia
svnf + Θia

hp + Θia
str + Θia

rpr + Θia
sofd + Θia

hfp).
(10)

Θi
urs is a task request sending delay to the network slicing manager

from the user device. Θia
vnf is the initial VNF processing delay that

includes FW, DPI, and NAT operation delays.

(Θia
vnf � γifw+γidpi+γinat

Ωcp
+ Γitds

δtl
p htl). Θi

tis is task instruction and work

node selection information convey delay to the worker node.

Θi
tis � Γiiid

δwl
p zwh + Γitid

δfl
p zfh + Θi

pnd + Θi
wgd. Θia

sm is the time required

for supplying raw material to the robot and design supply for

production (Θia
sm � γiasm

Ωlp
+ Γitds

δtl
p htl), where γiasm is the user workload
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for supplying raw material and design to the robot. Θia
rm is the robot-

basedmanufacturing product operation. (Θia
rm � γiarm

Ωrlp
), where γiarm is the

user workload for robot-basedmanufacturing product operation.Ωrlp is

the robot’s processing speed.Θia
ofd is robot-processed data offload delay

to the human worker. Θia
ofd � Γiatid

δwl
p zwh + Γiatid

δfl
p zfh + Θi

pnd + Θi
wgd,

where Γiatid is the offloaded data size. Θia
svnf is the second VNF

processing delay that includes IDS and NAT processing at the MEC

server. (Θia
svnf � γiids+γinat

Ωcp
+ γiids+γinat

δtl
p htl), where γiids and γinat are the

workloads for IDS and NAT operation at the human device,

respectively. Θia
hp is the human work node–based task data

processing delay that includes checking robots’ work and giving

advice. (Θia
hp � γiahp

Ωlp
), where γiahp is the workload for checking robots’

work and giving advice by the human device.Θia
str is the human device-

processed task result data transfer delay to the robot device.

Θia
str � Γiatod

δwl
p zwh + Γiatod

δfl
p zfh + Θi

pnd + Θi
wgd, where Γiatod is the human

user processed task result. Θia
rpr is the robot-based rechecking and re-

manufacturing of products based on humans’ suggestions.

(Θia
rpr � γiarpr

Ωrlp
), where γiarpr is the workload for robot-based

rechecking and re-manufacturing product operations. Θia
sofd is

robots’ reprocessing production data offload delay to a human

worker. Θia
sofd � Γiastid

δwl
p zwh + Γiastid

δfl
p zfh + Θi

pnd + Θi
wgd, where Γiastid is

the second offloaded data size by the robot’s second inspection of

the human user’s device. Θia
hfp is the human work node–based robot

task data processing delay that includes checking robots reprocessing

work and confirming work. (Θia
hfp � γiahfp

Ωlp
), where γiahfp is the workload

for checking or confirming robots’ final processed work by the

human device.
Next, this paper investigates the SFC delay (task realization

delay) Θi
hr associated with high-speed railway-based user data

transfer applications using Eq. 11 (e.g., LDHMC).

Θi
hr � ∑

y

i�1
Θi

urs + Θhr
vnf + Θi

tis + Θhr
svnf + Θhr

mp + Θhr
str(

+Θhr
uds + Θhr

tvnf + Θhr
ofd + Θhr

fvnf + Θhr
udr),

(11)

where Θi
urs is a task request sending delay to the network slicing

manager from the user device. Θhr
vnf is the initial VNF processing

delay that includes FW, DPI, and NAT operation.

(Θhr
vnf � γifw+γidpi+γinat

Ωcp
+ Γitds

δtl
p htl). Θi

tis is task instruction and

work node selection-related information sending delay to the

worker node (Θi
tis � Γiiid

δwl
p zwh + Γitid

δfl
p zfh + Θi

pnd + Θi
wgd). Θhr

svnf is

the second VNF processing delay that includes IDS and NAT

processing delays at the MEC server.

(Θhr
svnf � γiids+γinat

Ωcp
+ γiids+γinat

δtl
p htl), where γiids and γinat are the

workloads for IDS and NAT operation, respectively. Θhr
mp is

the virtual work node–based task data processing delay that

includes selecting a suitable base station and time slot for data

transfer for the user. (Θhr
mp � γhrmp

Ωcp
), where γhrmp is the workload for

BS selection at the MEC server.

Θhr
str is MEC-processed BS selection data transfer delay to the

user device from virtual MEC server.
Θhr

str � Γhrtod
δwl

p zwh + Γhrtod
δfl

p zfh + Θi
pnd + Θi

wgd, where Γhrtod is the
MEC-processed task result data size for high-speed railway users.
Θhr

uds is the user data offload delay to the receiver base station.
Θhr

uds � Γhruds
δwl

p zwh + Γhruds
δfl

p zfh + Θi
pnd + Θi

wgd, where Γhruds is the
offloaded data size. Θhr

tvnf is the third VNF processing delay that
includes FW, LB, and encryption processing delay at the user

receiver base station device. (Θhr
tvnf � γifw+γilb+γien

Ωlp
+ γifw+γilb+γien

δtl
phtl),

where γilb and γien are the workloads for LB and encryption

operation processing at the receiver base station device.
Θhr

ofd is the user data transfer delay from the receiver base station

to the receiver device. Θhr
ofd � Γhrofd

δwl
p zwh + Γhrofd

δfl
p zfh + Θi

pnd + Θi
wgd,

where Γhrofd is the user’s transferred data size to the receiver. Θhr
fvnf is

the fourth VNF processing delay that includes IDS and decryption
processing delay at the receiver device.

(Θhr
fvnf � γiids+γide

Ωlp
+ γiids+γide

δtl
p htl), where γiids and γide are the

workloads for IDS and decryption operation at the receiver,

respectively. Θhr
udr is the receiver device–based data display

operation delay for high-speed railway-based data transfer tasks.

(Θhr
udr � γhrldc

Ωlp
), where γhrldc is the workload for output data display at

the receiver device.
Next, this paper investigates the SFC delay (task realization

delay) Θi
ad for FL-based autonomous driving 6G applications using

Eq. 12 (e.g., eURLLC).

Θi
ad � ∑

y

i�1
Θi

urs + Θad
vnf + Θi

tis + Θad
svnf + Θad

gd + Θad
ucd(

+Θad
ult + Θad

ofd + Θad
tvnf + Θad

mp + Θad
fvnf + Θad

fud)
(12)

Θi
urs is a task request sending delay to the network slicing

manager from the user device. Θad
vnf is the initial VNF processing

delay that includes FW, DPI, and NAT operation.

(Θad
vnf � γifw+γidpi+γinat

Ωcp
+ Γitds

δtl
p htl), where γifw, γ

i
dpi, γ

i
nat are the

workloads for FW, DPI, and NAT operation processing. Θi
tis is

task instruction and work node selection information convey delay
to the worker node. Θi

tis � Γiiid
δwl

p zwh + Γitid
δfl

p zfh + Θi
pnd + Θi

wgd,
where Γiiid is the data size associated with task instruction and
work node selection. Θad

svnf is the second VNF processing delay at
the cloud server that includes FW, DPI, and IDS delay.

(Θad
svnf � γifw+γidpi+γiids

Ωcp
+ Γitds

δtl
phtl), where γifw, γ

i
dpi, γ

i
ids are the

workloads for FW, DPI, and IDS operation processing.
Θad

gd is a global deep learningmodel download delay from the global
edge server. Θad

gd � Γigd
δwl

p zwh + Γigd
δfl

p zfh + Θi
pnd + Θi

wgd), where Γigd is
the data size associated with the global deep learning model (e.g., image
processing or object detection model). Θad

ucd is the user client
device–based user data collection (e.g., roadside image) delay.

(Θad
ucd � γadldc

Ωvp
), where γadldc is the workload for client device–based

roadside data capture work. Ωvp is the client device’s task-work

processing power. Θad
ult is the user client device (vehicle)–based local

data training delay. (Θad
ult � γadldt

Ωvp
), where γadldt is the workload for client

device–based local model data training delay and updated local
parameter generation delay. Θad

ofd is user-generated updated model
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parameters for task data offload delay to a virtual worker at MEC.
Θad

ofd � Γadtid
δwl
pzwh + Γadtid

δfl
pzfh + Θi

pnd + Θi
wgd, where Γadtid is the offload data

size or updated local model task input data size. Θad
tvnf is the third VNF

processing delay that includes IDS and NAT processing delays at the
MEC server. (Θad

tvnf � γiids+γinat
Ωcp

+ γiids+γinat
δtl

p htl), where γiids and γinat are

theworkloads for IDS andNAToperation processing, respectively.Θad
mp

is the virtual work node–based global deep learningmodel update delay
by locally updating data aggregation at the MEC server. (Θad

mp � γadmp
Ωcp

),
where γadmp is the workload for global model update and local data

aggregation at the MEC server. Θad
fvnf is the fourth VNF processing

delay that includes IDS and NAT processing delays at the user receiver

device. (Θad
fvnf � γiids+γinat

Ωlp
+ γiids+γinat

δtl
p htl), where γiids and γinat are the

workloads for IDS and NAT operation at a receiver.Θad
fud is an updated

global deep learning model download delay at the receiver.

Θad
fud � Γadtod

δwl
p zwh + Γadtod

δfl
p zfh + Θi

pnd + Θi
wgd, where Γadtod is the

updated global deep learning model data size.
Next, the article investigates the SFC delay (task realization

delay) Θi
eh associated with blockchain and digital twin–based

e-healthcare 6G applications using Eq. 13 (e.g., ELPC).

Θi
eh � ∑

y

i�1
Θi

urs + Θeh
vnf + Θi

tis + Θeh
bco + Θeh

ucd + Θeh
ofd(

+Θeh
svnf + Θeh

mp + Θeh
std + Θeh

dt + Θeh
stm + Θeh

bc

+Θeh
stv + Θeh

bv + Θeh
ulb + Θeh

stu + Θeh
tvnf + Θeh

rdd).
(13)

Θi
urs is a task request sending delay to the network slicing

manager from the user. Θeh
vnf is the initial VNF processing delay

that includes FW, DPI, and NAT operation. (Θeh
vnf � γifw+γidpi+γinat

Ωcp
+

Γitds
δtl

p htl).
Θi

tis is task instruction and work node selection information sending
delay to the worker node. Θi

tis � Γiiid
δwl

p zwh + Γitid
δfl

p zfh + Θi
pnd + Θi

wgd.
Θeh

bco is the delay associated with initial key exchange, smart
contract, and blockchain operation registration.
Θeh

bco � fracΓibcoδwlpzwh + Γibco
δfl

p zfh + γcp
bci

Ωcp
+ γldbci

Ωlp
+ Θi

pnd + Θi
wgd, where

Γibco is the exchanged data size for initial key exchange, smart
contract, and blockchain registration operations. γcpbci and γldbci are the
MEC blockchain server workload and local client workload for initial
blockchain work, respectively. Θeh

ucd is the IoT device or sensor data
collection regarding human health (blood pressure and temperature)

status.(Θeh
ucd � γehldc

Ωlp
), where γehldc is the user workload for e-healthcare data

collection. Θeh
ofd is the user-captured data offload delay to the virtual

worker at MEC. Θeh
ofd � Γehtid

δwl
p zwh + Γehtid

δfl
p zfh + Θi

pnd + Θi
wgd, where

Γehtid is the offloaded data/input task data size.
Θeh

svnf is the second VNF processing delay that includes IDS
and NAT processing delays at the MEC server.

(Θeh
svnf � γiids+γinat

Ωcp
+ γiids+γinat

δtl
p htl), where γiids and γinat are the

workloads for IDS and NAT operation, respectively. Θeh
mp is the

virtual work node–based e-healthcare task data processing delay that
includes digital twin–based healthcare disease prediction (Θeh

mp � γehmp
Ωcp

),
where γehmp is the workload for e-healthcare task data processing at the

digital twin server.Θeh
std is a digital twin server–processed task result data

transfer delay to the doctor device.
Θeh

std � Γehstd
δwl

p zwh + Γehstd
δfl

p zfh + Θi
pnd + Θi

wgd, where Γehstd is the digital
twin–based processed data size. Θeh

dt is the doctor device–based

e-healthcare task data processing delay that includes prescription

generation. (Θeh
dt � γehdt

Ωlp
), where γehdt is the workload for e-healthcare

task data processing at a doctor’s device. Ωlp is the processing speed for
doctors’ devices. Θeh

stm is the doctor device–processed task result data
transfer delay to blockchain device.
Θeh

stm � Γehstm
δwl

p zwh + Γehstm
δfl

p zfh + Θi
pnd + Θi

wgd, where Γehstm is the
doctor’s device-based processed data size. Θeh

bc is the virtual
blockchain work node-based block or medical transaction task data

creation delay(Θeh
bc � γehbc

Ωcp
), where γehbc is the workload for block creation

and hashing at the blockchain MEC server. Θeh
stv is block data transfer

delay to blockchain verifier device.
Θeh

stv � Γehstv
δwl

p zwh + Γehstv
δfl

pzfh + Θi
pnd + Θi

wgd, where Γehstv is the
transferred block data size. Θeh

bv is the virtual blockchain verifier

work node–based block verification delay. (Θeh
bv � γehbv

Ωcp
), where γehbv is

the workload for block verification at the blockchain verifier device.Θeh
ulb

is the block update delay on the blockchain ledger.

(Θeh
ulb � γehulb

Ωcp
+ Γehvd

δwl
p zwh + Γehvd

δfl
p zfh + Θi

pnd + Θi
wgd), where γehulb is

the workload for ledger update at the primary blockchain node. Γehvd
is the transferred verified block data size. Θeh

stu is a verified e-healthcare

result or updated block data transfer delay to the user device.

Θeh
stu � Γehstu

δwl
p zwh + Γehstu

δfl
p zfh + Θi

pnd + Θi
wgd, where Γehstu is the user-

accessed e-healthcare data size.Θeh
tvnf is the third VNF processing delay

that includes FW, IDS, and NAT processing delays at the user receiver

device. (Θeh
tvnf � γiids+γifw+γinat

Ωlp
+ γiids+γifw+γinat

δtl
p htl), where γiids, γ

i
fw, and

γinat are the workloads for IDS, FW, and NAT operation. Θeh
rdd is the

receiver device–based e-healthcare result data display delay.

(Θeh
rdd � γehrd

Ωlp
), where γehrd is the workload for receiver device–based

data display.
Next, this paper discusses the SFC delay (task realization delay)

Θi
vs for video download–based non-6G applications using Eq. 14

(e.g., eMBB).

Θi
vs � ∑

y

i�1
Θi

urs + Θvs
vnf + Θi

tis + Θvs
svnf+(

Θvs
mp + Θvs

tvnf + Θvs
fud).

(14)

Θi
urs is a task request forwarding delay to the network slicing

manager from the user device. Θvs
vnf is the initial VNF processing

delay that includes FW, DPI, and NAT operation.
(Θvs

vnf � γifw+γidpi+γinat
Ωcp

+ Γitds
δtl

p htl), where γifw, γ
i
dpi, γ

i
nat are the

workloads for FW, DPI, and NAT operation. Θi
tis is task

instruction and work node selection information sending delay to
the worker node (Θi

tis � Γiiid
δwl

p zwh + Γitid
δfl

p zfh + Θi
pnd + Θi

wgd),
where Γiiid is the data size associated with task instruction and
work node selection. Θvs

svnf is the second VNF processing delay at
the cloud server that includes LB and IDS processing.
(Θvs

svnf � γilb+γiids
Ωcp

+ Γitds
δtl

p htl), where γilb and γiids are the workloads
for LB and IDS operation processing at theMEC server, respectively.
Θvs

mp is the virtual work node–based cache look-up and video file
preparation for download at the MEC server for video download-
based tasks. Θvs

mp � γvsmp

Ωcp
+ up(Θvs

ecd + Θvs
rcd), where γvsmp is the

workload for cache lookup and video file access at the MEC
server. u is the cache miss ratio (u = 0 or 1). Θvs

ecd and Θvs
rcd are
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communication delays associated with edge cloud-based and remote
cloud-based video access, respectively (Drolia et al., 2017). Θvs

tvnf is
the third VNF processing delay that includes IDS and NAT
processing delays at the user receiver device.
(Θvs

tvnf � γiids+γinat
Ωlp

+ γiids+γinat
δtl

p htl), where γiids and γinat are the
workloads for IDS and NAT operation. Θvs

fud is the video file
download delay from the virtual work node by the receiver
device. Θvs

fud � Γvstod
δwl

p zwh + Γvstod
δfl

p zfh + Θi
pnd + Θi

wgd, where Γvstod is
the downloaded video file data size.

Now, this paper calculates the SFC delay Θi
xa (task realization

delay) associated with XR-based education learning non-6G
applications using Eq. 15 (e.g., eMBB).

Θi
xa � ∑

y

i�1
Θi

urs + Θxa
vnf + Θi

tis + Θxa
ucd + Θxa

ofd(
+ Θxa

svnf + Θxa
mp + Θxa

str + Θxa
tvnf + Θxa

rpr).
(15)

Θi
urs is a task request sending or dispatch delay to the network

slicing manager from the user. Θxa
vnf is the initial VNF processing

delay that includes FW, DPI, and NAT operation. (Θxa
vnf �

γifw+γidpi+γinat
Ωcp

+ Γitds
δtl

p htl).
Θi

tis is the task instruction and work node selection information
convey delay to the worker node. Θi

tis � Γiiid
δwl

p zwh
+Γitid

δfl
p zfh + Θi

pnd + Θi
wgd). Θxa

ucd is the user XR device (e.g., VR
glass or headset)–based data collection (e.g., airplane image)
delay from the environment. (Θxa

ucd � γxaldc
Ωlp

), where γxaldc is the user
workload for task input data collection. Θxa

ofd is the user-captured
data offload delay to a virtual worker at the MEC server.
Θxa

ofd � Γxatid
δwl

p zwh + Γxatid
δfl

p zfh + Θi
pnd + Θi

wgd, where Γxatid is the
offloaded data size. Θxa

svnf is the second VNF processing delay
that includes IDS and NAT processing delays at the MEC server.
(Θxa

svnf � γiids+γinat
Ωcp

+ γiids+γinat
δtl

p htl), where γiids and γinat are the
workloads for IDS and NAT operation, respectively. Θxa

mp is the
virtual work node-based XR task data processing delay that includes
rendering, object detection from the image, and audio/visual virtual
data adding delay. (Θxa

mp � γxamp

Ωcp
), where γxamp is the workload for XR

task data processing at the MEC server. Θxa
str is MEC-processed XR

task resulting data transfer delay to the user device.
Θxa

str � Γxatod
δwl

p zwh + Γxatod
δfl

p zfh + Θi
pnd + Θi

wgd, where Γxatod is the
MEC-processed XR task result data size (e.g., airplane detection
result). Θxa

tvnf is the third VNF processing delay that includes IDS,
FW, and NAT processing at the receiver device.
(Θxa

tvnf � γiids+γifw+γinat
Ωlp

+ γiids+γifw+γinat
δtl

p htl), where γiids, γ
i
fw, and γinat

are the workloads for IDS, FW, and NAT operation at the
receiver XR device, respectively. Θxa

rpr is the user/receiver XR
device-based data processing delay that includes data
visualization. (Θxa

rpr � γxarp
Ωlp

), where γxarp is the workload for receiver
device-based XR data reception.

Next, we compute the SFC delay Θi
sa (task realization delay)

associated with smart agriculture-based non-6G applications (e.g.,
mMTC). In this application, IoT sensors can upload agriculture data
to the MEC server. The MEC server transfers the agriculture-related
suggestion to the farmer’s or user’s device after processing. Θi

sa is
given by using Eq. 16.

Θi
sa � ∑

y

i�1
Θi

urs + Θsa
vnf + Θi

tis + Θsa
ucd + Θsa

ofd(
+ Θsa

svnf + Θsa
mp + Θsa

str + Θsa
tvnf + Θsa

rpr).
(16)

Θi
urs is a smart agriculture task request sending or dispatch delay

to the network slicingmanager from the user device.Θsa
vnf is the initial

VNF processing delay that includes FW, DPI, and NAT operation.
(Θsa

vnf � γifw+γidpi+γinat
Ωcp

+ Γitds
δtl

p htl). Θi
tis is task instruction and work

node selection information convey delay to the selected worker
node (Θi

tis � Γiiid
δwl

p zwh +Γitid
δfl

p zfh + Θi
pnd + Θi

wgd). Θsa
ucd is the IoT

sensor-based agriculture data collection regarding crops (e.g.,
humidity, crop image, temperature, moisture). Θsa

ucd � γsaldc
Ωlp

), where
γsaldc is the IoT device workload for task input data collection (e.g.,
humidity, crop image, temperature, and moisture). Θsa

ofd is an IoT
device that captured data offload delay for a virtual worker at MEC.
Θsa

ofd � Γsatid
δwl

p zwh + Γsatid
δfl

p zfh + Θi
pnd + Θi

wgd, where Γsatid is the
offloaded data size. Θsa

svnf is the second VNF processing delay that
includes IDS and NAT processing at the MEC server.
(Θsa

svnf � γiids+γinat
Ωcp

+ γiids+γinat
δtl

p htl), where γiids and γinat are the
workloads for IDS and NAT operation processing, respectively.
Θsa

mp is the virtual work node–based smart agriculture task data
processing delay that includes IoT data processing and suggestion
generation regarding agriculture problems such as irrigation plans
and fertilizer plans. Θsa

mp � γsamp

Ωcp
), where γsamp is the workload for data

processing at the MEC server. Θsa
str is MEC-processed task result data

transfer delay to the user device. Θsa
str � Γsatod

δwl
p zwh

+Γsatod
δfl

p zfh + Θi
pnd + Θi

wgd, where Γsatod is the MEC-processed smart
agriculture task result data size (e.g., crop disease). Θsa

tvnf is the third
VNF processing delay that includes IDS and FW processing delay at
the user receiver device. (Θsa

tvnf � γiids+γifw
Ωlp

+ γiids+γifw
δtl

p htl), where γiids
and γifw are the workloads for IDS and FW operation at the receiver
device, respectively. Θsa

rpr is the receiver device–based task result data
visualization delay (Θsa

rpr � γsarp
Ωlp

), where γsarp is the workload for receiver
device–based data reception.

Last, we present the SFC delayΘi
su (task realization delay) associated

with video surveillance-based non-6G applications (e.g., mMTC). In this
application, video cameras capture and upload video data to the MEC
server. The MEC server processes and transfers the security threat
information to the user’s device. Θi

su is given by using Eq. 17.

Θi
su � ∑

y

i�1
Θi

urs + Θsu
vnf + Θi

tis + Θsu
ucd + Θsu

ofd(
+ Θsu

svnf + Θsu
mp + Θsu

str + Θsu
tvnf + Θsu

rpr).
(17)

Θi
urs is a video surveillance–based task request sending/dispatch

delay to the slicing manager from the user device. Θsu
vnf is the initial

VNF processing delay that includes FW, IDS, and NAT operation.
(Θsu

vnf � γifw+γiids+γinat
Ωcp

+ Γitds
δtl

p htl). Θi
tis is task instruction and work

node selection information convey delay to the selected worker
node (Θi

tis � Γiiid
δwl

p zwh + Γitid
δfl

p zfh + Θi
pnd + Θi

wgd). Θsu
ucd is the

video camera–based task location data collection regarding security
threat detection. Θsu

ucd � γsuldc
Ωlp
), where γsuldc is the workload for video

surveillance task input data collection by a video camera. Θsu
ofd is a

video camera device based on captured data offload delay to a virtual
worker at MEC. Θsu

ofd � Γsutid
δwl

p zwh + Γsutid
δfl

p zfh + Θi
pnd + Θi

wgd, where
Γsutid is the offloaded data size. Θsu

svnf is the second VNF processing
delay that includes IDS andNAT processing delays at theMEC server.
(Θsu

svnf � γiids+γinat
Ωcp

+ γiids+γinat
δtl

p htl), where γiids and γinat are the
workloads for IDS and NAT operation, respectively. Θsu

mp is the
MEC-based video surveillance task data processing delay that
includes object detection, scenario analysis, and security threat
detection. Θsu

mp � γsump

Ωcp
), where γsump is the workload for MEC server.
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Θsu
str is MEC-processed video surveillance task result transfer delay to

the user.Θsu
str � Γsutod

δwl
p zwh +Γsatod

δfl
p zfh + Θi

pnd + Θi
wgd, where Γsutod is the

video surveillance task result or data size (e.g., object detection and
security threat detection).Θsu

tvnf is the third VNF processing delay that
includes IDS and NAT processing delay at the receiver device.
(Θsu

tvnf � γiids+γinat
Ωlp

+ γsuids+γsunat
δtl

p htl), where γiids and γinat are the
workloads for IDS and NAT operation, respectively. Θsu

rpr is the
user/receiver device–based task result data visualization delay for
the video surveillance task. (Θsu

rpr � γsurp
Ωlp

), where γsurp is the
workload for receiver device–based data reception.

4.2 User energy usage value for task
implementation

The user device energy usage value (ξieuc) for different 6G
and non-6G task implementations includes the energy expense
value for task data transmission, task data receiving, resource
waiting, virtual work node–based task work processing, and a
user client device–based or physical work node–based work
processing (see Eq. 18).

ξ ieuc � ∑
yts

i�1
κitm p Θi

tm + κire p Θi
re + κisdp p Θi

sdp( )

+∑
yts

i�1
κivnp p Θi

vnp + κiwd p Θi
rwd( )

+∑
ycs

i�1
κitm p Θi

tm + κire p Θi
re + κisdp p Θi

sdp( )

+∑
ycs

i�1
κivnp p Θi

vnp + κiwd p Θi
rwd( ), (18)

where yts and ycs are the total implemented users’ time-saving
priority tasks and cost-saving priority tasks, respectively. κitm, κ

i
re,

κisdp, κ
i
vnp, and κiwd are the average energy expense values (per

millisecond) regarding task data transmission operation, receive
operation, user device/physical work node–based workload
processing, virtual work node–based workload processing, and
waiting time for resource or workload access, respectively. Θi

tm,
Θi

re, Θi
sdp, Θi

vnp, and Θi
rwd are the delays regarding task data

transmission operation, reception operation, user device/physical
work node–based workload processing, virtual work node–based
workload processing, and resource or workload access, respectively.

4.3 QoS guarantee ratio

The QoS guarantee ratio ϕiqgr is investigated by calculating the
ratio of the total 6G/non-6G task that satisfies task requirements and
the total 6G/non-6G task that requests service execution. In this
work, the QoS ratio can be defined as the task execution time limit or
deadline satisfaction ratio. In other words, QoS for any task
execution is the ability of the network to satisfy the task
execution deadline limit.

The QoS guarantee ratio ϕiqgr is measured by using Eq. 19.

ϕi
qgr �

∑y
i�1Λi

tt − ∑yts
i�1Λi

ust + ∑ycs
i�1Λi

ust( )
∑y

i�1Λi
tt

(19)

where Λi
tt is the total 6G and non-6G task number count based on

arrival. Λi
ust is the total unsuccessful task that misses the task

deadline. yts and ycs are the total implemented users’ time-saving
priority tasks and cost-saving priority tasks, respectively. y is the
total user task number (y = yts + ycs).

4.4 Maximum achievable throughput

The maximum achievable throughput Πi
mat can be investigated

by calculating the ratio of total task data amount (both input task
data and output task data) and maximum time span delay value
regarding task implementation.

Πi
mat is computed by using Eq. 20.

Πi
mat �

∑y
i�1 Γitin + Γitot + Γiodt( )

∑y
i�1Δi

mpd

, (20)

where Γitin, Γitot, Γiodt, and Δi
mpd are the total exchanged 6G and non-

6G task input data amount, total exchanged task output or result
data amount, other data amount, and time span delay for task
implementation, respectively. The maximum time span delay value
(Δi

mpd) can be defined by taking the maximum task implementation
delay among all arrived task executions or the maximum task
implementation delay to complete all arrived task requests (y) at
the slicing manager. The maximum time span delay value for the
number of tasks is given by Δi

mpd = max{Δ1
tid,Δ2

tid,Δ
y
tid}, i ∈ 1, 2, y,

where y is the total task number. Δi
tid is the minimum possible task

implementation delay for a single task execution with the selected
resource node (please see Section 4.1 for each task implementation
delay calculation).

4.5 Users’ service execution monetary cost

The service execution cost for users’ task implementation (μisecu)
can be obtained by taking the monetary sum value regarding
network resource use, virtual work node or cloud resource use,
physical or client device use, and waiting delay during resource
usage service. μisecu is determined by using Eq. 21.

μisecu � ∑
yts

i�1
πi
nru p Θi

tm + πi
nru p Θi

re + πi
sdp p Θi

sdp( )

+∑
yts

i�1
πi
vnp p Θi

vnp + πi
wd p Θi

rwd( )

+∑
ycs

i�1
πi
nru p Θi

tm + πi
nru p Θi

re + πi
sdp p Θi

sdp( )

+∑
ycs

i�1
πi
vnp p Θi

vnp + πi
wd p Θi

rwd( ), (21)

where yts and ycs are the total implemented users’ time-saving
priority tasks and cost-saving priority tasks, respectively. πi

nru,
πi
sdp, π

i
vnp, and πi

wd are the average monetary expense values (per
millisecond) regarding network bandwidth resource usage, user
device/physical work node–based resource usage, virtual work
node–based resource usage, and waiting time for resource or
during work node access, respectively.

Frontiers in Communications and Networks frontiersin.org17

Chowdhury 10.3389/frcmn.2024.1385656

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1385656


4.6 Internet service providers’ and cloud
providers’ profit

The total task execution profit for internet service providers (ISPs)
and that for the cloud providers can be determined by taking the
difference (χispp � ∑y

i�1μisecu − χispc) between the collected revenue
from users (μisecu) for task implementation services and the ISP/cloud
providers’ monetary cost (χispc) regarding service continuation (e.g.,
resource buy and maintenance). ISP and cloud service provider costs
are determined by using Eq. 22.

χispc � ∑
yts

i�1
τinru p Θi

tm + τ inru p Θi
re + τ isdp p Θi

sdp( )

+∑
yts

i�1
τivnp p Θi

vnp + τ iwd p Θi
rwd( )

+∑
ycs

i�1
τinru p Θi

tm + τ inru p Θi
re + τ isdp p Θi

sdp( )

+∑
ycs

i�1
τivnp p Θi

vnp + τ iwd p Θi
rwd( ), (22)

where τinru, τ
i
sdp, τ

i
vnp, and τ

i
wd are the averagemonetary expense value

(per ms) for service providers regarding network bandwidth resource
use, user device/physical work node–based resource usage, virtual
work node–based resource usage, and waiting time, respectively.

4.7 User and service providers’welfare value

User welfare for task implementation value χiuw is obtained by taking
the summation of users’ task implementation time gain, energy usage
gain, and service execution monetary cost gain. χiuw is determined by
using Eq. 23.

χiuw � ∑
y

i�1
χitw + χiew + χimw

� ∑y
i�1Δi

td − Δi
md

∑y
i�1Δi

td

+ ∑y
i�1ξ

i
eb − ξ ieuc

∑y
i�1ξ

i
eb

+∑y
i�1μ

i
mb − μisecu

∑y
i�1μ

i
mb

, (23)

where Δi
td, ξ

i
eb, and μimb are the user’s task implementation deadline,

energy budget, and monetary budget for task implementation,
respectively. Δi

md, ξ
i
euc, and μisecu are the user’s required task

implementation time span delay during task execution, energy
expense cost, and service execution monetary cost, respectively.
ISP’s and cloud service providers’ welfare (χispw) for task
implementation value is obtained by taking the summation of
service execution monetary cost gain. χispw is estimated by

χiuw � ∑y
i�1χispp � ∑y

i�1χ
i
secu−χispc

∑y

i�1χ
i
spc

, where χisecu and χ
i
spc are the ISPs’

and cloud providers’ revenue and monetary cost, respectively.

4.8 User’s survived energy

The user’s average survived energy ϒi
use is measured by taking

the ratio of the total remaining energy to the total number of user

devices. ϒi
use is investigated by ϒi

use � ∑y

i�1σ
i
te−yat p ξiaec p ρ

∑y

i�1Ξ
i
tn

, where σ ite,

yat, ξ
i
aec, ρ, and Ξi

tn are the summation of total user energy, active task

number, average energy per user in each round, simulation round,
and total user node number in a network, respectively.

4.9 Total number of capable or alive
user devices

The total number of capable or alive user devices φi
udn is

computed by taking the ratio of the total cost of energy by all

user devices and the initial energy of a user device. φi
udn is estimated

by φi
udn � ∑y

i�1yat p ξiaec p ρ

ζ iie
, where ζ iie, yat, ξ

i
aec, ρ, and Ξi

tn are the initial

energy of a user device, active task number, average energy per user
in each round and the simulation round, and the total user node
number in a network, respectively.

5 Simulation results and analysis

Section 5 presents the comparison results of (i) the proposed
time-first accelerator scheme with a minimum predicted
computation delay, communication delay, and waiting
delay–based network resource slicing, (ii) the proposed cost-first
accelerator scheme with a minimum predicted service execution
monetary cost–based network resource slicing, (iii) the traditional
minimum communication delay–based network resource–slicing
scheme (e.g., Sun et al., 2020; Siasi et al., 2020; Marotta et al.,
2017; Cai et al., 2022; Przybylski et al., 2021), and (iv) the traditional
computational power–based work node selection with casual task
scheduling scheme (e.g., Zhang et al., 2015; Ma et al., 2022;
Demchenko et al., 2015; Angui et al., 2022). The detailed
simulation parameters (e.g., data size, workload, monetary cost,
energy cost, and deadline) and the values associated with the
different SFC tasks are discussed in Table 2.

For simulation, the total value of task count is varied between
26 and 195. The task data amount associated with users’ task request,
server-to-server dispatched amount during VNF processing, task
instruction with virtual/physical work node selection are 1,024 bits,
512 bits, and 256 bits, respectively. The data size associated with
metaverse-based avatar interaction task input, users’ first and second
avatar conversation data, holographic telepresence task input, MEC
processed holographic task output, EV charging task input, MEC
processed EV charging task output are chosen random basis within
1–20 KB, 1–20 KB, 1–10 MB, 1–10 MB, and 1–5 KB range,
respectively. The distance from starting to the charging station
point for EV movement, client devices’ own movement speed,
charging requirement, and available charge value data are varied
randomly within 100–500 m, 50–80 m/s, 0.15–0.6 KWh, and
0.2–0.6 KWh, respectively. The battery depletion threshold,
battery capacity, and EV charging/discharging rate are 0.15,
50 KWh, and 45 KW, respectively. The data size associated with
offloaded brain–computer interaction task, MEC-processed
brain–computer interaction task result, offloaded haptic feedback-
based gaming task, MEC-processed haptic feedback task result,
offloaded human–robot interaction-based automation task,
human users’ processed task result for automation task, robots’
second offloaded task data, and robots’ second inspection data to the
human users’ device are chosen on random basis within 5–50 KB,
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5–50 KB, 1–20 MB, 1–20 MB, 1–20 KB, 1–20 KB, and 1–20 KB
range, respectively. The task data amount for MEC-processed
result in high-speed railway task, offloaded amount for high-
speed railway task, transfer from users to the receiver device,
global deep learning model for FL task, offloaded data size for FL
task, finally updated global deep learning model, initial blockchain
registration operation, e-healthcare task input, digital twin–based
processed result, doctor device–processed result, transferred block
data size, transferred verified block data size, a user accessed
e-healthcare task result, and downloaded video files are varied
between 1 and 10 KB, 1–10 KB, 1–50 KB, 1–15 MB, 1–5 MB,
1–15 MB, 1–15 MB, 5–25 KB, 5–25 KB, 5–25 KB, 5–25 KB,
5–25 KB, and 5–25 KB, respectively. The task data size for
offloaded XR-based education learning task, MEC-processed XR
task result, offloaded smart agriculture task, MEC-processed smart
agriculture task result, offloaded video surveillance task, MEC-
processed video surveillance task result are chosen on random
basis within 1–10 MB, 1–10 MB, 1–20 KB, 1–20 KB, and 1–5 MB,
respectively.

The workload amount for FW, DPI, and NAT operation, client
device–based avatar creation data capture, IDS, avatar creation by
MEC, avatar movement, client device–based conversation data
capture for avatar, virtual node–based avatar conversation

message–playing operation, second client device–based
conversation data capture, and virtual node–based second avatar
conversation message–playing operation are 300, 300, 300, 100, 300,
500, 100, 100, 500, and 100 CPU cycles/bit, respectively. The
distance from one avatar to another during movement are
chosen randomly between 5 and 500 m. The workload amount
for client device–based holographic task data capture, MEC servers’
holographic data processing, receiver device–based holographic data
processing, receiver device–based holographic data visualization,
client device–based electronic vehicle task data capture, EV charging
task data processing at MEC server, brain data capture work,
brain–computer interaction task data processing at MEC server,
receiver device–based wheelchair movement operation, entering
game state, haptic feedback task input data collection, haptic
input task data processing at MEC server, and receiver
device–based haptic feedback reception are 50, 1 K, 50, 10, 100,
1 K, 1 K, 1 K, 1 K, 50, 500, 1 K, and 10 CPU cycles/bit, respectively.
The workload amount for supplying raw material to robots, user
manufacturing operations, checking robots’ work by using
human devices, robot-based rechecking operations, checking
robots’ final work by using human devices, base station
selection at the MEC server, load balancing operations,
encryption operations at the receiver base stations, decryption

TABLE 2 Simulation notations or parameters with values.

Parameter Values/units

Γinib , Γiucr , Γiurr, Γiumsr, Γiuaa , and Γismtrs , Θi
pnd , and Θi

wgd , Ωcp/Ωlp, ttldd Beacon message size (160 bits), internet connectivity request message size (160 bits),
connectivity response message size (160 bits), service registration and access request
message (192 bits), user authentication and user approval message size (192 bits), and
task request slot schedule message size (192 bits), total propagation delay (ms, vary)
and waiting (ms, vary) delay, work processing speed for the virtual worker
(32–45 GHz)/user device (1,000–2000 MHz), and time limit or deadline for task
execution (3,000–73,500 ms)

γnsmuwip/γ
ud
uwip , δwl/δfl, zfh/zwh, Γiisdr/Γiisres , Γiutr, Γirurs , Γiuris , γnsmurg , γ

wd
urg , Γinsd/Γirsd , γinsd Network slicing manager/user device workload for network inauguration (10 CPU

cycles/bit), wireless link (10–20 Gbps for terahertz, 5–7 Gbps for mmWave,
50–500 Mbps for microwave, 10,000–40,000 Mbps for WLAN link)/fiber link data rate
(20–40 Gbps), hop for per fiber (1–10, vary)/wireless link (1–5, vary), inter SDN
controller request (160 bits)/response (160 bits), message size regarding users’ task
request message (1 KB), resource info. request (160 bits), updated resource info. reply
message (192 bits), network slicing manager workload (10 CPU cycles/bit)/worker
workload (5 CPU cycles/bit) for user request and resource information gathering
phase, broadcasted resource/worker allocation message size for the users/worker
(192 bits), and the workload for network slicing manager (10 CPU cycles/bit) for
network resource slicing

κitm , κ
i
re , κ

i
sdp , κ

i
vnp , and κiwd , π

i
nru , π

i
sdp , π

i
vnp , and πiwd , τ

i
nru , τ

i
sdp , τ

i
vnp , and τiwd ,

simulation area

Average energy expense value (per millisecond) regarding task data transmission
operation (0.43 W), data receive operation (0.35 W), user device–based workload
processing (0.52 W), virtual work node–based workload processing (0.0008 W), and
waiting time (0.0005 W), average monetary expense value (per millisecond) regarding
network bandwidth resource usage (0.4/0.3 USD for time-first/cost-first policy), user
device–based resource usage (0.2/0.15 USD for time-first/cost-first policy), virtual
work node–based resource usage (0.4/0.3 USD for time-first/cost-first policy), and
waiting time (0.001 USD), average monetary expense value (per millisecond) for
service providers regarding network bandwidth resource use (0.3/0.2 USD for time-
first/cost-first policy), user device–based resource usage (0.15/0.1 USD for time-first/
cost-first policy), virtual work node–based resource usage (0.3/0.2 USD for time-first/
cost-first policy), and waiting time (0.0025/0.0015 USD for time-first/cost-first policy),
500 m × 500 m

Δi
tid , ξ

i
euc , ϕ

i
qgr , Πi

mat , μ
i
secu , χ

i
spp , χ

i
uw , χ

i
spw , ϒ

i
use , φ

i
udn , total user device, and task count Task implementation delay (ms, vary), user devices energy usage value (mJ, vary), QoS

guarantee ratio (0%–100%), maximum achievable throughput (Mbps, vary), service
execution cost for users (USD, vary), total task execution profit for ISP and cloud
providers (USD, vary), user welfare (0–100, vary), service providers welfare (0–100,
vary), users average survived energy (mJ, vary), and the total number of the capable or
alive user device (vary), 500, 26–195
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operations, task output data displays at the receiver, client
device–based road data captures, local model data training,
global model updates, MEC blockchain server work and local
client during preliminary blockchains, user e-healthcare data
collection, e-healthcare task data processing at digital twin,
e-healthcare task data processing at doctor devices,
e-healthcare block creation, block verification, ledger update,
receiver device–based e-health data display are 100, 100, 50,
100, 50, 1,000, 200, 200, 200, 100, 50, 50, 1 K, 100, 100, 100,
1 K, 100, 100, 100, 100, and 10 CPU cycles/bit, respectively. The
workload amount for cache lookup, XR task input data collection,
XR task data processing at MEC, receiver device during XR data
reception, IoT device for task input data collection, agriculture
task processing at MEC, receiver device–based agriculture data
reception, video surveillance input data collection, video
surveillance task data processing at MEC, video surveillance
task resultant data reception are 50, 50, 1 K, 10, 500, 1 K, 100,
50, 1 K, and 10 CPU cycles/bit, respectively.

In Figure 3A, this work first compares the average task
implementation delay (i.e., average task execution time) of the
proposed time-first and cost-first scheme against the traditional
scheme (minimum communication delay–based worker selection)
by varying the task count number. The task implementation delay is
defined by taking the sum of all delays associated with task initiation
and task execution completion. As we can see from the figure, when
the task count value is smaller, the task implementation delay is
smaller in all proposed and compared schemes. The increment in
task count value produces a higher task implementation delay in all
proposed and compared schemes. The figure shows that the
proposed time-first accelerator scheme produces the lowest task
implementation delay when compared with the others. Although the
proposed cost-first scheme receives the highest task implementation
delay, and the compared (minimum communication delay) scheme
offers the second-lowest task implementation delay. The proposed
time-first accelerator scheme adopts the best virtual and physical
worker selection with a minimum predicted computation delay,
communication delay, and waiting delay for their SFC-based

application execution. The proposed time-first scheme also
ensures a task QoS guarantee by offering worker and resource
allocation based on the smallest deadline on a task-first basis. On
the contrary, the proposed cost-first scheme adopts worker and
resource allocation based on their lowest payment costs, thus
receiving the third place. If multiple workers or resources offer
the same lowest cost, the best worker or communication resource is
selected in the cost-first scheme based on their highest computation
capability or link data rate. The compared scheme selects a worker or
resource for application execution based on the lowest
communication delay (i.e., the nearby worker or resource), thus
receiving the second place. Due to its only communication
delay–based selection, the task execution in the compared scheme
may receive the second-highest waiting delay. The task
implementation delay is the highest in the cost-first scheme
because workers or resources with the lowest monetary cost are
preferred (e.g., remote cloud), thus experiencing the highest
computation delay, waiting delay, and communication delay. In
Figure 3A, if the task number is 195, the average task
implementation delay for the proposed time-first, compared
scheme (minimum communication delay), and proposed cost-
first scheme is 33,658 ms, 42,164 ms, and 51,441 ms, respectively.

The maximum achievable throughput for both proposed and
compared methods by varying task total data size values is
investigated in Figure 3B. The throughput value is calculated by
taking the ratio of the total exchanged task data value and the
makespan task execution delay value. Figure 3B hints that a large
amount of the total task data exchange produces a higher achievable
throughput value than its smaller amount task data counterparts in
both the proposed and compared schemes. Hence, the task
implementation makespan delay is the lowest in the proposed
time-first scheme; it produces the highest achievable throughput
value. Due to the second- and third-highest task implementation
makespan delay values, the compared scheme (minimum
communication delay) and proposed cost-first offer the second-
best and third-best throughput values, respectively. In Figure 3B, if
the task data size number is 252.9 Mb, the achievable throughput for

FIGURE 3
Task implementation delay and throughput achievable value.
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the proposed time-first, compared scheme (minimum
communication delay), and proposed cost-first scheme are
4.34 Mbps, 4.10 Mbps, and 3.95 Mbps, respectively.

Figure 4A examines the QoS guarantee ratio of our proposed
scheme by varying the value of the time limit. It is shown in
Figure 4A that when the task execution time limit is higher, the
QoS guarantee ratio is also large in all three schemes (proposed and
compared). When the task execution time limit is smaller, the QoS
guarantee ratio is also smaller in both the proposed and compared
schemes. The proposed time-first scheme offers the highest QoS
guarantee ratio. This is because it experiences lower computation,
communication, and waiting delays for task execution than the other
compared schemes due to its appropriate resource and worker
selection scheme. The cost-first scheme receives the third
position as it experiences the highest computation,
communication, and waiting delay for task execution compared
to other schemes. The cost-first scheme receives the second position
as it experiences the second-best computation and waiting delay for
task execution. From Figure 4A, it can be noted that when the task
time limit value is 73,500 ms, the achievable QoS guarantee ratios of

the proposed time-first scheme, compared scheme (minimum
communication delay), and proposed cost-first scheme are 100%,
86.15%, and 74.87%, respectively.

The service execution cost value for both the proposed
scheme and the compared scheme by varying the value of the
task number is highlighted in Figure 4B. The figure visualizes that
a large amount of task execution requires the highest amount of
service execution cost for users, and a small amount of task
execution requires a comparatively lower amount of service
execution payment cost for users in all three compared
schemes. However, the proposed cost-first scheme allocates
resources with the smallest monetary cost for task execution,
thus offering better service execution cost results than others. The
proposed time-first scheme requires resources for a smaller
amount of time than the compared (minimum communication
delay) scheme. Thus, the proposed time-first scheme gives the
second-best service execution cost for task execution, and the
compared scheme gives the third-best service execution cost
results. From Figure 4B, it is shown that when the task value
is 104, the service execution monetary payment cost for the

FIGURE 4
Service quality guarantee ratio and user money or service execution cost.

FIGURE 5
Energy usage and user welfare value.

Frontiers in Communications and Networks frontiersin.org21

Chowdhury 10.3389/frcmn.2024.1385656

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1385656


proposed time-first scheme, compared scheme (minimum
communication delay), and proposed cost-first scheme is
14,050 USD, 14,900 USD, and 11,960 USD, respectively.

Figure 5A gives the user’s energy usage or expense value by
varying the task data size for all three schemes. Figure 5A notes that
the increment in task data size value requires a higher energy usage
value than its smaller task data size counterparts in all three schemes.
For both large and small task data sizes, the proposed time-first
scheme requires the smallest user device energy usage value for task
execution compared to both cost-first and compared schemes. The
main reason behind this result is that the proposed time-first scheme
experiences a lower amount of task implementation delay, thus
requiring a smaller amount of energy than others. Although the
cost-first scheme experiences a large amount of task implementation
delay, thus requiring a higher amount of energy than others, the
compared scheme (minimum communication delay) gives the
second-best energy expense or usage value due to its second-best
task implementation delay results. From Figure 5A, it can be
deduced that when the task data size value is 323.2 Mb, the
energy usage cost for the proposed time-first scheme, compared
scheme (minimum communication delay), and proposed cost-first
scheme is 27,626 mJ, 29,326 mJ, and 30,200 MJ, respectively.

Figure 5B notifies the results concerning the value of user
welfare versus the task number for all three comparable schemes.
Overall, the value of user welfare increases with the incremental
value of task number. The user welfare value is determined by
taking the sum of task implementation delay gain, energy usage
gain, and service execution cost gain. The proposed time-first
scheme produces a higher amount of user welfare value than both
the proposed cost-first scheme and the compared scheme (min
communication delay). The proposed cost-first scheme secures
the second position and the compared scheme secures the third
position in terms of the value of user welfare. The major reason
behind this result is that the time-first scheme gives the highest
task implementation delay gain, the highest energy usage gain,
and the second highest service execution cost gain. Although the
compared scheme (minimum communication delay) gives the
highest service execution cost gain but the lowest task
implementation delay gain and energy usage gain, the

compared scheme gives the second highest task
implementation delay gain, the second highest energy usage
gain, and the lowest service execution cost gain. From
Figure 5B, it is seen that when the task value is 65, the user
welfare value for the proposed time-first, compared scheme
(minimum communication delay), and proposed cost-first
scheme are .71, .38, and .60, respectively.

Figure 6A hints that the service provider welfare increases with
the large task total data size value in both the proposed and
compared schemes. The service provider’s welfare is determined
by taking the sum of revenue regarding the user’s task execution,
computation delay, communication delay, and waiting delay. It can
be noted from the figure that the proposed cost-first scheme offers a
greater service provider welfare value than the others. The results
depict that the compared scheme secures the third position and the
proposed time-first scheme secures the second position in terms of
service provider welfare. This is because the resource purchase and
maintenance costs (e.g., remote cloud) are lower in the proposed
cost-first scheme than the others. From Figure 6A, when the task
data size value is 252.9 Mb, the service provider welfare value for the
proposed time-first, compared scheme (minimum communication
delay), and proposed cost-first scheme is 0.83, 0.30, and 1.09,
respectively.

Figure 6B examines the active and capable user device number
versus the value of the simulation round for all three schemes.
Figure 6B hints that the number of capable user devices reduces with
the large simulation round value in all three schemes. The proposed
time-first scheme gives the best results in terms of alive and capable
user device numbers due to its lowest energy usage value during per-
round task execution. The proposed cost-first scheme gives the
lowest alive and capable user device number value due to its highest
energy usage value during per-round task execution. The existing
compared scheme (minimum communication delay) gives the
second-best alive user device number due to its second-highest
energy expense value per simulation round. From Figure 6B,
when the task number is 26 and the simulation round is 1,700,
the alive and capable user device values for the proposed time-first
scheme, compared scheme (minimum communication delay), and
proposed cost-first scheme are 66, 40, and 22, respectively.

FIGURE 6
Service provider welfare and the alive user number.
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The average survival or remaining user device energy value
performance versus the simulation round for both the proposed and
existing schemes is given in Figure 7B. It can be seen from Figure 7A
that the average survival or leftover user device energy decreases
with the incremental value of the simulation round in all three
schemes. Hence, due to the lower amount of user device energy per
task execution, the proposed time-first scheme offers the highest
average survived energy value among others. It can also be noticed
from Figure 7A that due to the second-best and worst energy
consumption during task implementation, the existing compared
scheme and the proposed cost-first scheme give the second-best and
lowest average survival energy value. From Figure 7A, it can be noted
that when the simulation round is 1,500 and task number is 26, the
average survived energy value for the proposed time-first scheme,
compared scheme (minimum communication delay), and proposed
cost-first scheme is 1,190 mJ, 935 mJ, and 785 MJ, respectively.

Figure 7B discusses the ISP/cloud service providers’ profit result
comparison by varying the task implementation value for both the
proposed and compared schemes. Figure 7B depicts that the ISP/
cloud provider profit increases with the incremental value of the task
implementation number in all proposed and compared schemes.
Due to lower resource costs, the proposed cost-first scheme provides

the best ISP/cloud provider profit to others. The figure also shows
that the proposed time-first scheme receives the second-best ISP/
cloud provider profit due to its second-best task service execution
cost. Although the compared scheme (minimum communication
delay) gives the lowest ISP/cloud provider profit due to its highest
task service execution cost and waiting delay for service. From
Figure 7B, it can be pointed out that when the implemented task
number is 195, the ISP/cloud provider profit value for the proposed
time-first scheme, compared scheme (minimum communication
delay), and proposed cost-first scheme is 13,600 USD, 3010 USD,
and 16,100 USD, respectively.

5.1 Detailed comparison and performance
gain analysis

Table 3 gives a comparative analysis (when the task number is
195) by taking three performance metrics results for the proposed
time-first scheme, the proposed cost-first scheme, the traditional
scheme with minimum communication delay-based resource
selection (compared scheme 3), and the traditional scheme
with high computational power-based resource selection

FIGURE 7
User survived energy and ISP/cloud service provider profit value.

TABLE 3 Comparative performance analysis for task number = 195.

Scheme name Average task
implementation delay (ms)

Users’ service
execution cost

Users’ energy
usage cost (mJ)

Proposed time-first accelerator scheme (with minimum predicted
delay-based work node/resource selection)

33,658 31,548 USD 27,626

Proposed cost-first scheme (with minimum predicted monetary cost-
based resource selection)

51,441 28,288 USD 30,200

Compared scheme 3: traditional scheme with minimum
communication delay–based resource slicing (e.g., Sun et al., 2020;
Siasi et al., 2020; Marotta et al., 2017; Cai et al., 2022; Przybylski et al.,
2021)

42,164 33,350 USD 29,326

Compared scheme 4: traditional scheme with high computational
power–based work node selection with casual task scheduling (e.g.,
Zhang et al., 2015; Ma et al., 2022; Demchenko et al., 2015; Angui
et al., 2022)

57,845 35,096 USD 30,980
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(compared scheme 4). It can be seen from the table that the
proposed time-first scheme offers the best possible average task
implementation delay and users’ energy cost results. Although
the proposed cost-first scheme shows the best possible user
service execution cost results, the proposed cost-first scheme
secures the third position in terms of average task
implementation delay and users’ energy usage cost. The
traditional scheme with minimum communication delay-based
resource selection (compared scheme 3) secures the second
position, whereas the traditional scheme with high
computational power-based resource selection (compared
scheme 4) achieves the fourth position among all compared
schemes in terms of average task implementation delay and
user service execution monetary cost results. The reason
behind the supremacy of the proposed time-first scheme is
that it selects the work node or resources based on the lowest
predicted delay basis, which includes the associated computation
delay, communication delay, and waiting delay. Although the
proposed cost-first scheme selects the resource with the lowest
cost for different task executions, the compared scheme 3 selects
suitable resources by examining the lowest possible
communication delay. The compared scheme 4 achieves worse
results due to its random resource selection nature without
examining different delays and costs for each task execution.
The compared scheme selects work node based on high
computational power. From Table 3, it is seen that when the
implemented task number is 195, the average task
implementation delay gain in the proposed time-first scheme
over compared scheme 3 (minimum communication delay),
proposed cost-first scheme, and compared scheme 4 (high
computational power) are 25.27%, 52.83%, and 71.8%,
respectively. Table 3 also reveals that when the implemented
task number is 195, the user service execution cost gain in the
proposed cost-first scheme over compared scheme 3 (minimum
communication delay), proposed time-first scheme, and
compared scheme 4 (high computational power) are 17.89%,
11.52%, and 24.06%, respectively. Table 3 also shows that when
the implemented task number is 195, the user energy usage cost
gain in the proposed time-first scheme over compared scheme
3(minimum communication delay), proposed cost-first scheme,
and compared scheme 4 (high computational power) are 6.15%,
9.31%, and 12.14%, respectively.

5.2 Computational complexity analysis

The computational complexity value of the proposed accelerator
(both time-first and cost-first schemes) can be determined byO(y p ϕrn+
y p ϕbr), where y is the total value of the 6G and non-6G application
request amounts. ϕrn is the work node (physical and virtual resource)
selection number per application request. ϕbr is the number of
communication link resource selections per application execution.
Thus, the computational complexity of the proposed accelerator
(both time-first and cost-first schemes) is O(y p ϕrn + y p ϕbr)
because the proposed accelerator scheme selects the best resources
per application with minimum predicted task implementation delay
cost and minimum monetary cost value. The best possible work node
resources are selected by examining all available resource node statuses

(i.e.,O(ypϕrn)). The best possible communication link is selected for each
application data transfer activity by examining all communication link
statuses (i.e., O(y p ϕbr)). Although the computational complexity of
compared scheme 3 (minimum communication delay) or compared
scheme 4 (maximum computational power) is O(y p 1), for traditional
scheme 3, the first nearby resource node is selected for each application
execution. Similarly, for the traditional scheme 4, the work node with
maximum power is selected for task execution. Thus, O(1) time is
required for resource selection per application request in the traditional
scheme 3 or 4. Hence, the proposed accelerator scheme requires more
computational time complexity than the traditional scheme for best
resource selection.

5.3 Feasibility of the practical
implementation of the work

In Section 3.1, we discussed the network model, such as
considerations and technical standards. We utilized currently
available devices and IEEE standards. Thus, the proposed model
is practically feasible. Algorithm 1 and Figure 2, as well as Section
3.2, describe how we implemented our work. Section 4 illustrates the
mathematical model used for evaluation. In Section 5, we presented
and discussed the simulation results, which included their
advantages and disadvantages. Table 2 and Section 5 provide
detailed information on the simulation parameters. The
simulation results clearly show that the proposed system
outperforms existing systems in terms of task implementation
delay, energy consumption cost, service execution cost for users,
quality guarantee ratio, throughput, and service provider welfare
outcomes. Thus, the proposed system is both legally, technically,
performance-wise, and economically feasible for practical
implementation.

6 Conclusion

This work introduces a task execution time priority-first and
monetary cost priority-first policy based on time slot scheduling,
virtual and physical workers, and bandwidth resource
assignment algorithm for different 6G and non-6G application
execution over ZTNs. To speed up the 6G and non-6G
application execution over the ZTN, the proposed network
model integrates different technologies (e.g., SDN, NFV,
blockchain, digital twin, and MEC), different types of
communication links (e.g., wired and wireless links), and
different user devices (e.g., IoT devices and robots). To
examine the proposed scheme’s performance over a ZTN, this
paper gives a performance analysis model that includes task
implementation delay, energy cost, QoS guarantee ratio, and
monetary cost metrics. It provides an accelerator-based task
coordination and resource scheduling algorithm. The
simulation results highlight that when the task number is 104,
the average task implementation delay of the proposed time-first
scheme, compared scheme 3 (minimum communication delay
based), and the proposed cost-first resource selection policy are
12,455 ms, 20,202 ms, and 22,750 ms, respectively. For the data
size value of 252.9 MB with 130 task number executions, the
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user’s energy usage value of the proposed time-first scheme,
compared scheme 3 (minimum communication delay based),
and the proposed cost-first resource selection policy are
18,329 mJ, 19,930 mJ, and 20,430 mJ, respectively. For the task
number of 130, the service execution monetary cost value of the
proposed time-first scheme, compared scheme 3 (minimum
communication delay based), and proposed cost-first resource
selection policies are 21,752 USD, 23,354 USD, and 14,990 USD,
respectively. The evaluation results highlight that the proposed
time-first scheme can offer maximum task implementation delay
gain compared to other compared schemes. The simulation
results also revealed that the proposed cost-first scheme can
provide maximum service execution monetary cost gain
compared to other compared schemes.

This work’s future research extensions include deep
learning–based ZTN failure prediction, service request arrival
prediction, quantum cryptography–based security enhancement,
and machine learning–based congestion control for SDN- and
NFV-enabled ZTN. The work’s limitation is that it did not
investigate failure recovery, age-of-information-aware resource
selection, or cost-effective VNF placement problems for ZTN-
based 6G and non-6G application execution using DRL
techniques. Furthermore, it did not look into blockchain and
FL-based security and privacy checks for ZTN-based application
execution. A semantic communication-aware resource-slicing
framework can be developed in the future by taking into
account more emerging next-generation application scenarios
(e.g., industry 5.0), dynamic network scenarios, different attacks
and trusted collaboration node selection, game theory–based
resource sharing policy, and heterogeneous requirements
satisfaction (e.g., load balancing and reliability
guarantee) for ZTNs.
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