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According to the World Health Organization (WHO), melanoma is a type of
cancer that affects people globally in different parts of the human body, leading
to deaths of thousands of people every year worldwide. Intelligent diagnostic
tools through automatic detection in medical images are extremely effective
in aiding medical diagnosis. Computer-aided diagnosis (CAD) systems are of
utmost importance for image-based pre-diagnosis, and the use of artificial
intelligence–based tools for monitoring, detection, and segmentation of the
pathological region are increasingly used in integrated smart solutions within
smart city systems through cloud data processing with the use of edge
computing. This study proposes a new approach capable of integrating into
computational monitoring and medical diagnostic assistance systems called
Health of Things Melanoma Detection System (HTMDS). The method presents
a deep learning–based approach using the YOLOv8 network for melanoma
detection in dermatoscopic images. The study proposes a workflow through
communication between the mobile device, which extracts captured images
from the dermatoscopic device and uploads them to the cloud API, and a new
approach using deep learning and different fine-tuning models for melanoma
detection and segmentation of the region of interest, along with the cloud
communication structure and comparison with methods found in the state of
the art, addressing local processing. The new approach achieved satisfactory
results with over 98% accuracy for detection and over 99% accuracy for skin
cancer segmentation, surpassing various state-of-the-art works in different
methods, such as manual, semi-automatic, and automatic approaches. The
new approach demonstrates effective results in the performance of different

OPEN ACCESS

EDITED BY

Essaid Sabir,
Université TÉLUQ, Canada

REVIEWED BY

Saad Abouzahir,
Mohamed Bin Zayed University of Artificial
Intelligence (MBZUAI), United Arab Emirates
Vanithamani R.,
Avinashilingam Institute for Home Science and
Higher Education for Women, India
Safaa Driouech,
Orange, France

*CORRESPONDENCE

José Jerovane Da Costa Nascimento,
jerovanework@gmail.com

Luís Fabrício De Freitas Souza,
fabricio.freitas@ufca.edu.br

RECEIVED 25 January 2024
ACCEPTED 12 April 2024
PUBLISHED 10 June 2024

CITATION

Da Costa Nascimento JJ, Marques AG,
Adelino Rodrigues YO, Brilhante Severiano GF,
Rodrigues IdS, Dourado C Jr and
De Freitas Souza LF (2024), Health of Things
Melanoma Detection System—detection and
segmentation of melanoma in dermoscopic
images applied to edge computing using deep
learning and fine-tuning models.
Front. Comms. Net 5:1376191.
doi: 10.3389/frcmn.2024.1376191

COPYRIGHT

© 2024 Da Costa Nascimento, Marques,
Adelino Rodrigues, Brilhante Severiano,
Rodrigues, Dourado and De Freitas Souza. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Communications and Networks frontiersin.org01

TYPE Original Research
PUBLISHED 10 June 2024
DOI 10.3389/frcmn.2024.1376191

https://www.frontiersin.org/articles/10.3389/frcmn.2024.1376191/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1376191/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1376191/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1376191/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1376191/full
https://www.frontiersin.org/articles/10.3389/frcmn.2024.1376191/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frcmn.2024.1376191&domain=pdf&date_stamp=2024-06-10
mailto:jerovanework@gmail.com
mailto:jerovanework@gmail.com
mailto:fabricio.freitas@ufca.edu.br
mailto:fabricio.freitas@ufca.edu.br
https://doi.org/10.3389/frcmn.2024.1376191
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://www.frontiersin.org/journals/communications-and-networks#editorial-board
https://doi.org/10.3389/frcmn.2024.1376191


intelligent automatic models with real-time processing, which can be used in
affiliated institutions or offices in smart cities for population use and medical
diagnosis purposes.

KEYWORDS

melanoma detection and segmentation, deep learning, medical image, fine-tuning,
edge computing

1 Introduction

Melanoma is a variation of skin cancer originating from
melanin-producing cells, the melanocytes. This type of cancer
occurs when there is uncontrolled multiplication of these cells in
specific regions, thereby forming tumors (Long et al., 2023). It can
develop anywhere in the body where there is a significant presence of
melanocytes, but the most common cases occur on the skin due to
exposure to high doses of ultraviolet (UV) radiation (Long et al.,
2023). It is worth noting that this type of pathology is more common
in individuals with lighter skin due to lower melanin levels and
greater sensitivity to cancerous cell mutations caused by high doses
of UV rays (Long et al., 2023).

Regarding the rates of this type of cancer, the data are alarming,
as reports from JAMA Dermatology indicate around 325,000 new
cases in 2020, with approximately 57,000 deaths. Estimates project
510,000 new cases of this pathology, with around 96,000 deaths, by
2040 (Arnold et al., 2022). In the USA, UK, and Australia alone,
there is an average of 15,500 deaths each year (Gordon et al., 2020).
Thus, the importance of prevention, treatment, and monitoring of
melanoma cases is emphasized, with early detection being extremely
vital for patient survival. According to the studies by Sandru et al.
(2014), the estimated 5-year survival rate for malignant melanoma
patients ranges between 5% and 19%, a rate influenced by the
location and number of metastases spreading to other organs
in the body.

In addition to the high incidence rates of new cases and low
survival rates for advanced cases, melanoma also results in high
medical costs for countries worldwide. In the USA alone, in 2011,
approximately US$4.8 billion was spent on prevention and
treatment costs (Gordon et al., 2020). The average cost per
patient for treating this pathology in European countries such as
Sweden is around €17,408 for advanced cases; €923 for outpatient
treatment, hospitalization, and consultation; and €3,511 for
mortality costs. The latter cost reaches €20,418 in countries like
England (Krensel et al., 2019).

The tests used in the diagnosis of melanoma can range from
clinical exams, such as self-exams and dermatological exams, with
the use of high-resolution dermoscopic images; biopsy, considered
the definitive test to confirm the cancerous nature of a lesion, albeit
at the cost of invasiveness; body mapping, documenting all moles
and skin lesions for monitoring over time; computed tomography
and MRI, widely applied to detect cancer metastasis; and even blood
tests that may be employed in specific applications aimed at
detecting tumor markers in the patient’s body (Rossi et al., 2019;
Jones et al., 2019).

Among these tests, dermoscopy is a valuable and non-invasive
diagnostic and monitoring technique for various skin lesions, which
include melanoma, for several reasons: it enables early detection of

the disease in its initial stages through high-resolution images; it
increases the sensitivity and specificity rate in detection by the
specialist doctor, as it allows differentiation between benign and
malignant melanomas based on visual details; and it allows for
effective monitoring over time through visual comparison of high-
resolution images taken during different examination periods
(Celebi et al., 2019).

Another important factor of dermoscopy is its ease of
integration with automatic detection systems that process high-
resolution dermoscopic images, generating useful medical analytics
for improved diagnosis and monitoring by healthcare professionals.
These systems are known as computer-aided diagnosis (CAD)
systems and consist of various artificial intelligence technologies
such as machine learning, deep learning, and convolutional neural
networks (CNNs). They enable not only high-efficiency detection
but also fine-tuning of melanoma segmentation for greater
diagnostic accuracy (Gajera et al., 2023).

CAD systems are developed for melanoma detection in
examination images, classifying the type of melanoma as benign
or malignant, and segmenting the lesion surface, with increasingly
performative methods found in the state of the art. Even edge
applications can be found for this type of examination, as
processing becomes increasingly close to the image acquisition
point. It is possible to develop integrated, multi-platform systems
that facilitate direct communication between doctors, patients, and
clinics, providing timely treatment for early detection of the
examination. This assistance contributes to achieving increasingly
favorable and effective clinical results, while reducing clinical
monitoring costs resulting from more expensive and invasive
diagnostic solutions. These edge applications are included in the
emerging concept of Health of Medical Things (HoMT) (Aceto
et al., 2020).

In this way, coupled with IoT (Internet of Things) that facilitates
the collection and sharing of real-time health data with medical
devices and diagnostic systems within networks for smart cities,
HoMT significantly expands the possibility of real-time medical
monitoring and data information management in healthcare
through image-based pre-diagnosis in melanoma detection and
segmentation. These data collected in real time and analyzed can
be tools for tracking and monitoring more effectively the evolution
of melanoma in patients using computer vision to analyze
dermatoscopic images accurately, not only enhancing the
diagnosis and treatment of cancer but also contributing to the
advancement of research and the development of new data sets
enabling deeper studies on healthcare data, aiding the development
of innovative treatments and data processing, and generating real-
time information for clinical analysis.

Taking into account the urgency of melanoma diagnosis,
especially due to high rates of cases and mortality in patients
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with advanced conditions, along with the challenges of developing
automatic systems for melanoma detection and segmentation in
dermoscopic images and edge applications aiming for greater
dynamism and connectivity among end-users of such
applications, this study proposes a new method for melanoma
detection and segmentation in dermoscopic images through edge
computing based on deep learning models and fine-tuning,
embracing the concept of HoMT. The study primarily aims to
contribute to increasingly effective, reliable, robust, and rapid
methods regarding the sending, receiving, processing, and
obtaining of visual pre-diagnostic identification of the melanoma
region and segmentation for potential clinical assessments through
image submission and cloud processing.

The proposed study emphasizes various themes, such as

• Melanoma detection in dermoscopic images using
deep learning.

• Skin cancer segmentation using fine-tuning applied to
computational models.

• Computer-aided diagnosis systems for medical imaging
through image processing using artificial intelligence and
computer vision techniques.

• System for smart cities that are integrable with cloud
processing.

• Edge computing for efficient local processing at data collection
points, optimizing immediate response in clinical scenarios.

2 Related works

In the vast field of medical imaging, the introduction of HoMT
represents a revolution, fundamentally changing how complex
medical data are handled. The seminal study by Han et al. (2020)
is a testament to this transformation, highlighting the efficiency of
connected devices and smart networks in handling large data sets,
ranging from X-rays to magnetic resonance imaging and
ultrasounds. This work not only underscores the importance of
segmentation in computed tomography, particularly in pulmonary

and cerebral areas, but also opens doors to explore the untapped
potential of HoMT in other medical imaging modalities.
Nevertheless, the research could benefit from a deeper
examination of the system’s ability to maintain its accuracy in
variable clinical scenarios, especially in adverse imaging
conditions. A study of the best and worst cases could broaden
the understanding of the model’s performance, and thus, the
method would be evaluated not only quantitatively but also
qualitatively.

Complementing this narrative, Da Costa Nascimento et al.
(2023) have taken HoMT to new frontiers, introducing transfer
learning techniques in the classification and detection of brain
tumors through magnetic resonance imaging. This innovative
research not only advances existing knowledge to tackle more
complex diagnostic challenges but also highlights the efficiency of
models in challenging situations of brain tumors. The proposed
model achieved remarkable accuracy in the classification and
segmentation of brain tumors, demonstrating the practical utility
and clinical relevance of these advanced techniques. Nonetheless,
there is a pressing requirement to extend these methodologies across
a more comprehensive range of health issues. Equally crucial is the
development of varied data sets for both training and validation
purposes. Doing so will enhance the models’ ability to generalize and
remain applicable in a wide array of clinical situations, ensuring
their effectiveness and adaptability in the ever-evolving landscape of
medical diagnostics.

Similarly, Badrinarayanan et al. (2017) offered valuable insights
into the application of transfer learning and fully CNNs, especially in
cerebral diagnostics and other medical conditions. SegNet, a deep
convolutional encoder–decoder architecture tailored for efficient
image segmentation, proved efficient both in terms of memory
and computational time during inference. However, further
improving the trainable parameters without compromising
accuracy could transform SegNet into a more robust and
effective tool for real-time applications.

Continuing in the journey of HoMT in medical image
processing, the research by De Freitas Souza et al. (2023) stands
out for its focus on cellular segmentation to identify strokes in

FIGURE 1
Illustration of the application of the network on the dermatoscopic input image. In this context, the network receives the image with the goal of
performing detections by the bounding box and binary mask.
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tomographies. Using sophisticated deep learning and fine-tuning
techniques, this study demonstrates the versatility and broad
applicability of these technologies in the medical field.
Continuous improvement and refinement of this approach
promise not only to elevate diagnostic precision but also to
positively impact clinical practice. However, the research could
further explore the efficacy of the model in different subtypes of
stroke, thereby ensuring a more holistic and comprehensive
diagnostic approach.

Also in this context, de Souza Rebouças et al. (2021) introduces
the FLog Parzen Level Set (FPLS), an innovative method for
segmenting regions of interest (ROI) in medical images, aimed at
IoT systems and edge computing. The FPLS, which uses the Parzen
Window for seed point initialization and regional contour
refinement, was evaluated on data sets of stroke, lung diseases,
and the skin, achieving remarkable results such as an average
segmentation time of 1.64 s and high accuracy across different
metrics. Despite its promising performance and efficiency, the
method shows potential for improvements in automation and
robustness of seed point initialization to increase its applicability
in various medical scenarios, enhancing its utility in IoT systems in
medical practice.

In the study of detection and segmentation in cutaneous lesions
integrating HoMT, Al-Masni et al. (2018) marked significant
progress by introducing a method using full-resolution CNN,
which was tested on challenging data sets such as PH2 and ISIC
2017. This method, which achieved an impressive average Dice
index, stands out for its innovative approach. Nevertheless, the
inclusion of additional image processing techniques could further
elevate precision, particularly in cases with marked variations in
texture and color, common in cutaneous lesions. The use of fine-
tuning models applied to the network’s output can improve
segmentation results with a quick response time, as demonstrated

in the study by Nascimento et al. (2023), where fine-tuning models
were developed based on computer vision to enhance segmentation
performance of the method for segmenting brain tumors in
magnetic resonance imaging images.

Following this line, Patiño et al. (2018) developed a
segmentation method based on superpixels, focusing on
colorimetric characteristics. Despite notable accuracy, the method
faces challenges with lesions of heterogeneous average RGB color. It
is worth noting that integration with deep learning techniques could
significantly improve segmentation in more complex cases, paving
the way for more precise and reliable diagnoses, with good
initialization and accurate detection for these cases.

Further enhancing segmentation of cutaneous lesions,
Baghersalimi et al. (2019) developed DermoNet, a fully CNN
that stands out for its dense connections and jumps. This
structure allows the network’s layers to reuse information,
ensuring high precision in subsequent layers. DermoNet proved
to be fast and suitable for practical applications, according to
evaluations on data sets such as ISBI 2016, ISBI 2017, and PH2. In
their results, the authors achieved an average Jaccard coefficient of
80% across all databases, indicating promising outcomes. It is
worth noting that the use of fine-tuning methods applied to the
network’s output brings significant performance and efficacy
improvements, as seen in the study by Marques et al. (2022),
which applied fine-tuning models developed by combining digital
image processing methods with Mask R-CNN detection for the
segmentation of hemorrhagic stroke, whose binary segmentation
mask was enhanced by the fine-tuning models.

Yasmim et al. (2023) presented a new approach for the
automatic detection and segmentation of melanomas in
dermatoscopic images, combining deep learning networks with
techniques such as Parzen windowing and clustering. The
method achieved a notable accuracy of 96.39% in detection and
96.50% in melanoma segmentation, surpassing other methods in the
state of the art. However, the study could be improved with a deeper
analysis of its limitations, such as applicability to different skin types
and melanoma variations, as well as the integration of the system
into real clinical environments. Questions about the sensitivity,
specificity, and generalization capacity of the model for broader
and more diverse data sets are also important areas for future
investigations.

In their research, Popescu et al. (2022) conducted a
comprehensive literature review on the comparative perspective
of melanoma detection using artificial intelligence, with a specific
focus on works that utilize CNNs. The authors engaged in an
extensive discussion on multiple neural network architectures
based on decision fusion, and the tools addressed for melanoma
detection appear as potential models to assist the specialist
physician. Among the models discussed are AlexNet, ResNet,
VHH, and U-Net. The authors’ research spanned from 2018 to
2021, covering publications based on their impact factor. In the end,
several models were discussed, with their detection architecture
explained and the methods cataloged, and there was an initial
discussion about their results.

In the study by Pennisi et al. (2016), a fast and automated
algorithm for skin lesion segmentation in dermoscopic images was
presented, utilizing Delaunay triangulation to extract binary masks
of the lesions without a training phase. While the method shows

FIGURE 2
Scheme of edge computing infrastructure integrated with cloud
computing and data centers. Focusing on real-time data processing at
the edge for quick responses, the system localizes storage, buffering,
and optimization for efficiency. With machine-to-machine
communication, it supports decentralized data-driven decisions,
close to the collection point symbolized by a mobile device,
enhancing agility and performance of interconnected systems.

Frontiers in Communications and Networks frontiersin.org04

Da Costa Nascimento et al. 10.3389/frcmn.2024.1376191

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2024.1376191


high accuracy for benign lesions, its effectiveness significantly
decreases for melanoma images. This indicates a requirement for
improvement, suggesting that integration with deep learning
techniques could enhance melanoma segmentation, leading to
more precise and reliable diagnostic tools.

In the work of Bi et al. (2019), an advanced method for
segmenting skin lesions in dermoscopic images was proposed,
which is essential for automated diagnostics. Contrary to the
techniques that overfit non-melanomas, this method applies deep
learning specifically for melanomas and non-melanomas, learning
their distinct visual characteristics. It uses probability-based
integration to combine the results of the learning models,
proving to be more precise than previous methods on three

databases. However, the approach that is focused on specific
classes may increase complexity and computational cost, and
exploring more generalized models could improve the
effectiveness and applicability of the technique.

Aiming for integration with mobile devices, Vasconcelos
et al. (2019) developed an automated system that evaluates the
focus of dermoscopic images of skin lesions captured by
smartphones, aiming to facilitate telemedicine. Using
machine learning to guide the capture and by assessing
quality and focus, the system detects skin lesions. Tested on
two data sets and validated in an Android application, it
achieved an accuracy of 86.2% in the focus assessment of the
images. Despite the promising results, the accuracy indicates

FIGURE 3
Study methodology, with the images captured by the dermatoscope being sent directly to the mobile device, which then uploads the data to the
cloud in Step 1, and cloud data processing occurs in Step 2. Structuring service for receiving processed pre-diagnosis data through edge application in
Step 3. Download of pre-diagnosis in Step 4, and personalized viewing of the pre-diagnosis in Step 5.
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the requirement for improvements to better adapt to different
lighting conditions and devices, which is crucial for
telemedicine.

In their studies, Ünver and Ayan (2019) developed a pipeline for
skin lesion segmentation by combining YOLOv3 and the GrabCut
algorithm. The method was divided into four main stages: hair removal
from the lesion, lesion location detection, segmentation of the lesion
area from the background, and post-processing with morphological
operators. The authors aimed to use the PH2 and ISBI 2017 databases
for data set validation and comparison with the state of the art. The
developed pipeline achieved an average sensitivity of 90% for the ISBI
2017 data set, indicating the model’s efficiency. It is worth noting that
the use of newer versions of YOLO, as a comparison between versions,
could enrich the discussion on the evolution of the YOLO framework as
a detection technology.

Finally, the convergence of these innovations culminated in the
development of the Health of Things Melanoma Detection System
(HTMDS), a cutting-edge system for the detection and segmentation of
melanomas in dermatoscopic images. Utilizing advanced deep learning
networks and fine-tuning techniques like Parzen windowing, clustering,
and region growing, HTMDS achieved impressive accuracies in
melanoma detection and segmentation, demonstrating the
extraordinary efficacy of Health of Things in melanoma diagnosis.
This system represents not just a milestone in melanoma diagnosis but
also a model for future research in medical image segmentation,
showcasing the unlimited potential of HoMT in transforming the
diagnosis and treatment of skin diseases.

3 Materials and methods

This segment addresses the resources used and the
methodological approaches adopted for the execution and
evaluation of the proposed study. The detailed exposition of
these elements is crucial for the full understanding of the

research methodology employed and ensuring the possibility of
independent reproduction and validation of the achieved results.

3.1 Image database

The PH2 database, which includes 200 dermatoscopic images,
originated from microscopic skin examinations that were magnified
20 times their original size. These images, from the Dermatology
Service of Hospital Pedro Hispano in Portugal, have a resolution of
8 bits per pixel and dimensions of 768 × 560 pixels.

3.2 YOLO

The YOLO (You Only Look Once) system is widely recognized
for its speed and accuracy in identifying objects in images and
performing detections in a single pass through the neural network.
The YOLOv8 series achieves continuous improvements over
previous versions, with Ultralytics incorporating significant
optimizations in network settings and training.

Figure 1 illustrates the operation of the internal architecture of
YOLOv8. In A1, feature extraction occurs, where the various
convolutional layers of the architecture generate deep attributes,
which are essential for generating region proposals. Subsequently, in
A2, the network generates region proposals using the deep
attributes. Multiple proposal overlays are performed to achieve
optimal detection of the region of interest; in this case,
identifying melanoma. In the third step, in A3, all proposed
regions of interest are combined. The ROI Poller concatenates
the regions of interest (ROIs), overlaying them and resulting in
the ideal detection bounding box over the area of interest. In A4,
after detection by the bounding box, the network constructs the
binary detectionmask, classifying the internal pixels of the bounding
box. Pixels identified as belonging to the melanoma region are used

FIGURE 4
Flowchart of the Health of Things Melanoma Detection System (HTMDS). The process begins with the capture of images by the dermatoscope,
which is the appropriate clinical device for image capture. These images are then sent directly to the mobile device via remote connection (1), sent via
wireless transmission. In the edge processing stage (2), the image can be directed for training or prediction, depending on the user’s requirement. After
processing, the data are sent to the edge servers, where feature extraction, model training, and melanoma prediction occur (3). The result is then
transmitted to a prediction API (4), which provides a response that includes detection, segmentation, and graphical analysis of the lesion, assisting
healthcare professionals in the assessment and clinical diagnosis.
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to create the binary detection mask. In the final step, in A5, we
visualize the result of YOLOv8, which includes the binary mask and
the bounding box. These elements play a crucial role in initializing
the melanoma segmentation system.

YOLOv8n, although being the fastest model with an inference
time of 80.4 ms on CPUs, has a mAP accuracy of 37.3. Its agility can
be extremely useful in scenarios where speed is crucial, but for
applications where accuracy is more critical, such as in the
segmentation of skin lesions, future iterations may include
improvements in the network architecture to increase accuracy
without significantly compromising performance.

The YOLOv8s model offers a balance between speed and
accuracy, with a mAP of 44.9. With a response time of 128.4 ms
on CPUs, this model serves as an intermediate point, suggesting that
additional optimizations in the fine-tuning process can enhance
precision, making it more suitable for detecting complex
skin lesions.

YOLOv8m, which achieves a mAP of 50.2, is intended for more
general application with a moderate inference time of 234.7 ms.
Investigations into the integration of more specific skin lesion data
sets during training could improve the model’s sensitivity to specific
melanoma features.

The YOLOv8l, with a mAP of 52.9, is a robust choice for
applications requiring high precision. However, the inference
time of 375.2 ms may be a limiting factor in real-time situations.
Adjustments to the architecture, such as reducing the complexity of
the model without sacrificing accuracy, could be explored to
improve speed.

Finally, YOLOv8x is the model with the highest precision, with a
mAP of 53.9, but is also the slowest, with an inference time of
479.1 ms. This model is ideal for in-depth analyses where accuracy is
imperative. To accelerate processing time, techniques such as
quantization and network pruning may be considered.

These variants of YOLOv8 represent a significant advancement
in the field of object detection, offering a range of options for

different application requirements. Continuous optimization of
these models, especially for specialized tasks such as the
segmentation of melanoma lesions in dermatoscopic images, is
an active and promising field of research.

In this way, it can be highlighted that the
YOLOv8 framework presents different approaches for
identifying regions of interest, each with specifications related
to training and solving problems of detection in the trained area.
Thus, each model may present different metric values in
obtaining results for detection.

3.3 Segmentation and fine-tuning

Image segmentation is a crucial step in visual data analysis,
especially in medical applications such as identifying skin
lesions in dermatoscopic images. This section delves deeply
into various classical image segmentation methods, followed
by an in-depth discussion on how fine-tuning can be applied
to improve the efficacy of segmentation, aiming to optimize the
identification and analysis of specific features within
medical images.

Segmentation from an image perspective is a method that aims
to subdivide it into subregions, facilitating any processes to be
applied to the image that rely on regions. From the perspective
of digital image processing, segmentation methods are a set of
techniques based on digital image processing capable of isolating
one or several regions of interest in the image. From a medical
standpoint, segmentation is an essential step in a computer
vision–based medical diagnostic support system.

In segmentation, fine-tuning models constitute a set of
techniques that are also based on computer vision, or even
artificial intelligence, aimed at improving the edge regions of
segmentation, thus achieving optimal segmentation as close as
possible to the ground truth (GT).

FIGURE 5
Summary of the main screens of the mobile and web application, with the dermatoscope device sending data to the phone wirelessly and then
receiving the results from the API.
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In summary, the fine-tuning segmentation models are formed by
combining these different methods of computer vision applied to
medical images, with the initial lesion detection as a starting point.
The expected outcome is an enhanced segmentation, emphasizing the
desirable characteristics of the image’s edges. The fine-tuning models
developed in this study were created by combining the Parzen window,
region growing, and K-means clustering methods, resulting in the
following methods: Parzen, Parzen_Clustering, and Parzen_Region_G.

The Parzen window function is a technique and probabilistic
estimation based on the probability density function (Bengio et al.,
2006). When assisted by a Gaussian structuring element, the Parzen
window technique can be used for segmentation by adjusting the
edges of the region of interest (de Souza Rebouças et al., 2021). As
shown in Eq. 1

p z( ) � 1
n
∑n
i�1

δn z − zi( )
hn

, (1)

where p(z) is the probability of the pixel belonging to or not to the
region, z represents the pixel, δ is the kernel function used to limit
the pixel neighborhood, h is the boundary size of the region, and n is
the total number of pixels in the region (Yeung and Chow, 2002).
The main kernel function used is the Gaussian function, comprising
the formula, as shown in Eq. 2.

δ z( ) � 1�������
2π( )n|C|√ e−

1
2 zi−z( )′C−1 zi−z( ), (2)

where C is the d × d covariance matrix; d is the dimension, |C| is the
determinant of C, and z and zi are the pixels.

The clustering technique using the K-means method homogenizes
the grayscale levels of an image into K pre-established groups. In the
proposed method, the K-means clustering works similarly, where K
centroids are selected, and the data clusters are divided into three groups
of pixels in the image. At the end of the centroid repositioning process,
the pixel value obtained by the centroid is chosen to replace the entire
group of pixels it represents. Thus, an image that could have numerous
grayscale values, for example, will have only up toK grayscale values, and
this process of updating the image pixels can be considered a clustering
process. Clustering can be a useful tool in assisting segmentation by
homogenizing regions of potential interest (Likas et al., 2003).

The distance used to calculate the new centroid position is the
Euclidean distance, which is expressed by the following Eq. 3:

D �
�������������������
x0 − x1( )2 + y0 − y1( )2√

, (3)

where D is the value of the Euclidean distance, x0 and y0 are the
coordinates of the centroid, and x1 and y1 are the coordinates of the
centroid of the sample being compared.

Region growing is a segmentation technique based on filling the
region of interest using adherence rules applied to the grayscale
levels of the image pixels (Biratu et al., 2021).

Region growth can be defined by the following Eq. 4:

p x, y( ) � belongs, if p z( )≥Δ
does not belong, if p z( )<Δ{ , (4)

where p(x, y) is the candidate pixel, Δ is the determined threshold
value, which represents the accepted tolerance value above or below,
and p(z) is the value of the candidate pixel.

Optimization in the context of image segmentation involves the
fine adjustment of segmentation parameters and algorithms after
initial processing. This subsection discusses how these adjustments
can be implemented to improve the accuracy and efficacy of
segmentation in medical applications, such as the analysis of
dermatoscopic images. After the initial application of fine-tuning
methods like Parzen window method or K-means, optimization
involves revising and adjusting these methods’ parameters to align
them more closely with the specific characteristics of the images
under study. This may include changing the bandwidth of the kernel
in the Parzen window or revising the number of clusters in K-means.

3.4 Edge computing

Edge computing is an innovative technological approach that
decentralizes data processing, moving it closer to the source of
origin, i.e., to the “edge” of the network (Shi et al., 2016). This
methodology is particularly effective in scenarios where data
transmission latency is a critical factor and also in situations
where bandwidth is limited (Chen et al., 2018). By processing
data locally, edge computing allows for a quicker and more
efficient response, reducing the requirement for continuous
transmission of large volumes of data to a centralized data
center or to the cloud.

In the context of medical image analysis, such as with
dermatoscopic images from the PH2 database, edge computing
can offer significant advantages (Shi and Dustdar, 2016). For
example, by performing the initial image processing at the
collection site, that is, in the clinic or hospital itself, preliminary
analysis can be expedited, improving diagnostic efficiency and
reducing the waiting time for patients (Satyanarayanan, 2017).
Additionally, edge computing contributes to data security, as it
minimizes exposure of sensitive information by processing it locally
rather than sending it through potentially insecure networks (Huh
and Seo, 2019).

In the subsection discussing edge computing, Figure 2 provides a
schematic representation of edge computing infrastructure
integrated with cloud computing and data centers. This
illustration highlights the prioritization of real-time data
processing at the edge level, emphasizing quick responses and
latency reduction. The diagram also depicts local data storage,
buffering, and optimization for efficiency and broadband savings.
Furthermore, machine-to-machine communication is shown to
facilitate automation and information exchange between devices
without human intervention. This decentralized setup supports
data-driven decision-making close to the collection point,
symbolized by a mobile device, enhancing the agility and
performance of interconnected systems.

3.5 Cloud computing

Within the ecosystem integrating edge computing with cloud
computing, the services of Amazon Web Services (AWS) play a
fundamental role, offering a robust and efficient framework for data
management and processing (Pallis, 2010). This combination allows
for latency-sensitive data analysis, such as the dermatoscopic images
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from the PH2 database, to be quickly performed at the edge, while
large-scale tasks are conducted in the cloud. This approach facilitates
the immediate response required in medical applications,
optimizing bandwidth utilization and minimizing overall latency.

With features like Amazon S3 for data storage, Amazon RDS for
relational database management, and Amazon EC2 for scalable
computing capabilities, AWS supports intensive processing and
large-scale storage operations in the cloud (Iosup et al., 2011).
This infrastructure enables efficient data management, ensuring
security and accessibility, while benefiting from the agility and
efficiency of local processing provided by edge computing.

Thus, integrating AWS services into a hybrid system of edge
computing and cloud computing creates a more adaptable and
secure environment, optimizing the handling of large and
sensitive data. This strategy maximizes efficiency and security in
data handling, which is essential in medical applications where
precision and speed are crucial (Sikka and Ojha, 2021; Miao,
2022; Parigi et al., 2022).

3.6 Evaluation metrics

Evaluation metrics are obtained from the overlap of binary masks
for segmentation and ground truth (GT), and this overlay between the
binary masks assigns labels to the pixels of the segmentation performed
by the model according to their relationship with the pixels of the
ground truth (GT) binary mask as follows: true-positive (TP) for pixels
correctly segmented as belonging to the region of interest; false-positive
(FP) for pixels incorrectly segmented as belonging to the region of
interest when they are actually not; true-negative (TN) for pixels
correctly segmented as background region, i.e., not belonging to the
region of interest; and false-negative (FN) for pixels incorrectly
segmented as background region. Segmentation metrics are generally
calculated based on these four types of pixels using mathematical
formulas that seek to express the qualitative characteristics
quantitatively, thus opening the discussion about the method’s
performance. The segmentation metrics addressed in this study
include sensitivity (SEN), negative predictive value (NPV), positive
predictive value (PPV), specificity (SPE), Dice coefficient
(Sørensen–Dice), and Jaccard index (JAC). The similarity metrics
covered are accuracy (ACC) and Matthews correlation coefficient
(MCC) (Taha and Hanbury, 2015).

Sensitivity (SEN) is a classification metric that assesses the rate
of pixels correctly segmented as belonging to the region of interest
compared to the total pixels actually belonging to that group (Taha
and Hanbury, 2015), as represented in Eq. 5:

SEN � TP

TP + FN
. (5)

Negative predictive value (NPV) is the proportion of pixels
correctly identified as belonging to the background region over the
total number of pixels identified as such (Taha and Hanbury, 2015),
as represented in Eq. 6:

NPV � TN

TN + FN
. (6)

Positive predictive value (PPV) is the proportion of pixels
correctly identified as the region of interest over the total

number of pixels identified as such (Taha and Hanbury, 2015),
as represented in Eq. 7:

PPV � TP

TP + FP
. (7)

Accuracy (ACC) is a classification metric directly related to the
number of pixels that are correctly segmented over the total number
of pixels segmented in an image (Taha and Hanbury, 2015),
represented in Eq. 8:

ACC � TP + TN

TP + TN + FP + FN
. (8)

The Dice coefficient (DICE) is a metric that assesses the overlap
between the segmented mask and the reference mask, represented in
Eq. 9.(Taha and Hanbury, 2015):

DICE � 2 × TP

2 × TP + FP + FN
. (9)

Specificity (SPE) is the proportion of pixels correctly identified
as belonging to the background region over the total number of
actual pixels in the background region (Taha and Hanbury, 2015),
represented in Eq. 10:

SPE � TN

TN + FP
. (10)

Positive predictive value (PPV) assesses the proportion of pixels
correctly identified as the region of interest compared to the total
number of pixels identified as such, represented in Eq. 11 (Taha and
Hanbury, 2015):

PPV � TP

TP + FP
. (11)

Positive predictive value highlights the model’s accuracy in
identifying the region of interest, indicating the percentage of
pixels classified as positive that truly belong to the region of interest.

Negative predictive value (NPV) indicates the proportion of
pixels correctly identified as belonging to the background region
compared to the total number of pixels identified as such,
represented in Eq. 12 (Taha and Hanbury, 2015):

NPV � TN

TN + FN
. (12)

Negative predictive value highlights the model’s ability to
correctly exclude pixels that do not belong to the region of
interest, indicating the percentage of pixels classified as negative
that truly are from the background region.

Matthews correlation coefficient (MCC) measures the overall
quality of segmentation, considering true positives, true negatives,
false positives, and false negatives (Taha and Hanbury, 2015),
represented in Eq. 13:

MCC � TP × TN − FP × FN��������������������������������������������
TP + FP( ) × TP + FN( ) × TN + FP( ) × TN + FN( )√ .

(13)
Jaccard index (JAC) measures the overlap between the

segmented mask and the reference mask (Taha and Hanbury,
2015), represented in Eq. 14:
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JAC � TP

TP + FP + FN
. (14)

4 Methodology

In this section, themethodology of the proposed study is addressed,
consisting of the following stages: Step 1 is the entry of new data into the
system through the edge device; cloud processing for pre-diagnosis
generation is Step 2, with the detection of melanoma in the image and
segmentation of the lesioned region; the return of data to the edge device
is Step 3, with the modeling of the pre-diagnosis through the
interpretation of the generated metric data; in Step 4, the pre-
diagnostic data are downloaded by the device to be subsequently
presented; in Step 5, the presentation of the pre-diagnosis is carried
out in the system, with information on the detection of the lesion and
accuracy rates, as well as a possible confirmation of the existence of
melanoma in the lesion of the image. In summary, the method
developed in this study consists of a diagnostic aid tool based on
the Internet of Things with edge computing in the cloud, which is
capable of providing a pre-diagnosis of melanoma images through a
system of sending and receiving diagnoses in real time.

4.1 Step 1: mobile application

The user (specialist doctor) collects the image taken during the
examination using the dermatoscope device and sends the high-
resolution images via remote connection through the mobile device,
which in turn uploads them to the cloud using the API, or even
submits pre-obtained folders from previous examinations. The
system sends the images in the Base64 format to an API in the
cloud; Base64 reduces the file size and minimizes the risks of
transmission. The API executes a cloud pipeline, as represented
in Step 1 of Figure 3.

The designed flow for sending images from the dermatoscope to the
phone and then from the phone to the cloudwas projected as taking into
account the high data flow thatmay occur, as well as greater information
security regarding the clinical and diagnostic data generated, which can
be stored and handled with the assistance of an information security
professional. In summary, using the API hosted in the cloud bringsmore
dynamism, security, and robustness to the system.

The application’s design was developed for both web and mobile
environments. The interface was designed to facilitate user
experience. The specialist doctor can separate the set of images
to be sent to the cloud processing API, selecting the melanoma base
after the appropriate training of the pipeline models.

4.2 Step 2: cloud pipeline

The cloud API, depicted in Step 2 of Figure 3, illustrates the steps
of the artificial intelligence–based processing pipeline of the
proposed method. The adopted framework, YOLOv8, is a high
performer in image detection with a low amount of data. Its
architecture has, in part, a structure based on R-CNN, which is
capable of detecting melanoma pixels in dermatoscopic images.

Among the steps of Step 2, in Stage A, the detection of the
melanoma region in the image occurs through different versions of
YOLOv8, with the detection carried out by the deeper layers of YOLO,
generating the bounding box and binary mask of the region of interest
in the image; in Stage B, the detection results are expressed by the
framework, with the respective accuracy index; in Stage C, there is a
small morphological operation of erosion on the binary detection mask
of YOLO to smooth the edges of the region. Finally, in Stage D,
optimization methods based on digital image processing are applied to
the eroded binary masks; among the optimization models are the
Parzen window, clustering using the K-means method, and region
growing. Among the versions of the YOLOv8 framework addressed by
this study are v8l, v8m, v8n, v8s, and v8x. In this way, the proposed
method constructs and metrically compares the different proposed
detection models among themselves, in search of obtaining the best
method for the subsequent application of optimization.

Figure 4 illustrates the workflow of the cloud API. The edge
device sends the captured image through the network to the API.
The system interface allows two modes of operation for the
framework: the training, which uses the input images for the
model training process, performing the extraction, training, and
prediction of attributes, while having the GT as reference. After the
training process, the weights are generated and stored in the API, so
that the other mode of operation can be accessed. The test module
receives the image and uses the pre-trained weights to perform the
detection, in addition to applying fine-tuning on the binary mask
and carrying out the segmentation. The communication between the
API and device is done by exchanging files in the JSON format.

4.3 Step 3: construction of pre-
diagnosis data

In Step 3 of Figure 3, the melanoma detection and segmentation
results are formatted for the pre-diagnosis of the application, which
will later be received by the edge device.

The format of the pre-diagnosis data consists of the original
examination image, the binary mask segmentation image, and
textual information about the pre-diagnosis, such as the
network’s certainty percentage in detection, and the confirmation
of the presence of melanoma in the image, as well as the counting of
the total lesion area.

4.4 Step 4: download of pre-diagnosis data

In Step 4, the data are made available for download by the cloud
API. At the end of its medical pre-diagnosis pipeline, the JSON
returns to the application on the device, being consumed to feed the
system, in a way to accommodate the data in the dashboards and
pre-diagnosis visualization panel.

4.5 Step 5: presentation of pre-
diagnosis data

Finally, in Step 5, the generated pre-diagnosis data, such as
patient data andmedical metrics obtained through cloud processing,
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are presented to the professional via an interactive graphical
interface, with the examination image accompanied by detection
with a bounding box, segmentation, and a possible diagnosis
confirming the lesion as melanoma.

The presentation of the data aims to provide personalized
insights for the specialist doctor, based on their requirement for
an accurate and effective diagnosis. Information on lesion
progression tracking, total area counting, and even texture
analysis are possible functionalities for the method.

Figure 5 illustrates the main screens of the application. The
mobile and web devices interact with the cloud API through the
illustrated application, which handles sending the images and
receiving the diagnostic data, such as system detection and
detection reliability, for the doctor to use, along with their
expertise, to make the diagnosis.

5 Results and discussion

This section is divided into three subsections. The first
subsection corresponds to melanoma detection experiments (deep
learning); the second subsection is on melanoma segmentation
experiments (fine-tuning), followed by the subsection on
comparison with the state of the art.

The use of specific metrics for the quantitative evaluation of
segmentation in melanoma detection and segmentation models is
crucial for the validity and reliability of the obtained results. In this
study, the chosen metrics include accuracy, the Jaccard index, the
Dice coefficient, sensitivity, and specificity, all widely recognized and
established in scientific literature, as has been highlighted by Taha
and Hanbury (2015).

The choice of these metrics is not random but is based on their
reputation and frequent use in renowned works in the field of
melanoma detection and segmentation. These metrics are
considered the GT in many studies due to their ability to provide
a comprehensive and detailed assessment of the models’
performance.

5.1 Experiment results—detection

In this subsection, the various results of experiments conducted for
melanomadetection in dermoscopic images are presented. Accordingly,
the experiments were performed using different computational models
within the YOLOv8 framework: YOLOv8l, YOLOv8m, YOLOv8n,
YOLOv8s, and YOLOv8x.

The trainingwas conductedwith various versions of YOLOv8, all of
which yielded significant and highly satisfactory results for the detection
of the region of interest (melanoma). Table 1 presents the different
values obtained, represented by various metrics related to the models
trained using the data set presented in Section 3.1.

In Table 1, it is possible to identify that YOLOv8x has the best
results for melanoma region detection. The model achieved 98.67%
ACC, with the lowest standard deviation amongmodels trained with
the same data set. It is noteworthy that YOLOv8x shows the lowest
standard deviation in all obtained metrics, indicating good
performance in the value related to the measure expressing the
degree of dispersion in the data set. Thus, the uniformity of the
detection results based on processed and generated data is
emphasized, presenting a more accurate melanoma detection in
relation to the homogeneity of the data.

The Dice coefficient metric shows a 94.77% similarity between
the images located in the melanoma region and the region marked
by the experts. The overlap between the detection results by the
YOLOv8x model has a difference of over 1.5% in the worst case,
which, in terms of medical image analysis, is quite a relevant value.
Considering that each potential location in the region of interest can
determine the progression or regression of the disease based on the
comparison of medical images, this difference is significant. The
YOLOv8s model achieved a better result in the SEN metric with
98.63%. This is attributed to the model’s ability to accurately identify
the true-positive proportion of pixels belonging to the skin cancer
region in the image.

It is important to emphasize that the edge computing process
resulted in a gain in response time in the detection layer of the network.
All models achieved less than 1% for detection, making them attractive
for cloud processing applied to edge computing. This indeed provides
applicability for the models, even in deep learning applications that
require real-time response in cloud processing, further optimizing
through current edge processing techniques.

Automatic detection also brought new possibilities, providing real
precision in the location of the pathology without human intervention,
as discussed in various state-of-the-art methods. In this context,
YOLOv8x outperformed various models in the experiment,
achieving above 99% for the SPE metric, a superior PPV metric of
94.24%, followed byMCC and JAC, surpassing themodels presented in
the YOLOv8 versions. Thus, it is concluded that YOLOv8x is themodel
that achieved the best performance for melanoma detection through
edge computing processing, surpassing different works with local, non-
automatic, and automatic processing.

Figure 6 presents diverse outcomes of the YOLOv8 models
in detecting the skin cancer region processed by the proposed

TABLE 1 Metric results for melanoma detection in dermoscopic images for the different versions of YOLOv8 addressed in this study.

Models ACC (%) DICE (%) SEN (%) SPE (%) PPV (%) NPV (%) MCC (%) JAC (%)

YOLOv8l 98.44 ± 1.06 94.03 ± 3.54 96.11 ± 3.62 98.65 ± 1.69 92.54 ± 7.36 99.43 ± 0.55 93.25 ± 3.71 88.94 ± 6.19

YOLOv8m 98.38 ± 1.50 93.97 ± 3.89 95.03 ± 4.84 98.68 ± 2.17 93.63 ± 7.99 99.32 ± 0.71 93.21 ± 4.24 88.87 ± 6.70

YOLOv8n 98.54 ± 1.13 94.61 ± 3.21 97.46 ± 2.61 98.49 ± 1.89 92.32 ± 6.72 99.67 ± 0.34 93.87 ± 3.35 89.95 ± 5.54

YOLOv8s 98.08 ± 1.62 93.14 ± 4.80 98.63 ± 1.29 97.77 ± 2.46 88.73 ± 8.73 99.81 ± 0.17 92.28 ± 4.96 87.51 ± 7.99

YOLOv8x 98.67 ± 0.77 94.77 ± 2.99 95.55 ± 4.09 99.02 ± 1.14 94.24 ± 4.76 99.34 ± 0.62 94.02 ± 3.20 90.20 ± 5.17
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method, HTMDS, in the detection layer of the segmented
region. The image visually displays different melanomas,
along with the detection percentage related to ACC, obtained
in each melanoma image.

Thus, it can be visually identified that the YOLOv8x model
accurately outlines the region of interest through bounding boxes.
This is a challenge that demands extreme precision as it defines the
field where the cancer edge growth can be estimated and transformed
into precise data for analysis and patient monitoring through IoT
application. Consequently, it can be concluded that detection can assist
in the segmentation layer through fine-tuning. Table 2 illustrates the
average detection times for each YOLOv8 model.

5.2 Results of the second
experiment—segmentation

In this section, the segmentation methods developed
in the proposed study will be addressed. This involves

FIGURE 6
Visual result of the deep learning process for detecting various melanomas in dermatoscopic images processed through edge computing is
presented. The figure highlights the YOLOv8x model, which shows the best results for detecting the region of interest.

TABLE 2 Table results.

Models Time (s)

YOLOv8l 0.85 ± 1.90

YOLOv8m 0.44 ± 0.72

YOLOv8n 0.24 ± 0.63

YOLOv8s 0.30 ± 0.68

YOLOv8x 0.74 ± 0.69
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detection using various versions of YOLO (You Only Look
Once), followed by segmentation performed with fine-tuning
based on computer vision methods involving digital image
processing. The evaluation of performance and segmentation
efficacy for the models proposed in this study is achieved
through both qualitative and quantitative comparisons using
metrics such as ACC, DICE, SEN, SPE, PPV, NPV,
MCC, and JAC.

Figure 7 presents the segmentation results for different
dermoscopic images from the addressed data set.

Table 3 presents the metric results for ACC, DICE, SEN, and
SPE for the segmentation models developed in this study. In total,
15 models for the automatic detection and segmentation of
melanoma in dermoscopic images have been developed. Each
model consists of a combination of a YOLO version for detection
and an existing fine-tuned model. Table 4 illustrates the means and
standard deviations for each model developed in this study
regarding the metrics of PPV, NPV, MCC, and JAC. Among the
models developed for the detection and segmentation of melanoma
in dermoscopic images, the most effective combination of detection

FIGURE 7
Result of segmentation of different cases for the proposed models. The figure visually highlights the result of segmentation using the fine-tuning
method of the approach YOLOv8x + ParzenRegionG, accurately delineating the melanoma and segmenting the edge of the skin cancer.
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and segmentation was found to be YOLOv8x with fine-tuning based
on the Parzen windowwith region growing. As evident from Table 3,
the model achieved an average accuracy of 98.68%, indicating a
substantial proportion of correctly segmented pixels relative to the
total pixels in the image—a crucial characteristic for segmentation
CAD models. The Dice coefficient of 94.66% signifies a high

agreement between the segmentation performed by the model
and the gold standard for the addressed data set. However, the
standard deviation of 3.15% suggests the presence of some cases
where the model’s efficacy had been reduced, though still being
within the range of variation observed among the other models for
this metric.

TABLE 3Metric results for segmentation in themodels developed in this study. Themodels are composed of the combination of a version of YOLOv8with a
type of fine-tuning. The table in question covers the metrics of ACC, DICE, SEN, and SPE.

Detection Fine-tuning ACC (%) DICE (%) SEN (%) SPE (%)

YOLOv8l Parzen 98.32 ± 1.22 93.60 ± 4.12 97.16 ± 3.01 98.34 ± 1.87

Parzen_Clustering 98.20 ± 1.37 93.26 ± 4.66 97.70 ± 2.64 98.13 ± 1.99

Parzen_Region_G 98.44 ± 1.07 94.05 ± 3.61 96.24 ± 3.58 98.63 ± 1.70

YOLOv8m Parzen 98.31 ± 1.67 93.92 ± 4.30 96.47 ± 3.91 98.40 ± 2.37

Parzen_Clustering 98.20 ± 1.79 93.61 ± 4.80 97.30 ± 3.31 98.16 ± 2.48

Parzen_Region_G 98.38 ± 1.51 94.01 ± 3.99 95.29 ± 4.79 98.66 ± 2.17

YOLOv8n Parzen 98.36 ± 1.29 94.05 ± 3.79 98.38 ± 1.91 98.15 ± 2.06

Parzen_Clustering 98.20 ± 1.43 93.61 ± 4.02 98.95 ± 1.42 97.87 ± 2.23

Parzen_Region_G 98.54 ± 1.15 94.63 ± 3.31 97.64 ± 2.46 98.47 ± 1.90

YOLOv8s Parzen 97.83 ± 1.77 92.32 ± 5.31 99.26 ± 0.77 97.38 ± 2.63

Parzen_Clustering 97.61 ± 1.87 91.63 ± 5.43 99.59 ± 0.48 97.08 ± 2.76

Parzen_Region_G 98.08 ± 1.63 93.14 ± 4.83 98.73 ± 1.26 97.76 ± 2.46

YOLOv8x Parzen 98.56 ± 0.85 94.38 ± 3.25 96.66 ± 3.69 98.72 ± 1.28

Parzen_Clustering 98.56 ± 0.85 94.42 ± 3.22 96.67 ± 3.70 98.72 ± 1.28

Parzen_Region_G 98.68 ± 0.75 94.66 ± 3.15 94.71 ± 4.30 99.16 ± 1.00

TABLE 4Metric results for segmentation in themodels developed in this study. Themodels are composed of the combination of a version of YOLOv8with a
type of fine-tuning. The table in question covers the metrics of PPV, NPV, MCC, and JAC.

Detection Fine-tuning PPV (%) NPV (%) MCC (%) JAC (%)

YOLOv8l Parzen 90.81 ± 8.02 99.57 ± 0.45 92.80 ± 4.27 88.25 ± 7.06

Parzen_Clustering 89.75 ± 8.69 99.66 ± 0.37 92.45 ± 4.81 87.71 ± 7.88

Parzen_Region_G 92.46 ± 7.44 99.44 ± 0.55 93.28 ± 3.79 88.98 ± 6.31

YOLOv8m Parzen 92.19 ± 8.62 99.50 ± 0.59 93.14 ± 4.66 88.84 ± 7.32

Parzen_Clustering 90.89 ± 9.29 99.61 ± 0.50 92.82 ± 5.13 88.35 ± 8.06

Parzen_Region_G 93.48 ± 8.13 99.34 ± 0.71 93.26 ± 4.34 88.96 ± 6.89

YOLOv8n Parzen 90.49 ± 7.32 99.79 ± 0.24 93.26 ± 3.91 89.00 ± 6.42

Parzen_Clustering 89.19 ± 7.43 99.86 ± 0.18 92.77 ± 4.18 88.24 ± 6.77

Parzen_Region_G 92.18 ± 6.84 99.68 ± 0.33 93.88 ± 3.46 89.98 ± 5.72

YOLOv8s Parzen 86.80 ± 9.09 99.90 ± 0.10 91.42 ± 5.42 86.17 ± 8.67

Parzen_Clustering 85.34 ± 9.05 99.94 ± 0.07 90.68 ± 5.53 85.00 ± 8.80

Parzen_Region_G 88.64 ± 8.73 99.82 ± 0.17 92.28 ± 5.00 87.52 ± 8.04

YOLOv8x Parzen 92.47 ± 5.46 99.49 ± 0.54 93.60 ± 3.45 89.53 ± 5.58

Parzen_Clustering 92.51 ± 5.37 99.49 ± 0.55 93.64 ± 3.43 89.59 ± 5.54

Parzen_Region_G 94.90 ± 5.19 99.22 ± 0.67 93.94 ± 3.35 90.02 ± 5.45
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The specificity of 99.16% indicates a commendable ability to
identify true-negative pixels. Lastly, while the sensitivity of the best-
proposed model did not have the highest average, with a value of
94.71%, which is 4.88% lower than the highest sensitivity recorded in

the table, this proximity margin suggests a satisfactory capacity of
the model in detecting true-positive pixels in the image.

Finally, Figure 8 illustrates the comparison among metrics for
the segmentation models developed in this study. It is noteworthy to

FIGURE 8
Graphical data from Table 3, which presents different results through the metrics ACC, DICE, SEN, and SPE. The figure illustrates these results
through horizontal bars comparing the deep learning–based and fine-tuning models generated by the proposed study.
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consider the smaller scale for the Dice metric across all models,
indicating a relatively lower average compared to other metrics.

From Table 4, it is evident that the best-proposed model has the
highest PPV in the table, illustrated by Figure 9 with an average of

94.90%, indicating a good proportion of correctly segmented pixels
in the applied dermoscopic images. For the NPV metric, the top-
performing method achieved an average of 99.22%, slightly lower by
0.72% compared to the highest NPV, showcasing excellent

FIGURE 9
Graphical data from Table 4, which presents different results through the metrics PPV, NPV, MCC, and JAC. The figure illustrates these results
through horizontal bars comparing the deep learning-based and fine-tuning models generated by the proposed study.
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performance in terms of not segmenting background pixels, i.e., the
unaffected skin of the patient.

In terms of the MCC metric, the proposed method obtained
the highest result, with 93.94%, which is a satisfactory value for
this metric, as it indicates a comprehensive measure of
segmentation performance, considering the proportion of true
positives, false positives, true negatives, and false negatives. For
the JAC metric, the best model also achieved the highest value at
90.02%. This metric measures the overlap between the set of
pixels segmented by the model and the pixels truly belonging to
the melanoma region in the image. The Jaccard coefficient is
particularly important when it comes to assessing the similarity
of the segmentation edges produced by the model and those
identified by a medical expert.

5.3 Results of the third
experiment—comparison with the state of
the art

This subsection presents different results from renowned
methods in the literature for the detection and segmentation of
melanoma in dermatoscopic images. Table 5 displays various
state-of-the-art methods for the database presented in Subsection
3.1. The method proposed in this study based on edge computing
achieved results in all metrics used in various works compared in the
literature. The method titled HTMDS—detection and segmentation
of melanoma achieved over 4% improvement in accuracy when
compared to methods with the worst cases: 98.68% versus 94.25%.
Despite the comparison models being diverse, which include semi-

TABLE 5 Comparison of the best model proposed by this study with the state of the art.

Methods ACC (%) JAC (%) DICE (%) SEN (%) SPE (%)

Proposed method (HTMDS—detection and segmentation of melanoma) 98.68 90.02 94.66 94.71 99.16

SDA—detection of melanoma 96.50 87.22 92.60 88.38 99.53

Deep convolutional network pixel wise segmentation (Badrinarayanan et al., 2017) 93.36 80.77 89.36 86.53 96.61

Delaunay triangulation (Pennisi et al., 2016) 89.66 - - 80.24 97.22

Clustering-based (Patiño et al., 2018) 90.39 - - 91.04 89.73

Full resolution convolution networks (Al-Masni et al., 2018) 95.08 84.79 91.77 93.72 95.65

FCN encoder–decoder (Baghersalimi et al., 2019) - 85.3 91.5 - -

Deep class-specific learning features segmentation (Bi et al., 2019) 95.30 85.90 92.10 96.23 94.52

Geodesic active contour (Vasconcelos et al., 2019) 94.59 86.16 92.17 91.72 97.99

YOLO with GrabCut (Ünver and Ayan, 2019) 92.99 79.54 88.13 83.63 94.02

FLog Parzen level set (de Souza Rebouças et al., 2021) 94.25 85.09 92.49 93.02 93.21

Bold Values obtained by the proposed method.

FIGURE 10
Chart obtained from the comparison table with the state of the art. The graph presents a comparison of different metrics methods found in the state
of the art.
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automatic methods and manual detection, the proposed method
(HTMDS) for melanoma detection and segmentation achieved
superior results by more than 9% when compared to the
recognized models, in contrast to the study by Pennisi et al.
(2016), which obtained an accuracy of 89.66%.

The proposed model surpassed equivalent methods using deep
learning, such as the methods of Badrinarayanan et al. (2017), which
applied solutions to the same problem but without the use of edge

computing. In other words, conventional methods used on local
machines, as in the case of de Souza Rebouças et al. (2021), and some
other works like that of Al-Masni et al. (2018) did not present similar
metrics, thereby not allowing a more precise validation for
melanoma segmentation.

Based on the experiments conducted and the comparison with the
same database used by different experiments, it can be concluded that
the proposedmethod surpassed in variousmetrics, such as ACC, JAC,
and DICE, making the model robust for accurate detection and fully
automatic segmentation of skin cancer. The graph in Figure 10
visually illustrates the different values obtained through the metrics
commonly used by different state-of-the-art methods, in which the
efficacy can be identified when compared through vertical bars. This
provides an innovative proposal for data processing for the problem in
the literature and a result that can be applied to models of intelligent
systems integrated into proposals for cities and intelligent systems.

It is worth noting that having achieved the highest metrics for
ACC, DICE, SPE, PPV, MCC, and JAC for the addressed data set,
the combination of YOLOv8x with the fine-tuning of Parzen
window with region growing proved to be the most performant
method compared to others for melanoma segmentation in
dermoscopic images.

The YOLOv8x is the most robust version of YOLOv8,
featuring a more robust architecture, longer training time, and
typically a higher number of training epochs. This model
performs binary mask detection with high resolution,
exhibiting edges closely resembling the gold standard and a
high detection accuracy rate. Combining this high detection
capability with a well-defined binary mask, the fine-tuning
based on Parzen window with region growing, when
appropriately parameterized for the application, proves
effective in enhancing the edges of the binary mask.

The region growing, with an adherence rule based on grayscale
intensity variation of approximately ±10, expands the mask subtly

TABLE 6 Comparison of total processing time between the models developed in this study for segmentation.

Detection Fine-tuning ACC DICE SEN SPE PPV NPV MCC JAC

YOLOv8l Parzen ⊕ ⊕ x x x x ⊕ ⊕

Parzen_Clustering ⊕ ⊕ x x x x ⊕ ⊕

Parzen_Region_G ⊕ ⊕ x x x x ⊕ ⊕

YOLOv8m Parzen ⊕ ⊕ x x x x ⊕ ⊕

Parzen_Clustering ⊕ ⊕ x x x x ⊕ ⊕

Parzen_Region_G ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

YOLOv8n Parzen ⊕ ⊕ x x x x ⊕ ⊕

Parzen_Clustering ⊕ ⊕ x x x x ⊕ ⊕

Parzen_Region_G ⊕ ⊕ x x x x ⊕ ⊕

YOLOv8s Parzen ⊕ ⊕ x x x x ⊕ ⊕

Parzen_Clustering x ⊕ x x x x ⊕ ⊕

Parzen_Region_G ⊕ ⊕ x x x x ⊕ ⊕

YOLOv8x Parzen ⊕ ⊕ x x x x ⊕ ⊕

Parzen_Clustering ⊕ ⊕ x x x x ⊕ ⊕

TABLE 7 Time comparison between the fine-tuning methods proposed by
this study.

Detection Fine-tuning Time(s)

YOLOv8l Parzen 6.13 ± 1.95

Parzen_Clustering 6.96 ± 2.08

Parzen_Region_G 6.34 ± 2.07

YOLOv8m Parzen 5.78 ± 0.88

Parzen_Clustering 6.29 ± 0.83

Parzen_Region_G 5.94 ± 0.92

YOLOv8n Parzen 5.59 ± 0.79

Parzen_Clustering 6.10 ± 0.77

Parzen_Region_G 5.70 ± 0.84

YOLOv8s Parzen 5.64 ± 0.82

Parzen_Clustering 6.15 ± 0.82

Parzen_Region_G 5.75 ± 0.89

YOLOv8x Parzen 6.07 ± 0.82

Parzen_Clustering 6.31 ± 0.96

Parzen_Region_G 6.23 ± 0.96
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and judiciously. On the other hand, Parzen window is configured to
achieve uniform adjustment of the edges with few iterations and low
energy. Consequently, the fine-tuning aims for pixel-level
improvement in the quality of segmentation edges, enhancing
their resemblance to the gold standard.

Equivalence
⊕ � Yes
x � No

{ (15)

Table 6 represents the Friedman statistical test conducted
between the best model, YOLOv8x + Parzen + clustering, in
comparison to other methods found in the state of the art. The
condition exposed in expression 15 indicates the meaning of the
symbols in the statistical test table, where “⊕” signifies that the
means and deviations of that metric for that model are constructed
under vectors of metrics that are statistically equivalent to those of
the best proposed model. Meanwhile, “x” indicates the opposite,
represented in Eq. 15.

The test indicates that practically all vectors of ACC, DICE,
MCC, and JAC are statistically equivalent to the vectors of the best

proposed model, which may represent a relative similarity in the
metrics, with outliers explaining the variations. On the other hand,
the metric vectors of SEN, SPE, PPV, and NPV, in general, are
statistically different from the metric vectors of the best model; for
these same metrics, this indicates that the best proposed model was
generally distinct in most cases compared to the other models
concerning these metrics.

Finally, for the time comparison observed in Table 7, the fastest
segmentation model was YOLOv8n with fine-tuning based on
Parzen window, with an average time of 5.59 s and being faster
by 0.64 s than the best-performing model, YOLOv8x + Parzen +
region growing, with 6.23 s. YOLOv8n is a nano version of YOLOv8,
with a smaller architecture and a focus on speed, sacrificing raw
processing power compared to its more robust counterparts.
Meanwhile, Parzen window, without region growing, proved to
be fast in edge adjustment. Figure 11 graphically illustrates the
time comparison from the table.

Table 8 contains studies that used various data sets for
melanoma segmentation, particularly the PH2 data set. In
general, authors employ some CNN model capable of performing

FIGURE 11
Chart comparing the segmentation time for different combinations of detection and fine-tuning.

TABLE 8 Comparison with the studies found in Popescu et al. (2022) that used the PH2 data set for melanoma segmentation and the database used in the
experiments of the proposed study.

Author NN Type/Function Data set ACC (%)

Proposed YOLOv8/fine tuning PH2 98.68 ± 0.75

Ünver and Ayan (2019) YOLOv3/detection and segmentation PH2, ISIC 2017 92.99 to 97.00

Adegun and Viriri (2019) Encoder–decoder/detection and segmentation ISIC 2017, PH2 95.00

Ichim and Popescu (2020) Perceptrons, GAN, ResNet, AlexNet/segmentation and classification PH2, ISIC 2019 97.50

Xie et al. (2020) CNN with HRFB/segmentation PH2, ISIC 2016, ISIC 2017 93.80 to 94.90

Tong et al. (2021) ASCU-Net based on U-Net/segmentation PH2, ISIC 2016, ISIC 2017 95.40
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segmentation or at least detecting the region of interest. The
proposed method, compared to other methods, achieves better
results in terms of accuracy, with an average 1.18% higher
accuracy than the second-best method (98.68–97.5). It is worth
noting that the method with the second-highest accuracy uses a set
of CNNs for classification and the perceptron coupled with
histograms of oriented gradient colors for segmentation. The
authors did not indicate the deviation of their model, which
would potentially help understand its performance and the
homogeneity of the metric obtained, as it could arise from a set
of cases with very good and very poor segmentation.

6 Conclusion

The proposed study is based on a new Health of Things
approach applied to edge computing. The proposal discusses a
system named HTMDS for the detection and segmentation of
melanoma in dermatoscopic images. The HTMDS could identify
and segment the melanoma region accurately and effectively based
on deep learning, using the YOLOv8 framework for the
identification of the skin cancer region, and the use of fine-
tuning combined with different techniques such as region
growing, Parzen window, and clustering for precise segmentation
as a refinement layer of the processed data.

The HTMDS presented an automatic detection and
segmentation of melanoma using deep learning, obtaining great
results compared to the state of the art. The proposed YOLOv8x
method achieved excellent metric values, obtaining 98.67% accuracy
in effectively detecting melanoma in dermatoscopic images.
Followed by fine-tuning for precise segmentation of the region,
the HTMDS achieved 98.68% accuracy with the best YOLOv8x
Parzen_Region_Gmodel, surpassing various works in the literature.
The study showed improvement in the performance of automatic
detection time and segmentation with 5.59 s in its best case based on
fine-tuning models, showing satisfactory results related to methods
in the literature, such as manual, semi-automatic, and automatic
methods. It can be concluded that the HTMDS is effective for both
detection and segmentation in dermatoscopic images of melanoma,
demonstrating robustness. Thus, the system can be used to assist
medical diagnosis in CAD systems, thereby reducing the response
time through applications based on edge computing. The study aims
to propose a new effective approach in communication technologies
for segmentation in skin cancer images, in addition to proposing an
innovative approach that brings satisfactory results compared to the
performance of different state-of-the-art methods. In this way, the
study’s contribution is mainly due to the proposal of an efficient
computational model using deep learning and fine-tuning through
the use of optimized computer vision and cloud computing models.
The approach allows for an improvement in the speed and reliability
of the medical data flow for smart cities, allowing for better clinical
monitoring of the progression of pathologies and possibilities of
aiding in intelligent medical diagnosis.

For future work, different problems can be addressed. The
classification of types of melanomas is an area that requires
further studying as well as a labeled database for classification;
the use of different databases can bring new comparisons and

results. The proposed work can be applied, retrained, and used
with different medical image databases; the use of tools based on
model generalization in images of skin cancer and bruises in the
epidermis can be applications for different medical diagnostic aid
solutions. In addition, it can also be trained on different medical
images for different problems, such as the detection of brain tumors
in magnetic resonance imaging and computed tomographies,
among other medical images.
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