
Cell signaling error control for
reliable molecular
communications

Ligia F. Borges1*, Michael T. Barros2 and Michele Nogueira1

1Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil, 2School of
Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom

Molecular communication (MC) allows implantable devices to communicate
using biological data-transmission principles (e.g., molecules as information
carriers). However, MC faces significant challenges due to molecular noise,
which leads to increased communication errors. Thus, error control
techniques become critical for reliable intra-body networks. The noise
management and error control in these networks must be based on the
characterization of the environment dynamics, i.e., characteristics that
increase noise, such as the stochastic behavior of the intercellular channels
and the presence of pathologies that affect communication. This work proposes
an adaptive error control technique for cell signaling–based MC channels
(CELLECs). Using an information-theoretic approach, CELLEC mitigates errors
in cellular channels with varying noise conditions. The characteristics of the
cellular environment and different noise sources are modeled to evaluate the
proposal. The additive white Gaussian tissue noise (AWGTN) produced by
stochastic chemical reactions is theorized for healthy cells. The MC model
also considers the noise of cells affected by one pathology that disrupts cells’
molecular equilibrium and causes them to become reactive (i.e., Alzheimer’s
disease). Analyses show that reactive cells have a higher signal-to-noise ratio
(21.4%) and path loss (33.05%) than healthy cells, highlighting the need for an
adaptive technique to deal with cellular environment variability. Results show that
CELLEC improves communication channel performance by lowering the bit error
rate (18%).
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1 Introduction

The communication paradigm for micro- and nanoscale implantable devices in
biological tissues, termed molecular communication (MC), is a promising bio-inspired
method that uses molecules as information carriers instead of traditional electromagnetic
waves (Honary and Wysocki, 2021). This promising communication technology provides
potential nanomedicine and health-sensing applications, contributing to coordinated tasks
in vivo, such as smart drug delivery and their more accurate release in the body (Kumari
et al., 2023). Due to the advantages of biological MC systems, such as increased
biocompatibility and energy efficiency, researchers have investigated a range of
biologically inspired methods and abstracted them into models for assembling and
characterizing systems for encoding in-body data communication (Akyildiz et al.,
2019). There are two main classes of information coding schemes for MC. One
depends on the type of particle used (e.g., DNA molecules, neurotransmitters, or
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messengers inside cells) and the other relies on how the particles are
propagated (e.g., free diffusion and cell–cell signaling) (Farsad
et al., 2016).

Designing a reliable MC is challenging. Each communication
has specific propagation characteristics and noises that cause errors.
For instance, the free-diffusion and cell–cell signaling channels have
communication errors generated by noises such as symbol
distortion (i.e., bit-0 is incorrectly identified as bit-1 and vice
versa) and symbol transposition (i.e., bits exchange their
positions) (Jamali et al., 2019; Wei et al., 2020). Nevertheless, the
factors that create these errors differ in each channel (Borges et al.,
2021b). Thus, each channel characteristic is crucial for the
performance of implantable device communication, where novel
mechanisms for dealing with noise due to cellular signaling
dynamics (e.g., the cell-signaling process involving chemical
reactions that occur stochastically) must emerge. Besides this, the
intra-body network development must consider that medical
applications will operate under different conditions. This includes
healthy cells and cells affected by pathologies that can increase
molecular noise, such as Alzheimer’s disease, which disrupts the
cells’ molecular equilibrium (Toivari et al., 2011). Therefore,
controlling errors in these networks requires characterizing the
dynamics of the cellular environment, such as factors that
increase noise.

The literature on cell-signaling MC networks follows a
unidirectional communication with a single information carrier
approach, generally based on calcium molecules (Nakano et al.,
2005; Barros, 2017; He et al., 2018), which brings advances in the
research field but still requires advances in performance and error
control. Furthermore, the characterization of communication noise
produced by signaling cells affected by pathologies remains an open
issue. Some studies point to interesting and tractable error control
solutions in free diffusion channels (Felicetti et al., 2017; Marcone
et al., 2018; Rouzegar and Spagnolini, 2019; Wei et al., 2020; Byun,
2023). However, these works focus on a different type of channel
(free diffusion) that is not in the scope of this work, in which the
molecules are suspended in a fluid and move randomly in the
absence of chemical reactions (Kuran et al., 2020). Also, the studies
assume a two-way communication for the error control proposal.
This is not applicable to synthetic networks based on cell signaling
channels. The communication between a transmitter and receiver in
these networks is assumed to be unidirectional (Nakano and Liu,
2010; Heren et al., 2013; Barros et al., 2015; He et al., 2018), as
detailed in Section 3.1.

This work proposes an adaptive error control for cell signaling-
based MC (i.e., that which encodes information based on the
concentration of molecules) governed by reaction–diffusion
processes mediated by gap junctions. Cell-signaling MC is found
in cells such as astrocytes, epithelial cells, and smooth muscle cells
(present in the heart, brain, kidneys, muscles, among others) (Barros
et al., 2015). Networks based on cell signaling perform tasks directly
in the tissue. Bio-devices coupled to natural tissues can monitor
pathologies associated with failures in cellular communication that
affect the performance of natural cellular processes (Blackiston et al.,
2021). An example is of approaches that use molecular
communications to detect tumors (Bong and Monteith, 2018).
Implantable devices with synthetic molecular receptors
(i.e., developed through synthetic biology) have improved cancer

detection efficiency and accuracy by identifying tumor-associated
molecules in biological communication (Stephenson-Brown et al.,
2015). Among the pathologies that occur in signaling cells that these
synthetic networks could address is breast cancer caused by damage
to epithelial cell genes (Wang et al., 2012), Alzheimer’s disease
associated with molecular disorders in astrocytes, and vascular
diseases in smooth muscle cells that can present intrinsic defects
due to monogenic diseases (Shi et al., 2020).

Since the technique relies on the signaling of cells to achieve the
error control goals, it is termed CELLEC (cell signaling error control
for reliable MC). CELLEC comprises an adaptive retransmission
scheme and an error control coding technique. The coding aims to
reduce symbol distortion to get a near–error-free transmission
(i.e., compared to the single-carrier approach followed in the
literature). The self-adaptive retransmission intends to obtain
code word reliability. Natural cells exhibit a variety of molecules
with corresponding signaling pathways, which can be harnessed in
synthetic MC to create a redundancy of information carriers
(i.e., considering the principles of the multi-carrier system)
(Borges et al., 2020). Thus, the proposed error control capitalizes
on this bio-inspired diversity and molecules’ non-linear
relationships to control error with a multi-molecule encoding
mechanism. The retransmission scheme uses the average noise
measured in the environment (source) and its relation to the bit
error probability to define the retransmission strategy.

This work followed the development of a theoretical approach in
line with existing models of cell-signaling MC (Barros et al., 2018;
He et al., 2018). Advances in this research domain occur mainly
through simulations that are used to identify and evaluate new
communication solutions. This study focuses on the error control
proposal for cell signaling–based MC channels. Thus, this work uses
astrocytes and inositol triphosphate (IP3) and calcium (Ca2+)
molecules as reference models. Astrocytes are fundamental cells
in the brain that control synaptic functions and present a high
degree of molecular diversity (Khakh et al., 2015). The astrocytes’
most important information molecules are the IP3 and Ca2+, which
are also important for other signaling cell types in the body
(epithelial and smooth muscle cells, among others) (Decrock
et al., 2013; Barros, 2017). Studies have demonstrated that
astrocytes support molecular intercellular propagation of up to
100 μm while propagating in a regenerative fashion (Kuga et al.,
2011) and reach 450 μm2 when the calcium signaling is mechanically
induced (Peters et al., 2005). The cellular signaling processes of
astrocytes are similar to those found in other cells, such as epithelial
and smooth muscle cells (i.e., governed by reaction–diffusion
processes mediated by gap junctions). Astrocytes and these
molecules have already been studied to develop artificial
communication systems at the nanoscale (Heren et al., 2013;
Barros, 2017; Barros et al., 2018). The evaluation scenarios have
considered a mathematical model of the 3D cellular environment
composed of connected astrocytes (i.e., syncytium) in which the
synthetic MC system is incorporated. The analyses consider that the
environment surrounding the transmitter and receiver devices
comprises biological cells that exchange molecules as their
regulatory process.

This study looks into the noises (spatial noise) that come from/
to the communication system in healthy cells and cells affected by
one pathology. Thus, the communicationmodel assumes an additive
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white Gaussian tissue noise (AWGTN) generated by intercellular
propagation in healthy tissues due to their intrinsic relationship with
internal cellular properties, such as their molecular diffusion
mechanisms in the cellular communication system (He et al.,
2018). Astrocytes are known to become reactive in Alzheimer’s
disease, and their molecular equilibrium can be disturbed by the
interaction of released and accumulated transmitters (e.g., peptides,
serotonin) (Toivari et al., 2011; Price et al., 2021). Thus, the model
also takes into account the noise produced by reactive cells. The
simulation results indicate that communication channels are more
affected in reactive cells. For instance, the path loss in reactive cells is
18.78% higher for the calcium and 33.05% higher for the IP3. Besides
that, the reactive tissues present a higher amplitude of signal-to-
noise ratio (21.4%). The results show that CELLEC (the hybrid
mechanism that comprises an error control coding technique and an
adaptive retransmission scheme) improves communication channel
performance by reducing the error probability.

This article proceeds as follows: Section 2 overviews the related
works. Section 3 details the signaling-based MC model, the noise
model of healthy cells, and the noise model for reactive cells. Section
4 describes the error control technique for tackling the noise. Section
5 describes the evaluation method and discusses the results. Finally,
Section 6 concludes the article.

2 Related works

Due to the noisy characteristics of MC channel models, error
control schemes are primordial to provide reliable communication.
Therefore, channel coding techniques are commonly employed to
tackle the intersymbol interference (ISI) effects with low complexity.
In the MC literature, some solutions propose modulation schemes
based on particle release. The reduction of transposition error
information results from three main approaches: i) counting the
number of released particles or alternating two different particles in
two subsequent time slots; ii) sending the information in two types
of molecules: one for symbol-1 and another for symbol-0; and iii)
sending two different molecules at the same time, subtracting their
concentration and identifying the equalized signal.

Kuran et al. (2011) proposed a modulation scheme called
molecular shift keying (MoSK), in which information is encoded
in the molecule type. For the transmission of one symbol, the
scheme employs two different molecules, each representing a
combination of the two different n-bit sequences. In the 2-bit
constellation of the MoSK modulation called quadruple MoSK
(QMoSK), four types of molecules modulate two information
symbols. Noises generating ISI are molecules from other sources
and residue molecules from the previous symbol (additive Gaussian
white noise). Results show that BMoSK and QMoSK
implementations exhibit more robustness against noise than the
concentration shift keying (CSK) modulation, which uses only one
molecule concentration to encode the information.

Chen et al. (2020) proposed a generalized version of MoSK
modulation called generalized MoSK (GMoSK) that simultaneously
activates several types of molecules to increase data rate andmitigate
ISI. The free-diffusion channel model assumes a counting noise
generated by the type of molecules that is not due to the transmitter
but due to other similar transmission or chemical reactions in the

environment. Despite results showing higher data rates at higher
transmission powers, GMoSK requires a higher receptor complexity
than MoSK does. However, for the two presented modulation
techniques, the receiver must have multiple receptors on its
surface and the transmitter must synthesize different types of
molecules (Kuran et al., 2020).

In the proposed MCSK scheme by Arjmandi et al. (2013), two
different types of molecules in two subsequent time slots are used in
a 1D diffusion channel. The transmitter uses one molecule type in
odd time slots and another type in even time slots. Only one type of
molecule is used in all time slots. In a similar work, Keshavarz-
Haddad et al. (2019) proposed the crossover resistant coding with
time gap (CRCTG) for a one-dimensional noiseless channel. The
modulation uses one molecule to transmit the code words in odd
intervals and another molecule to transmit the code words in even
intervals. The key idea is to deploy a time gap between consecutive
code words to reduce the ISI.

In addition to mitigating intersymbol interference (ISI), error
correction codes aim to reduce the bit error rate. There are two
different error control techniques: forward error correction (FEC)
and backward error correction (BEC). In the FEC technique, the
sender encodes the message in a redundant way to improve the
quality of the channel. For example, some redundant symbols assist
in detecting and correcting errors in the receiver (i.e., error
correction information is transmitted along with the message,
similar to the Hamming codes). In the BEC technique, the
receiver detects an error and requests the transmitter to
retransmit the message (i.e., a block of data that was not
correctly received). BEC techniques were proposed for MC. Some
proposals apply the stop-and-wait automatic repeat request (SW-
ARQ) method in free-diffusion (Wang et al., 2014; 2013; 2014;
Furuhashi et al., 2018; Singh et al., 2023).

Variations of this technique send duplicated messages and
acknowledgment (ACK) to improve reliability. According to the
method, the ACK control message performs multiple tasks, such as
triggering the next information in the transmitter, stopping and
releasing information molecules, and changing the type of molecule
(Felicetti et al., 2017; Ningthoujam et al., 2020). The Reed–Solomon
code is one of the few FEC that can detect and correct various
random symbol errors by adding verification symbols to data, but
they require high energy consumption. This algorithm was used as
an error recovery tool to enhance reliability in a multi-user
diffusion-based MC system. The process involved increases the
minimum distance of the code word and the number of
molecules emitted per bit (Dissanayake et al., 2017).

Regarding free–diffusion–based MC, there are several ISI-
resistant coding schemes based on the number of received
molecules and error control techniques (Akhkandi et al., 2016).
The MC literature has shown that modulation techniques that apply
distinct molecules to encode information have better performance in
dealing with channel noise (Kuran et al., 2011; Akhkandi et al., 2016;
Chen et al., 2020; Kuran et al., 2020). However, these works focus on
a different type of MC that is not in the scope of this work. Even
though they consider intersymbol interference (ISI), the source of
the ISI is different in signaling channels.

The literature on cell signaling–based MC networks focuses
mainly on channel modeling and modulation schemes required to
establish a communication link among bio-devices. Cell signaling
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has been studied since the initial proposal of the MC paradigm for
nanonetworks (Nakano et al., 2005). Nakano et al. (2007) have
suggested using the signaling processes of cells to engineer biological
communication to allow nanomachines (small-scale biological
devices artificially engineered from biological materials that
perform sensing, processing, and actuation) to communicate
through chemical signals. They proposed using calcium ions to
encode information due to their abundance in the human body and
their use in natural communication between cells (cell signaling). In
this way, researchers have focused on studying how to use calcium to
implement molecular communications in intra-body networks.

In Nakano and Liu (2010), the authors applied an information
theory approach to propose a channel capacity model for a one-
dimensional calcium signaling system. The capacity analysis
presented values lower than 0.3 bits, even for short transmission
ranges. Heren et al. (2013) extended the model to include the
intercellular dynamics of IP3. The researchers explored the
channel capacity of astrocytes, highlighting the need for further
studies on concentration frequency variation and noise model
development in molecular communication. Barros et al. (2016)
modeled the channel diversity for MC considering three distinct
signaling cells: astrocytes, epithelial cells, and muscle cells. They
demonstrated that electronically designed nanomachines (e.g., chips
inside a cell) or synthetically engineered ones can be embedded into
cellular tissues and communicate using calcium signaling.

Barros et al. (2015) studied the capacity, delay, and intracellular
communication behavior considering a 3D tissue. They considered
the simulation of the gap junctions (i.e., channels that physically
connect adjacent cells to exchange molecules) of astrocytes,
epithelial cells, and muscle cells. They investigated how the
behavior of gap junctions between cells impacted the capacity of
the communication channel within the tissue. In this type of MC,
each signaling cell connects to several other cells through these gates
(gap junctions), and as they have a stochastic behavior, diffusion
turns to cells that are not the destination cells, generating noises and
losses. The study found that biological systems are affected by
molecular noise caused by their inherent stochastic properties.
Intercellular calcium (Ca2+) signaling is a complex and chaotic
process where random signaling constantly occurs in the channel
as a part of the cells’ self-regulation processes. In their study, Barros
et al. (2016) have highlighted the importance of developing
techniques to reduce noise and adaptive methods to address the
diverse characteristics of cellular tissue.

Similarly, Bicen et al. (2016) explored biological reactions for
communication engineering in body area networks. They presented
a channel model for both intracellular and intercellular Ca2+

signaling via the gap junction in astrocytes. They investigated the
error probability for binary transmission, gain, and delay of Ca2+

waves traveling through a 1D array of cells. In their model, Ca2+

signals of astrocytes function as the communication relay. These
studies follow a single-carrier approach based only on Ca2+

molecules with an on–off keying (OOK) modulation, which
transmits molecules in bit-1 periods and does not transmit
molecules in bit-0 periods. However, OOK modulation has
demonstrated low performance (Barros et al., 2014).

Borges et al. (2020) proposed to use the diversity of molecules
and their relationships to improve performance and reliability in
MC. They used Ca2+ and IP3 channels, following the principles of

multi-carrier systems. The analyses considered two different
scenarios: i) independence between IP3 and Ca2+ channels and ii)
dependence between these two channels. The capacity and channel
gain results were compared with the single-carrier approach based
on calcium. The results indicate that the cooperation between these
two channels, i.e., IP3 and Ca2+, improves data encoding and
transmission compared to the single carrier. Borges et al. (2021a)
validated molecular shift keying (MSK) modulation to reduce bit
errors. The channel noise makes it difficult to correctly identify the
symbol zero (bit-0) in OOK modulation. MSK avoids this error by
using two types of molecules (IP3 and Ca2+) to differentiate the
symbols (bit-0 and bit-1).

Despite advances in research, there is still a need for error
control techniques for systems based on cell signaling that take into
account the specific characteristics of the channel (e.g., types of
noise, reactions, communication, gap junctions, and molecules
already present in the environment) and their applications (e.g.,
synthetic cell networks coupled to natural tissues for the
identification and treatment of cellular tissue pathology). The
intra-body MC applications, such as health monitoring, will
operate on healthy tissues and tissues with pathologies that affect
communication and increase environmental noise. However, the
literature has not yet studied how this tissue characteristic impacts
MC systems; consequently, there are no adaptive solutions for
error control.

3 System model

This section describes cell signaling-based molecular
communication and network entities. Subsequently, it details the
molecular channel with IP3 and Ca2+ cellular signaling. It also
explores biological channel characteristics, such as the gap
junction model that influences intercellular diffusion and the 3D
model of the cellular tissue, and details the models of cell signaling
noise. The development follows a theoretical approach (i.e., a
mathematical model) in line with existing models to simulate the
behavior of molecular communication based on cell signaling.

3.1 Molecular communication system

This work considers a synthetic molecular communication
system between bio-devices incorporated into a biological cellular
environment. The error control design assumes a unidirectional
single-hop MC system composed of a hybrid transmitter, receiver
bio-devices (i.e., biological devices based on cells with electronic
parts), and a channel (biological cells that are between transmitter
and receiver bio-devices). The cell signaling cannot withstand
bidirectional communication for a few reasons, such as i) the fact
that transceivers have not yet been demonstrated for calcium–cell
signaling–based communication (i.e., the transmitter always
remains a transmitter and does not have a receiver mode and
vice versa for the receivers) (Nakano et al., 2012; Bi et al., 2021);
ii) calcium flows unidirectionally depending on the source of the
calcium signal; and iii) a bidirectional communication has not yet
been demonstrated for cell signaling–based channels (Nakano and
Liu, 2010; Heren et al., 2013; Barros, 2017; He et al., 2018).
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The transmitter (Tx) is a bio-device capable of storing or
producing molecules to encode information and has additional
resources, such as i) microfluidic channels with dynamics purely
driven by diffusion reactions that control the release of molecules by
concentration and type. These channels can be implemented using
microfiltration techniques (Zeman and Zydney, 2017; Akdeniz and
Egan, 2021) and ii) a sensor capable of measuring the concentration
of molecules and translating the biochemical information into an
electrical equivalent format of the binary data (i.e., bit-0 or bit-1).
One potential solution is to utilize new micro-/nanosensors that are
capable of detecting chemical and biological signals (Bicen et al.,
2016) [e.g., based on light emission and confocal microscopy
(Russell, 2011)]. When specific molecules release energy from
chemical bonds, they can emit visible light through
bioluminescence. This process can be utilized to transduce
biochemical signals into bits (Fouad et al., 2020).

The transmitter can encode data by concentrations of two types
of information molecules. It follows MSK modulation to transmit
M1 molecules (Ca2+) in symbol-1 periods (bit-1), whereas it
transmits M2 molecules (IP3) in symbol-0 periods (bit-0) (Borges
et al., 2021a). The Tx node executes the retransmission procedures
based on the adaptive error control proposal described in Section 4.
Exploiting synthetic biology techniques has value in the designing of
signal processing circuits, as was suggested by Akyildiz et al. (2015).
Artificial manipulation has enabled cells to produce engineered
molecules, serving several approaches, such as developing
synthetic cell signaling. Genetic circuit engineering in biological
cells also paves the way toward realizing programmable synthetic
bio-devices (Bi and Deng, 2021). The statistical processing and
information exchange between engineered cells (i.e., based on
molecules and biochemical reactions) has been studied for noise
measurement in error control techniques (Bi and Deng, 2021).

The receiver Bionano device (Rx) has additional resources to
measure the molecules’ concentration per type and conduct
statistical processing. Rx receives the molecules and decodes the
data transported by them. Rx measures the concentration of
molecules upon contact. There is a set of IP3 and calcium
receptors within the cell responsible for the distributed adhesion
of molecules and quantifying the concentration of received
molecules. In the receiver, the symbol interference occurs when
the transmitted signal is overlaid in the initially allocated range by
noisy molecules (i.e., due to the constant fluctuations in molecular
concentrations), causing a symbol distortion (i.e., bit-0 incorrectly is
identified as bit-1 and vice versa).

The channel comprises the propagation of IP3 and Ca2+. It
includes the intracellular and intercellular signaling stages. Within
the cell (intracellular), several chemical reactions regulate the
molecules’ concentration. Cell-to-cell communication
(intercellular) occurs when gap junctions in the cells open. Then,
molecules propagate through cytosol (i.e., the liquid that fills the cell
cytoplasm) between a pair of neighboring cells. To get near–error-
free transmission, we propose using the binary erasure channel
concept. As in the binary channel, Tx sends a bit with just one of two
symbols (i.e., bit-0 or bit-1). The Rx receives the symbol (i.e., bit-0 or
bit-1) or the erasure symbol (i.e., no estimate for the transmitted
symbol is obtained). Thus, if the Rx receives a symbol, it assumes
that this was, in fact, the send symbol. If the receiver cannot identify
the symbol due to noises, it discards it and awaits retransmission.

The transmitter automatically initiates the retransmission based on
the noise measure in the source and its relation to the bit error
probability, as detailed in Section 4.

We consider that only the transmitting and receiving nodes are
bio-devices with additional resources to encode/decode information
based on the concentration of molecules. These bio-devices use the
body’s own cells to transmit information (i.e., biological cells already
present in the environment that are not genetically manipulated and
do not have additional resources). The use of molecules naturally
present in the body as information carriers and the use of the
biological environment as a channel is the essence of MC proposals
for intra-body networks between implanted bio-devices (Nakano
et al., 2005; 2007; Heren et al., 2013; Barros, 2017), standing out for
considering biocompatibility issues.

3.2 Molecular channel and 3D tissue model

This work considers the cellular environment with an area
composed of i × j × k astrocytes (c) following a three-
dimensional grid organization where ci,j,k (i = 1, . . ., I; j = 1, . . .,
J; and k = 1, . . ., K) indicates the position of an arbitrary cell that
contains both intracellular and intercellular reactions and N
distinguishable types of molecules {M1, . . ., MN}. The cells are
connected with a maximum of six neighboring cells through gap
junctions. Themodel for connections between cells follows the study
of topologies found in astrocytes (Lallouette et al., 2014). The
network uses Ca2+ and IP3 signaling in astrocytes, once these
cells support the molecular propagation for long distances
(Khakh et al., 2015). The mesoscopic-type of diffusion of Ca2+

and IP3 molecules is mediated by gap junctions that connect the
cytosol of two cells (Figure 1). The communication model applies
the Exact Stochastic Chemical Reaction–Diffusion ordinary
differential equation (ODE) solution from the Gillespie
algorithm. The ODE-based simulations produce accurate
variability of the chemical reactions and serve to study noise
effects caused by inherent stochastic behavior (Nakano and
Liu, 2010).

Since the neighboring cells of the communication system
(between Tx and Rx) are part of the natural environment, they
can receive and transmit molecules (i.e., as part of their regulatory
process), which can cause interference in synthetic communication.
To simulate the behavior of the natural MC environment, this work
follows a baseline model for calcium signaling based on the well-
accepted ODEs of Lavrentovich and Hemkin (2008) that describe
the molecules’ oscillations in astrocytes. This algorithm was
previously used by Borges et al. (2020) to simulate cellular MC
channels to validate the use of Ca2+ and IP3 molecules for multi-
carrier molecular communication. The use of these molecules to
differentiate the symbols (i.e., Ca2+ for bit-1 and IP3 for bit-0) was
also validated in Borges et al. (2021a). The study found that the
signal-to-noise ratio showed a low overlap between the
concentrations of molecules, which reduces the risk of
interference between symbols. The model considers the
molecules’ storage areas (pools) for the variation of Ca2+

concentration in the cytosol (Ccy) Eq. (1); the variation of Ca2+

concentration in the endoplasmic reticulum (Cer) Eq. (2); and the
variation of IP3 concentration (IP3cy) in the cytosol Eq. (3).
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kmIP3
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( ) f − f,

(2)
IP3cy

dt
� Mp

C2
er

C2
er + k2p

⎛⎝ ⎞⎠ − IP3κdeg
, (3)

where χ is the flow concentration of Ca2+ from the extracellular space
to the cytosol; κ0β is the efflux rate of Ca2+ from the cytosol to the
extracellular space;M1 is the maximum flux of Ca2+ into the cytosol;
kA and kI relate, respectively, to the activation and inhibition factors
for IP3; k2 and kIP3 are threshold constants; and m and n are regular
Hill coefficients (i.e., used to describe the level of cooperation
between two biological processes). The term M2 is the maximum
Ca2+ flux in this process; k is the saturation constant for the cytosolic
Ca2+ concentration; and f (i.e., Ccy −Cer) is the leak flow rate from the
endoplasmic reticulum (ER) to the cytosol. Caer describes IP3
generation by the phosphoinositide phospholipase C (PLC)
protein, where Mp is the maximum Ca2+ flux in this process; K is
the saturation constant for the cytosolic Ca2+ concentration; and p is
the Hill coefficient; IP3κdeg

is the rate of IP3 degeneration per second;
and Cer represents the Ca2+ flow rate from the ER to the
cytosol (Figure 1).

Equation (4) describes the fraction of active IP3 receptors on the
endoplasmic reticulum membrane (IP3R).

IP3R � VIP3R Rec( ) − VIP3 Inac( )R( )
+

�������
1

NaVcyt

√ ��������
VIP3R Rec( )

√ − ��������
VIP3R Inac( )

√( ), (4)

where

VIP3R Rec( ) � Krcik
2
1

ki + C2
cy

, (5)

VIP3R Inac( ) � KrciIP3R. (6)

The term Krci is the rate constant of IP3 receptor inactivation; k1 is
the half-saturation constant for Ca2+ inhibition of the IP3 receptor;
Vcyt is the volume of the cytosol; and NA represents the Avogadro’s
number (i.e., the number of atoms per mole of a given particle such
as molecules). According to the findings of Goldbeter et al. (1990),
calcium molecular concentration can exhibit oscillatory behavior
either by spontaneous initiation (without dependence on the IP3
stimulations) or through an external stimulus. The oscillations are
characterized by regular spikes in concentration occurring at varying
intervals. However, the oscillation frequency is not a consistent
process for astrocytes displaying spontaneous activity.

The gap junctions are composed of two connexons, one in each
connecting cell, which are formed by six proteins (connexins). The
gap junction model followed in this work (Baigent et al., 1997)
considers the connexin Cx43 found in astrocytes. Connexin 43
(Cx43) forms gap junctions that mediate the direct intercellular
diffusion of ions and small molecules between adjacent cells such as
calcium and IP3 (Niessen et al., 2000; Kang et al., 2014). The model
introduced by Baigent et al. (1997) represents the intercellular
channels’ stochastic opening/closing behavior. The model
represents voltage-sensitive gap junctions (i.e., gates formed by
two cylindrical particles called connexons, one in each
connecting cell, which is formed by six proteins called
connexins) with two conductance states for each gate: open,
meaning high conductance, and closed, meaning low
conductance. Thus, three possible combinations for all states of
each connexin of the connexon exist: i) state ghl—the first gate is in a
high conductance state and the second is in low conductance; ii)
state ghc—both gates in the communicating cells are in high
conductance; and iii) state glh—first gate is in a low conductance
state and the second is in high conductance.

ghl

dt
� β1 ϑj( ) × ghc − ξ1 ϑj( ) × glh, (7)

dglh

dt
� β2 ϑj( ) × ghc − ξ2 ϑj( ) × ghl. (8)

The control of the gap junction permeability is mediated by the
voltage difference (ϑj) between two adjacent cell membranes. ξ is the
gate opening rate and β is the gate closing rate. The terms are defined
as ξ1(ϑj) � λe−Aξ(ϑj−ϑ0); ξ2(ϑj) � λeAξ(ϑj−ϑ0); β1(ϑj) � λeAβ(ϑj−ϑ0);

FIGURE 1
Three-dimensional tissue with the intracellular and intercellular processes. P1 is the flow of IP3 or Ca

2+ from the cytosol into the extracellular space
and P2 is the diffusion of Ca2+ from the ER to the cell cytosol.
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β2(ϑj) � λe−Aβ(ϑj−ϑ0), where ϑ0 is the voltage of the gap junction at
which ξ = β. λ, Aξ, and Aβ are constants indicating the
responsiveness of a gap to its voltage. The permeability values
considered are based on experimental data (Baigent et al., 1997;
Valiunas et al., 2000; Bukauskas et al., 2001). The model for
connections between cells follows the study of the topologies
found in astrocytes (Lallouette et al., 2014). Thus, each cell
connects to other cells (up to six adjacent cells) through a gap
junction, and as they have a stochastic behavior, diffusion can turn
to cells that are not the destination cells. The model presented in
Baigent et al. (1997) does not include a mechanism to control the
behavior of gap junctions.

The molecular diffusion follows a model that captures the
spatiotemporal dynamics of intercellular signaling based on
mesoscopic diffusion principles (Nakano and Liu, 2010).

ZΔ i, j, k, n, m, l( ) � Dm

vcell
| Zn,m,l − Zi,j,k|( ) × p .( ), (9)

where ZΔ(i, j, k, n, m, l) is the molecular concentration difference
between neighboring cells. i, j, k is the position of the transmitter cell
and n,m, l is the position of the receiver cell, wherem is the molecule
type. This value follows Dm

v (| Zn,m,l − Zi,j,k|), where D defines the
molecular diffusion coefficient for Ca2+ or IP3; v is the cell volume;
and (|Zn,m,l − Zi,j,k|) is the variation in the concentration of molecules
between transmitter and receiver cells. The probabilities p(.) assume
the open and close rates for each gate, selected by the stochastic
model and based on the states ghl, ghc, and glh [Eqs (7) and (8)].

3.3 Additive white Gaussian tissue noise

Molecular signaling can result in excessive noise due to
variations in the concentrations of molecules during intracellular
and intercellular signaling. Internal noise (intracellular) occurs due
to the constant fluctuations in the concentrations of molecules
within cells due to the stochastic events of chemical reactions.
External noise occurs due to the stochastic behavior of the
intercellular channels, and it is generated due to fluctuations in

the concentration of the molecules coming from neighboring cells
(Figure 2). To represent this behavior, there are the internal noises
for IP3 and Ca2+ molecules based on the formulation of Yu et al.
(2009). It is commonly accepted that the internal noise intensity is
proportional to the square root of the concentration of the molecule
and inversely proportional to the cell volume (He et al., 2018). The
noise is modeled by the terms W1,W2, andW3 [Eqs (10)–(12)] and
refers to chemical reactions [Eqs (1)–(3)] that occur in astrocytes.

W1 � 1�
v

√ w0i,j,k
��
χ0

√ − w1i,j,k
���
κ0β

√ + w2i,j,k
��
χ1

√ − w3i,j,k
��
χ2

√ + w4i,j,k
��
f

√( ),
(10)

W2 � 1�
v

√ � w3i,j,k
��
χ2

√ − w2i,j,k
��
χ1

√ − w4i,j,k
��
f

√( ), (11)

W3 � 1�
v

√ w6,i,j,k
��
χ3

√ − w7,i,j,k

������
IP3Kdeg

√( ), (12)

where

χ1 � 4M1

knAC
n
cy

Cn
cy + knA( ) Cn

cy + knI( )⎛⎝ ⎞⎠.
IPm

3

kmIP3
+ IPm

3

( ). f, (13)

χ2 � M2
C2

er

k22 + C2
er

, (14)

χ3 � Mp
Ca2er

Ca2er + k2p
. (15)

W1 and W2 represent the internal calcium noise in the cytoplasm
and the ER, respectively. W3 is the IP3 noise that includes the
degradation of IP3, according to Eq. (3). The Gaussian variables
w0i,j,k . . . w7i,j,k are independent with null means (zero) and unit
variance; v is the cell volume. The term X1 models the Ca2+ flow rate
from the ER to the cytosol under IP3 stimulus. χ0 is the flow
concentration of Ca2+ from the extracellular space to the cytosol,
f is the leak flow rate from the ER to the cytosol, and κ0β efflux rate of
Ca2+ from the cytosol to the extracellular space.

This mechanism directly affects the cytosolic concentration of
Ca2+.M1 is the maximum flux of Ca2+ into the cytosol; k2 and kIP3 are
threshold constants; and m and n are regular Hill coefficients
(i.e., used to describe the level of cooperation between two

FIGURE 2
Cellular signaling with the intracellular/intercellular processes and noise (AWGTN). P1 is the flow of IP3 or Ca

2+ from the cytosol into the extracellular
space and P2 is the diffusion of Ca2+ from the ER to the cell cytosol.
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biological processes). kA and kI relate, respectively, to the activation
and inhibition factors for IP3. χ2 [Eq. (14)] models the efflux of Ca2+

from the sarco(endo)plasmic reticulum to the endoplasmic
reticulum. Finally, χ3 [Eq. (15)] describes IP3 generation by the
PLC protein, whereMp is the maximumCa2+ flux in this process, k is
the saturation constant for the cytosolic Ca2+ concentration, and p is
the Hill coefficient. The presented formulation leads to Gaussian
distributed noise that is intrinsic to the channel and has a uniform
power spectrum density, as shown in He et al. (2018). Therefore, this
article theorizes that the presented noise is an additive white
Gaussian tissue noise (AWGTN) of healthy tissues.

3.4 Reactive tissue noise

In addition to ATP receptors, astrocytes also have receptors for
other neurotransmitters in their plasma membranes, such as
serotonin (5-hydroxytryptamine, 5-HT) and glutamate. Studies of
brain activity with electrophysiological and ion calcium images have
shown that the concentration of 5-HT causes the release of
molecules from intracellular deposits and their intercellular
propagation. Thus, disturbance in astrocyte signaling is prone to
cause alterations in brain activity patterns, which are related to
various neurological disorders (Seifert et al., 2006). The
accumulation of amyloid-beta (Aβ)–containing neuritic plaques
and neurofibrillary tangles are considered hallmarks of
Alzheimer’s disease since they contribute to the altered cellular
signaling in the brain (Mattson, 2004). For example, the
Aβ25–35 has been shown to induce transient changes in
intracellular calcium ions concentration in astrocytes (Abramov
et al., 2004).

Experimental results point out that the transient component in
cytosolic calcium concentration was induced by the activation of the
metabotropic receptor (mR) due to Ca2+ stimuli/release from the
internal stores. By contrast, the activation of the ionotropic receptor
(iR) mediates the supported component (Di Garbo et al., 2007).
Similarly, results of the experiments performed by Toivari et al.
(2011) indicate that 5-HT affects Ca2+ of the cytosol. In a solution
with normal external calcium, the 5-HT induced a transient peak
together with a more sustained increase in the cytosol. When the 5-
HT (1 mM) was added for 20 s in Ca2+-free medium, a single peak
occurred, indicating Ca2+ release from intracellular stores. Based on
the reference model proposed by Toivari et al. (2011), the noise of
reactive cells assumed in this work is created by 5-HT, which affects
cytosolic calcium through ionotropic and metabotropic receptors.

W4
χ1iR( ) � M1 iR( )

input[ ]1.4
κ0β + input[ ]1.4, (16)

where W4(χ1iR ) models the noise generated by Ca2+ flux from the
endoplasmic reticulum to the cytosol induced by the activation of
the metabotropic receptor (mR) due to stimuli-/input-evoked Ca2+,
whereas the activation of the ionotropic receptor M1(iR) represents
the maximal rate of stimuli-evoked ionotropic Ca2+ flux and κ0β is
the half-saturation constant for stimuli-evoked Ca2+.

The activation of G protein and PLCβ pathways, induced by
metabotropic receptors, to promote IP3 production follows
the equation:

W5 ]PLCβ( ) � kmR
input[ ]

Kd + input[ ]. (17)

The term kmR represents the maximal rate of IP3 production
mediated by the metabotropic receptor and kd is the dissociation
constant for the binding of the ligand and metabotropic receptor.
Equation (18) describes the time-series behavior of cytosolic IP3 in
reactive cells with ionic disturbance.

W6 IP3( ) � VPLCβ + VPLCδ − VIP3 Kdeg( )( )
+ 1������

NaVcyt

√ �����
VPLCβ

√
+ �����

VPLCδ

√ − �������
VIP3 kdeg( )

√( ). (18)

The termVPLCβmodels the IP3 production induced by metabotropic
receptors, VPLCδ is the astrocytic IP3 increase via PLC protein,
VIP3(Kdeg) is the rate constant of IP3 degradation, and NaVcyt is the
volume for the cytosol.

4 Cell signaling error control for
reliable MC

The cellular environment contains variable conditions that
produce different sources and noise patterns. Noise from
dynamic tissue signaling leads to low data rates and high latency
due to the absence of error control, which is critical for reliable
communication. Hence, this article proposes an adaptive error
control for cell signaling–based molecular communications. The
components of the hybrid mechanism comprise a retransmission
scheme and an error control coding technique. Coding aims to
mitigate inter-symbol interference (i.e., caused by the noisy
concentration of molecules interfering with symbols’ correct
identification) to get near–error-free transmission (i.e., compared
to the literature, a single-carrier approach for cell signaling–based
nanonetworks) and the self-adaptive retransmission intends to
obtain code word or event-level reliability. Using an efficient
combination of these techniques is expected to achieve reliable
communication. This section details the components of the
proposed error control technique, considering the restrictions
imposed by the molecular environment and bio-devices’
computational limitations.

4.1 Adaptive symbol retransmission and
error control coding

The error control proposal assumes an asynchronous single-hop
MC system composed of a hybrid transmitter, receiver bio-devices,
and channel. The synthetic communication (i.e., coding based on
concentration and type of molecules released at the transmitter in a
controlled manner) is propagated cell to cell (i.e., molecules pass for
each biological cell until they arrive at the receiver) by a diffusion
process. The biological cells follow the MC model presented in
Section 3.2 and the two conditions for astrocytes: healthy (Section
3.3) and reactive (Section 3.4). This work assumes a unidirectional
communication (i.e., the direction of encoded data flow only occurs
from transmitter to receiver bio-device). Unidirectionality restricts
error correction techniques based on two-way messages (e.g.,
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exchanging bidirectional messages between nodes when an error
occurs and the receiver sending a symbol retransmission request).
Therefore, the proposed error control evaluates the need for
retransmission according to the algorithm that calculates the bit
error probability based on channel noise. This process comprises
two phases: i) molecular noise inference and ii) retransmission
adaptation, consisting of five steps, as is depicted in Figure 3.

In Phase 1, the transmitter node listens to its adjacent cells,
i.e., up to six cells connected directly to the transmitter by gap
junctions following the 3D tissue model for connection between
astrocytes based on the study of Lallouette et al. (2014). This phase
involves collecting data from the communication behavior in the
source to perform the inference process. This process is essential
because channel cells and cells neighboring to the transmitter are
part of the natural environment; they can receive and transmit
molecules, causing interference (the Gillespie algorithm simulates
the stochastic communication in adjacent cells, as described in
Section 5). Since each cell connects to several other cells through
gap junctions with an opening/closing stochastic behavior
(following the gap junction model presented in Section 3.2),
diffusion can turn to cells that are not the destination cells
(generating noises). Thus, the noisy molecules propagated by the
cells connected to the transmitter can reach the receiver, as shown in
the example in Figure 2.

The transmitter bio-device must receive molecules from
neighboring cells to conduct the inference process. Intercellular
diffusion only occurs when both connections are open
simultaneously; thus, the stochastic nature of intercellular
channels can cause the gap junction connected to the
transmitter to close, disrupting the molecules’ diffusion process.
In astrocytes, the gap junctions are often opened, allowing more
free diffusion (i.e., compared to other cells such as epithelial and
smooth muscle cells) (Barros et al., 2015). This characteristic,
combined with the natural mechanism of the cells’ functions
that quickly expel molecules through intercellular channels,
benefits the inference process. The collected data (i.e., molecule
concentration received from adjacent cells) is analyzed using
statistical processing to measure noise (i.e., the average
molecular spatiotemporal concentration peak). Then,
information theory metrics such as the signal-to-noise ratio
(i.e., SNR = 20log10(P/Wj), where Wj is the power of noise
determined by the average peak of molecular concentration and
P is the power of the signal that is the predefined concentration per
molecule type send in a bit), and error probability [Eq. (19)] are
employed to estimate the retransmission necessity based on a
decision rule explained below.

In Phase 2, the source adapts to the requirement to retransmit
a symbol according to Eq. (19), which indicates to the error
probability of the channel that is based on the measured noise.
Retransmission is a common technique to achieve reliable
communication. It allows a receiver to recover from a lost
symbol. As previously explained, the destination node does
not send an acknowledgment message (a vital mechanism to
manage retransmissions) to the source due to unidirectional
communication. Thus, the symbol retransmission starts after
the expected lifetime of a molecular symbol in the
environment that respects a time interval (tr) defined
according to the time required for synthesizing molecules at
the receiver plus the estimated time for possible noise generated
by the system fading away. A time slot (tb) controls the
transmitter release of each symbol (i.e., symbol time interval).
The code word C is a binary code that encodes information into a
string of length l symbols (s1, s2 . . . ,sn). For example, a block code
of length l with M words consists of a collection of M integers,
where all integers from 1 to M occur as messages with equal
probability 1/M. At each time interval, a symbol (i.e., bit-0 or bit-
1) is selected at the transmitter and sent to the receiver. However,
this transmission is subject to interference (e.g., noises), which
result in the received value si of the i-th bit being equal to si + xi,
where xi denotes an independent Gaussian random variable with
variance N. As a result, the probability of error in transmitting a
message can be calculated as

Pe � 1
M

∑M
i�si

Cei. (19)

Cei denotes the probability (under the Gaussian distribution) of
a code word wi being decoded as an integer other than i. To estimate
the probability of error for the code of length l containingM words,
each of power P, and noise disturbance of variance W, the following
noises are considered: noises in healthy cells [W1: Eq. (10), W2: Eq.
(11), and W3: Eq. (12)] and in reactive cells [W4: Eq. (16), W5: Eq.
(17), and W6: Eq. (18)]. Thus, the symbol error probability (Pe)
concerning the molecular signal-to-noise ratio (i.e., SNR =
20log10(P/Wj) follows Pe [M, l, 20log10(P/Wj)], where Wj is the
power of noise and j denotes the specific noise type, that is, j = 1, 2, 3
for noises in healthy cells (W1, W2, W3) and j = 4, 5, 6 for noises in
reactive cells (W4, W5, W6), and P is the power of the signal that is
the predefined concentration per molecule type sent in a bit. The
probability of a bit being transmitted correctly (Pt) is
complementary to the error probability (Pe). If the probability of
successful transmission is high, the probability of error will be low

FIGURE 3
Adaptive retransmission overview.
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and vice versa. Thus, Eqs (20), (21) are used as a benchmark to
determine when retransmission is necessary (i.e., adaptation step).

Pt � 1 − Pe (20)

Retransmission � 1, if Pt <T
0, otherwise.

{ (21)

If the probability of a bit being transmitted correctly (Pt) is inferior
to the threshold (T), then the retransmission value is set to 1,
indicating that retransmission should be conducted. Otherwise, if
the error probability is less than or equal to the threshold, the
retransmission value is set to 0, indicating that retransmission is
not required.

Given the computing limitations of bio-devices, very simple
coding schemes must be considered for MC. The literature on cell
signaling–based networks has followed a single-carrier approach
based only on Ca2+ molecule (Nakano et al., 2005; Barros et al., 2015;
He et al., 2018). Thus, the studies follow the OOK modulation that
transmits molecules in bit-1 periods (with a certain concentration)
and does not transmit molecules in bit-0 periods (concentration is
zero). However, channel noise makes it difficult to identify the
symbol zero correctly. For instance, the receiver may receive a
calcium concentration during the transmission of bit-0 (channel
silence period), causing symbol interference (i.e., similarly to a
symbol distortion of conventional communications). As a result,
the receiver interprets a bit that was meant to be 0 as 1. In order to
reduce the symbol distortion mentioned above, this work proposes
using a binary modulation technique with a binary erasure channel.

Therefore, this work considers a multi-carrier molecular
communication model where each type of molecule performs the
role of a channel (i.e., two channels following the IP3/Ca

2+

information carrier pathway). The information is encoded using
the MSK modulation technique with distinct molecules to discretize
the symbols (i.e., calcium for bit-1 and IP3 for bit-0). We assume the
independence between IP3 and Ca2+ channels (i.e., each molecule
transmission does not depend on each other). However, it is
important to emphasize that encoded information (molecules) is
propagated in the biological environment (cell-to-cell molecular
diffusion through gap junctions) under natural cell-signaling
conditions that involve a range of chemical reactions and
processes (Section 3.2). The use of these molecules to
differentiate the symbols was validated in Borges et al. (2021a).
The signal-to-noise ratio results (considering an end-to-end
communication with a distance of eight cells between the
transmitter and receiver) showed that the overlap between the
concentrations of molecules is low, which reduces the risk of
symbol interference (symbol distortion) compared to the OOK
single-carrier approach followed in the cell signaling–based
literature.

Unlike conventional communications employing the binary
erasure channel, cell signaling does not occur as a complete
transaction between symbols 1 and 0. Thus, the receiver
estimates the symbol based on a predefined concentration range
for molecules M1 and M2. Then, the receiver employs this estimate
to make a decision. Figure 4 describes the binary erasure channel
model, where 1-p is the channel capacity (1 bit per transmission),
with erasure probability p, and e is the erasure symbol (i.e., no
estimate for the transmitted symbol is obtained). The network

operates with positive concentration values for each molecule
based on a predefined range, and any value belonging to the
range means being symbol-1 (Ca2+) or symbol-0 (IP3), according
to the molecule whose concentration was measured [Eq. (22)]. Thus,
different molecules represent each symbol to reduce the probability
of symbol interference due to the noisy molecules coming from
neighboring cells (i.e., generated by the stochastic behavior of the
chemical reactions or those that get in the cell due to the stochastic
behavior of the gap junction).

Mol s( ) � M1 if bit s( ) � 1
M2 if bit s( ) � 0

{ , (22)

where Mol(s) indicates the molecules that are released by the
transmitter node in a s-th symbol, M1 is the concentration of
Ca2+ molecules that are emitted if the bit is 1, and M2 is the
concentration of IP3 molecules if the bit is 0. The transmitter
node decides which molecule to send, relying on the data
message. A time slot is reserved for the release of each symbol
(i.e., a bit time interval) based on the propagation time plus the time
required for synthesizing molecules (i.e., considering the estimated
time for possible noise generated by the system fades away) to avoid
errors. The decoding process is based on the molecular
concentration value with a predefined threshold detector and
occurs at the receiver side [Eq. (23)]. If molecules M1 and
M2 exceed or fall below the threshold, the erasure symbol is
output from the molecule detector in the receiver.

RXdecode s( ) �
bit − 1 if M1 s( ) X ϵ R/ rm1 ≤ x≤ rm1{ }
bit − 0 if M2 s( ) X ϵ R/ rm2 ≤ x≤ rm2{ }
erasure symbol if M1 s( ) X ϵ R/ rm1 ≤x≤ rm1{ }( ) and

M2 s( ) X ϵ R/ rm2 ≤x≤ rm2{ }( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(23)

The receiver identifies whether the concentration has reached
the predefined concentration range per type of molecule (i.e., rm1 for
Ca2+ and rm2 for IP3) in each symbol duration to determine the sent
symbol. If both M1 and M2 concentrations exceed their respective
thresholds, the receiver will discard the message and wait for symbol
retransmission.

5 Performance evaluation

This section describes the performance evaluation of the
proposed error control technique. The evaluation focuses on end-
to-end channel path loss, the end-to-end spatiotemporal

FIGURE 4
Binary erasure channel.
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concentration of IP3 and Ca2+ molecules, and how intracellular and
spatial noises affect signal propagation inside astrocytes. The
evaluation scenario follows the model presented in Section 3. The
calcium signaling–based molecular communication simulator
(CalComSim) (Barros et al., 2015) was extended to allow
proposal evaluation considering the different noise sources.
CalComSim is a simulator implemented in Python for molecular
communication systems utilizing calcium signaling. It can simulate
synthetic and natural cell communications in various human tissues.
The simulator models different cell types, such as epithelial cells,
smooth muscle cells, and astrocytes, incorporating biological models
based on real experimental data.

Simulations follow parameter values based on experimental
results from the literature (Goldbeter et al., 1990; Baigent et al.,
1997; Baigent et al., 1997; Venance et al., 1997; Valiunas et al., 2000;
Bukauskas et al., 2001; Höfer et al., 2002; Di Garbo et al., 2007;
Lavrentovich and Hemkin, 2008; Di Garbo, 2009; Toivari et al.,
2011), such as Cacy = 0.1 (μM), Caer = 1.5 (μM), IP3 = 1.44 (μM), χ0 =
0.05 (μM), κo = 0.5 (s−1), f = 0.5 (s−1), κdeg = 0.08 (s−1),M2 = 15 (μM/
s), Mp = 0.05 (μM/s), kp = 0.3 (μM), n = 2.02, kA = 0.15 (μM), kI =
0.15 (μM), k2 = 0.1 (μM),M3 = 40.0 (s−1),m = 2.2,DCa2+ = 350 (μm2/
s), DIP3 = 280 (μm2/s), l = 15 (μM), = 141.13 (μm3), λ = 0.37, ϑj mV =
90, ϑ0 mV = 60, Aξ(mV)−1 = 0.008, Aβ(mV)−1 = 0.67. M1iR = 0.08
(μm2/s), kmR = 0.5 (μM), κ0β = 0.5 (μm2/s), KD = 10 (μM), β = 35, and
Vcyt = 0.4 X vcell.

Simulations based on the Gillespie algorithm are effective for
studying the effects of noise due to the inherent stochastic behavior.
They produce precise variability of chemical reactions, as stated in
the study by Nakano and Liu (2010). Thus, in a previous work
(Borges et al., 2020), the Exact Stochastic Chemical
Reaction–Diffusion ordinary differential equation (ODE) from the
Gillespie algorithm (Gillespie, 1977) used for calcium signaling in
the mathematical framework CalComSim (Barros et al., 2015) was
advanced to create a multi-carrier communication model. This
advancement allowed the analysis of molecular path loss and
capacity using two molecules (IP3 and Ca2+) to encode information.

The ODE solution from the Gillespie algorithm leads to the
dynamic intracellular/intercellular concentration (Gillespie, 1992).
The stochastic mathematical framework (CalComSim adapted for
multi-carrier MC) executes the Gillespie algorithm at each time step
to select a random cell and determine the dynamic intracellular/
intercellular concentration of molecules in each pool over time. It
chooses a random internal reaction for the cell and schedules a time
step (t) to that reaction. The execution of each reaction (R) follows a
two-phase scheduling process: i) selecting a reaction and ii) selecting
a time step. Each reaction is allocated to a reaction constant (ar).
Considering that τ0 is the sum of all ar of R, the following reaction is
chosen (ru) and given by Eq. (24).

ru � MAX
arj
τ0

� arj∑|R|
j�1arj

⎧⎨⎩ ⎫⎬⎭. (24)

The reaction selection is based on the roulette wheel function,
which is biased on the reactions’ probability values. However, a
roulette wheel selection (u) must satisfy the condition [Eq. (25)]:

∑u−1
j�1

τrj
τ0

< ρ1 ≤ ∑u
j�1

τrj
τ0
, (25)

where ρ1 is a binary uniform random variable. It computes a time-
lapse (δt) at each time step (t) based on the initial τ0 as τ0.δt � 1n 1

ρ2
,

where ρ2 is another binary uniform random variable. The end
condition is ∑|T|

t�0δi < t0, where T is the t set and t0 is the
predefined simulation time. Reactions are then time-varying
variables based on the changes in pool values (i.e., according to
the differential equations). A predefined reaction-changing constant
influences the set of values based on the positive or negative result of
the reaction. With regard to intercellular reactions, ar is replaced by
ZΔ, as observed in Eq. (9).

5.1 End-to-end path loss

Path loss is the reduction in energy density (attenuation) of a
carrier wave propagating through space. This metric includes
channel gain values and can be adapted to fit other aspects that
affect communications for analysis, such as interference and
multipath fading. In MC, molecules may not arrive at the
receiver due to their diffusion direction probability in gap
junction channels [Eq. (9)]. Thus, the path loss [Eq. (26)] is
applied to assist in analyzing this behavior considering the
system noise (i.e., the noise produced by molecules emitted from
each cell as part of its regulation process). Equation (26) is a
derivative of the formula proposed in Barros et al. (2015) to
estimate the molecular communication end-to-end channel gain.

Γ f( )M � 20 log10
ΓT f( )
ΓT0 f( )( ). (26)

Here, ΓT(f) and ΓT0(f) are the molecular concentration average peak
in the destination (i.e., the amplitude of the received signal) and the
initial peak of molecules in the source, respectively. (f) represents the
frequency of spontaneous oscillation of Ca2+ and IP3 in hertz (Hz).
Equation (27) calculates the path loss for Ca2+ and Eq. (28) for
IP3 molecules.

Γ f( )M1 � 20 log10
ΓCa2+T f( )
ΓCa2+T0

f( )⎛⎝ ⎞⎠ + SysN Wi( ), (27)

Γ f( )M2 � 20 log10
ΓIP3
T f( )
ΓIP3
T0

f( )( ) + SysN Wi( ). (28)

The terms ΓCa2+T (f) and ΓIP3
T (f) are the average peak concentration

of Ca2+ and IP3, respectively; ΓCa
2+

T0
(f) and ΓIP3

T0
(f) are the initial

peak of molecules for Ca2+ and IP3. SysN(Wi) is the internal system
noise factor for each tissue condition and molecule type, satisfying
Eqs (10)–(12).

5.2 Results

The spatiotemporal molecular concentration for each molecule
determines the concentration threshold values for the encoding
mechanism. This article also explores how noises in healthy and
reactive cellular tissue that are generated inside the cell and
propagated through the gap junctions affect communication. Due
to the characteristics of cell signaling channels, the noise can occur
in different forms. The source noise arises frommolecules of the cells
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surrounding the transmitter after initial stimulation. The destination
noise is due to recurrent ion signals from the cells surrounding the
receiver after a cell gets stimulated by molecules.

Figures 3, 4 show results for Ca2+ and IP3 molecule
concentrations at the transmitter (Tx) and receiver (Rx), and the
source and destination noise generated by cells surrounding the Tx
and Rx after initial stimulation, considering healthy and reactive
cells. The oscillation frequency of the concentration levels in
astrocytes is 0.1 Hz, and the distance is eight cells in 3 × (3 ×
l) × (20 × l) (μm) cellular tissue. The amplitude of oscillations is
2.5 μm for IP3 and 0.6 μm for Ca2+ measured by the maximum level
of molecules.

The spatial–temporal concentration analysis considers, for both
molecules, that the initial concentration at the Rx is 500 nM and the
Tx initial concentration is 2 × 103 nM (Figures 5, 6). The analysis
shows that the concentration levels alone yield different behaviors
and varying concentration rates for each molecule. Thus, the defined
concentration thresholds for the decoding process in the Rx nodes
are as follows: for Ca2+, bit-1 if M1 × ϵ R/{0.15 nM–0.25 nM} and for
IP3, bit 0 if M2 ×ϵ R/{0.18 nM–1 nM} based on the spatiotemporal
concentration results. These thresholds were validated in a previous
study (Borges et al., 2020). Figures 5A, 6A results indicate that at
least 30 s are required to transmit each symbol (symbol duration).

The spatiotemporal concentration of the Ca2+ and IP3 intercellular
noise presented in Borges et al. (2020) showed that the noise
propagation time is very close to the time required to transmit a
symbol (a few seconds less). Based on these results, we arbitrarily
chose to use 60 s for the time interval for data transmission tr
(indicating how long the transmitter must wait before starting the
symbol transmission/retransmission).

Figures 5B, 6C and Figures 4B, C illustrate the different types of
noises produced by Ca2+ and IP3 molecules, respectively, and their
differences concerning varying distances in healthy and reactive cells.
Tx concentration is 50 nM and Rx concentration is 500 nM (the results
refer to the average value considering 32 repetitions). The highest
quantity of noise in the system is the source noise. At the same time, the
lowest amount is contributed from the cells surrounding the receiver
(i.e., destination noise: Dest) for all combinations analyzed
(i.e., molecule types and cell conditions). Besides that, the reactive
cells have higher ionic disturbance concentrations for both molecules.
However, noise is more expressive in calcium channels (i.e., the
amplitude of 143 nM), explained by Ca2+ regeneration in the
astrocyte that produces and releases new molecules.

Figure 7 presents the cumulative distribution function (CDF) of the
signal-to-noise ratio (SNR) for healthy and reactive astrocytes. This
analysis considers the IP3 and Ca

2+ accumulative source and destination

FIGURE 5
Calcium spatio-temporal concentrations and noises (i.e., source and destination). (A) Spatio-temporal concentration of Ca2+ in transmitter and
receiver. (B) Spatial noise of Ca2+ at varying distances in healthy cells. (C) Spatial noise of Ca2+ at varying distances in reactive cells.

FIGURE 6
Spatio-temporal concentrations and noises (i.e., source and destination) of IP3. (A) Transmitter and receiver IP3 spatio-temporal concentration. (B)
IP3 spatial noise concerning varying distances for healthy cells. (C) Spatial noise of IP3 at varying distances in reactive cells.
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noises. The cellular environment surrounding the network (i.e., a pair of
nodes connected by intercellular channels at a distance of eight cells that
play the role of a channel) causes fluctuations in the molecular
concentration of both cells (healthy and reactive). The results refer
to the average value considering 32 rounds. The source presents similar
behavior patterns in both cells. However, the signal-to-noise ratio of the
calciummolecule shows a higher amplitude in the reactive cells (21.4%).
The signal-to-noise ratio is more critical in the reactive tissue, which
presents overlaps in the concentrations ofmolecules, than in the healthy
tissue with only one intercalation. The destination interference in the
SNR results supports the need for an adaptive technique to deal with
tissue variable conditions that make the decoding process prone to
errors introduced by the channel properties, in which noises are
inevitable.

Figure 8A shows the path loss that results in using Ca2+ and IP3 in
healthy and reactive tissue, concerning varying distances of one to eight
cells. The results represent the average value obtained from
32 repetitions, considering each distance. The Tx concentration is
50 nM and the Rx concentration is 500 nM. The distance is eight
cells. Compared to the performance of pure Ca2+ molecules or pure IP3,
the results show that Ca2+ performs better in path loss. However, it is

just considering the stochastic behavior of gap junctions that causes the
loss of information molecules (Figure 2). In healthy cells, the spatial
system noise considers the interference represented by the terms W1,
W2, andW3 [Eqs (9)–(12) and (26)] and in reactive tissues by W4, W5,
and W6 [Eqs (9), (16)–(18)]. The effects of noise include
communication degradation and changes in patterns of information
carriers’ propagation behavior. However, communication channels are
more affected as cellular tissue undergoes disease. For example,
considering the transmitter–receiver distance of eight cells, the end-
to-end path loss is 18.78% higher in reactive tissues for the calcium
molecule and 33.05% higher for IP3.

Figure 8B presents the bit error rate (BER) results versus the
molecular signal-to-noise ratio in astrocytes. This figure compares
the result of the following modulations in reactive cells since it has
the worst noise conditions: i) MSK modulation technique with distinct
molecules to discretize the symbols, i.e., calcium for bit-1 and IP3 for bit-
0 and ii) the proposed MSK modulation combined with error control
CELLEC (a cell signaling adaptive error control technique for reliable
MC). This study arbitrarily established a threshold of 0.3, indicating that
the transmitter should conduct the retransmission if the error
probability surpasses 30%. CELLEC performs better as the Eb/N0

FIGURE 7
Cumulative Distribution Function (CDF) of the Signal-to-Noise Ratio (SNR). (A) SNR in healthy cells. (B) SNR in reactive cells.

FIGURE 8
Cumulative Distribution Function (CDF) of Path Loss in healthy and reactive cells, along with a comparative analysis of Bit Error Rate (BER) in reactive
cells. (A) Path loss over a distance of eight cells. (B) BER versus Molecular Signal-to-Noise Ratio.
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increases over the channel. CELLEC also benefits the communication
system by decreasing the bit error probability (18%).

6 Conclusion

Short-range molecular communication (MC) based on cellular
signaling is a promising approach for in vivo communication.
However, the signaling behavior affects the communication
channel’s reliability because of different noise sources. This article
shows how error conditions, such as signal fading, spatial noise, and
tissue conditions, impact molecular communication and presents a
novel error control technique. The analysis revealed that identical cell
types exhibited varying noise patterns, highlighting the necessity for an
adaptive approach to address tissue-specific conditions that led to
communication errors. Results indicate that combining the encoded
information with two information carriers (i.e., IP3 and Ca

2+ molecules)
with the proposed adaptive error control technique improves molecular
communication and reduces the bit error rate.
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