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The advent of the fifth generation (5G) of mobile networks has introduced several
new use cases that are pushingmobile networks in environments that are typically
supported by wired technologies. The initial discussions around the sixth
generation (6G) of mobile networks signalizes that different approaches are
needed to address all contrasting requirements, where multiple-input multiple-
output (MIMO) technique stands as a key technology for most future wireless
systems. In this review, we present an introduction on classical linear estimators
and coherent detectors along with an innovative and accurate complexity
formulation within a common framework, allowing a fair comparison and
providing an initial guideline for researchers that are looking for a general view
of themain techniques available for spatial multiplexing (SM)-MIMO detection and
estimation.
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1 Introduction

Since the first generation (1G) of mobile communication in the 1980s until today, the
field of digital communication has tremendously evolved both in capacity and reliability
(Giordani et al., 2020). The emerging fifth generation (5G) is driving mobile communication
systems towards an unprecedented evolution in terms of flexibility, data rate and latency,
enabling wireless networks to support applications that are typically backed by wired
technologies. The scenarios for the sixth generation (6G) are even harder to achieve
considering the foreseen increase in flexibility, while supporting conflicting requirements
for several applications in different verticals, besides higher data rates, higher coverage,
higher frequency bands and extreme low latency. It is clear that future mobile networks
cannot rely on a single radio access network to fulfill all these requirements. Different
approaches are needed to address all requirements, but multiple-input multiple-output
(MIMO) schemes represent a key technology for most future wireless systems. For example,
in the agribusiness scenario, high data rates are necessary to transmit multi-spectral videos in
infrared, ultraviolet and visible light in real time from drone to the cloud. In industry 4.0,
very low latency is necessary for controlling robots and synchronizing autonomous actions
with humans on the plant floor. MIMO can provide the necessary bandwidth, reducing the
frame duration and increasing the robustness for data with a very short life span.
Communication systems employing MIMO techniques present significant advantages
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when compared with traditional SISO architectures, i.e., mitigating
fading effects by creating spatial diversity or exploiting channel
scattering to achieve higher data rates by spatial multiplexing means.
MIMO systems with detection schemes that can harvest diversity
and multiplexing gains are able to improve the throughput, increase
coverage and reduce the outage probability at the same time.
Although the mentioned advantages are appealing features in the
future mobile communication context, they are accompanied by
demanding drawbacks such as uncorrelated transmission channels
requirement, in order to avoid weak conditioned channel matrices,
high signaling coordination on MIMO channel estimation,
considering each individual transmitting antenna and higher
complexity for the network nodes. The challenges imposed by
the mobile communication channels require complex processes
on the receiver side to recover the information with a desired
quality of service (QoS). Among these processes, the estimation
and detection algorithms tailored for mobile communications
deserve special attention, since the interest on these techniques is
growing constantly with the adoption of new schemes, such as
MIMO, reconfigurable intelligent surfaces (RIS) (Tapio et al., 2021)
and new waveforms (Zhang et al., 2017).

In the digital communications context, the estimation process is
associated with choosing a hypothesis from an uncountable infinite
set of hypotheses, according to some predefined criteria. One
interesting example in communication systems is the channel
estimation, where an estimate of the channel impulse response or
the channel frequency response must be obtained on the receiver
side with minimal mean-squared error (MSE). On the other hand,
the detection procedure relates to making a decision from a
countably finite set of hypotheses following, again, some
established criterion. Another interesting example in the digital
communication system is the discrete data detection. In this case,
the detector must decide in favor of one of the M possible data
symbols from a discrete sample space (or constellation) using the
maximum likelihood or the minimum distance criteria (Gallager,
2008). The detectors and estimators analyzed in this paper are used
to recover data in the downlink of mobile networks, where the base
station (BS) and the user equipment (UE) employ orthogonal
frequency division multiplexing (OFDM) with multiple transmit
and receive antennas for space multiplexing. The channel is assumed
to be frequency-selective and time-variant, with coherence time
larger than the symbol block length and coherence bandwidth larger
than one subcarrier.

Since these topics are widely studied, the number of different
techniques available in the literature can be overwhelming. Hence,
this paper aims for presenting an introduction on two critical tasks
of mobile communication physical layer (PHY), which are: a) the
linear estimation algorithms, suitable for channel state information
(CSI) estimation and equalization and; b) detection and non-linear
estimators schemes, in order to surpass the limitations of linear
estimators in certain applications, i.e., spatial multiplexing (SM)-
MIMO (Foschini, 1996). The analysis of beamforming MIMO and
non-coherent detectors are beyond the scope of this intro work and
can be addressed in (Ahmed et al., 2018; Mahmoud and El-Mahdy,
2021) for the interested reader. Other studies are also available in the
literature as follows.

An extensive survey on detection algorithms related to massive
MIMO can be found in (Albreem et al., 2019), where well-known

linear detectors, including linear equalizers and suitable iterative
methods as alternatives to avoid matrix inversion, are characterized
according to its performance and complexity profiles. This reference
also chronologically lists pertinent publications on MIMO subject.
Similarly, in (Albreem et al., 2021a), low complexity linear detectors
employing different numerical solutions for the large matrix
inversion problem are evaluated, comparing its respective
estimated computational cost and resource utilization in a system
level deployment.

Still related to this topic, a recent overview on precoding
techniques for massive MIMO is conducted (Albreem et al.,
2021b). The idea behind precoding is to simplify the detection
task on the receiver terminal, transferring its complexity to the
transmission side, at the BS, which is in charge of precoding the
transmitted information, employing suitable and eventually heavy
digital pre-processing. This work also lists features, advantages,
challenges and research opportunities related to massive MIMO.
Moreover, it discusses and summarizes different precoding
algorithms such as linear and non-linear precoders, RIS based
precoder and machine learning deep neural network precoding.
It concludes that, although linear precoders suffer from performance
deterioration under certain scenarios, they still play a crucial role in
the transmitter design due to their relative simplicity. This
conclusion reinforces the importance of linear estimation
concepts discussed here.

In (Jang et al., 2021; Pereira de Figueiredo, 2022), machine
learning is pointed out as an important enabling technology for
applications such as MIMO, massive MIMO and beamspace MIMO
in the millimeter wave. It is notable that machine learning is
gathering special attention from the academic community thanks
to its potential to replace statistical driven solvers by generalist and
adaptive learning-based techniques. Machine learning based MIMO
detectors can even outperform the classic approaches when the
channel statistical behavior does not match the model considered in
the design of the model-driven detectors. Crucial tasks as channel
estimation and detection (Ye et al., 2018), resource management
(Hussain et al., 2020) and other optimization problems (Dahrouj
et al., 2021) are being revisited under the machine learning
perspective and, undoubtedly, will play an important role in 6G
(Kaur et al., 2021; Sarkar and Debnath, 2021).

An accessible overview encompassing the state-of-the-art
solutions to the detection problem is available in (Larsson, 2009).
Prominent linear equalizers and detectors are investigated in
(Kobayashi et al., 2014), presenting bit error rate (BER)
performance analysis and computational complexity comparison
under the assumption of different channel correlation scenarios.

In (Jalden and Ottersten, 2005), the sphere detector (SD) is
examined, presenting the respective complexity in terms of the
number of visited nodes, culminating in the definition of lower
and upper bounds for the computational cost given the channel
matrix dimension, constellation size and signal-to-noise
ratio (SNR).

In this review article, regarding estimators and equalizers, we
concentrate in the linear minimum mean squared error (LMMSE)
estimator and its low cost iterative variances (Sayed, 2003; Proakis,
2007) as feasible alternatives to address the large matrix inversion
problem. Moreover, the component-wise conditionally unbiased
(CWCU)-LMMSE (Lang and Huemer, 2015) is considered as an
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appropriate equalization method featured by an additional
weighting process leading to a constrained unbiased estimation.
We also present detailed derivations for these estimators and its
respective MSE, allowing the reader to investigate the estimation
error performance along the Bayesian Cramer-Rao bound (BCRB)
as a an absolute reference. Besides this analysis, computational
complexity is formulated and further evaluated, seeking to
identify which techniques present reasonable performance and
affordable computational cost.

Regarding the detector, we focus on the renowned and relevant
detection methods for the spatial multiplexing multiple-input multiple-
output (SM-MIMO) applications, encompassing the Maximum
Likelihood Detector (MLD), the minimum mean squared error
(MMSE)- ordering successive interference cancellation (OSIC)
(Hampton, 2013), the SD (Hassibi and Vikalo, 2005) and the
iterative MMSE- Parallel Interference Cancellation (PIC) detector
(Bensaad et al., 2013), presenting a compiled reviewing about these
techniques together with each algorithm description. Furthermore,
respective computational cost is derived, allowing one to conduct a
complexity comparison alongside a performance analysis through a
Monte Carlo BER simulation.

One of the main contributions of this tutorial work relies on.

• gathering and compiling the principles of classical estimators
and detectors, in a uniform and accessible way, supported by
detailed description of the procedures of each analyzed
technique;

• performing a complexity comparison among the techniques in
terms of float-point operations (FLOPs) under a common
framework, allowing a fairly analysis and providing an
interesting reference for researchers starting in this field.

In order to achieve these goals, the remaining of this manuscript is
structured as follows: Section 2 presents a simplified model to linearly
describe a generic and orthogonal digital communication PHY that will
be used as a reference along this paper. Section 3 brings the background
on complexity analysis of algorithms employed in estimation and
detection problems. In Sections 4 and Sections 5, in this order, we
present the main techniques for linear estimation and detection, their
derivations, and estimated complexity. Section 6 presents numerical
examples and performance analysis of the techniques described in
Sections 4 and Sections 5, but tailored to specific applications on low
order SM-MIMO, such as equalization and detection. Finally, Section 7
presents the conclusions by highlighting the main findings and results
achieved in this paper.

Notation:Matrices and vectors are written in boldface uppercase
and lowercase as X and x, respectively. A random variable
observation is represented as a sub-indexed lowercase xi. The
notation E{·} is the expected value of a given random entity. The
exponent (·)H is the transpose and conjugate (Hermitian) operator.
The mean and the covariance of a given random vector, e.g. x, are
defined as μx � E{x} and Cxx � E{xxH} − E{x}E{x}H, respectively.
The operator diag (·) gives the diagonal of a square matrix or, when
the argument is a vector, it returns a square matrix whose diagonal is
populated with the vector elements. The symbol ∇α,βf(x) represents
the differentiation of the function f(x) with respect to α and β. The
Frobenius norm of a generic matrix A is defined by ‖A‖2 ≜∑i,j|Aij|2,
with Aij being the elements of matrix A. The set of real and complex

numbers are denoted by Rm×n and Cm×n, respectively, where m and
n are the dimension size of the numerical structure.

2 System model for the digital
communication PHY

This section introduces the concept of an orthogonal
multicarrier digital communication PHY as a linear model, which
is employed in following sections of this paper.

In a broad sense, a digital communication PHY is responsible for: a)
adapting the digital information to a waveform that is transmitted to
one or more receivers through a communication channel, and; b) for
retrieving the information on the receiver side from the distorted and
noisy version of the transmitted signal. Both transmitter and receiver
are designed based on the communication channel characteristics as
noise and fading statistics, average scattering pattern, coherence time,
coherence bandwidth and the impairments introduced by the
transmitter’s and receiver’s RF front-end, among others. Specifically
for a modern mobile communication system, the PHY must deal with
double-dispersive MIMO channels, where each path between one
transmitting and one receiving antenna is modeled as a time-variant
and frequency-selective impulse response. We consider a scheme
employing n transmitting antennas and m receiving antennas as a
generalization of the mobile communication system, as it embraces
more simplified arrangements, e.g., the usual soft-input soft-output
(SISO) when m = n = 1. It is worth to mention that, assuming a SM-
MIMO case, when m = n ≥ 2, inter-antenna interference (IAI) takes
place once each receiving antenna might collect signals frommore than
one transmitting antennas. In this case, the detection method should be
carefully chosen to take the trade-off between performance and
complexity into account. Figure 1 illustrates a simplified wireless
communication system assuming this scenario.At the transmitter
side, the Bit Encoding block receives the data bit sequences and
protects them by applying randomization, forward error correction
(FEC) (Ryan and Lin, 2009) and interleaving, aiming to increase the
system robustness against the adverse effects of themobile channel. The
resulting coded bits are then fed to the Waveform Modulator block,
where different techniques may be used, e.g., symbol modulation and
multicarrier techniques, leading to specific waveforms tailored for
mobile MIMO channels. The channel block introduces time and
frequency fading and it combines the transmitted signals at each
receiving antenna, besides adding the additive white Gaussian noise
(AWGN). On the receiver side, the Waveform Demodulation block is
responsible for performing the time and frequency synchronization,
waveform demodulation, antenna decoupling and data symbol
estimation, while the Bit Decoding block is responsible for
correcting the bit errors that might be introduced by the channel. In
SISO iterative detection, the Bit Decoding performs soft demapping in
order to obtain soft coded bit sequences, in the form of Log-Likelihood
Ratios (LLRs), carrying a sort of confidence measurement about the bit
sequence. The LLRs are fed backwards to Waveform Demodulation
block as a-priori information, subscripted b̂ in Figure 1, leading to a
more refined symbol estimation at each iteration. After an appropriate
number of iterations, the bit information is decided from decoded LLRs.
In non-iterative detection, the Bit Decoding block directly decodes the
bit sequences once. The recovered binary sequence is finally delivered
for the data sink (user application).
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It is worth to clarify that, despite of its importance in the
communication research field, the availability of studies involving
channel coding techniques are wide and easily found in literature,
thus, beyond the scope of this work. Instead, this work relies on
available algorithms in (Glavieux and Vaton, 2007; Ryan and Lin,
2009), such as Convolutional Codes (CCs) and A-Posteriori
Probability (APP) decoding.

Next, we describe the matricial notation for the orthogonal
multicarrier MIMO, since this scheme is one of the most popular
solution for the air interface in mobile communication systems.

2.1 Orthogonal multicarrier MIMO PHY

Consider the system from Figure 1, where n × m antennas may
be employed, resulting in n × m paths between the transmitter and

receiver. The channel impulse response (CIR) between the jth
transmitting antenna and the ith receiving antenna with L taps is
represented by ~hi,j ∈ CL×1.

Assuming that an uncoded and non-precoded OFDM is employed
as multi-carrier modulation scheme to transmit n parallel streams ofNs

Quadrature Amplitude Modulation (QAM) symbols, mapped into Kon

active subcarriers from a total of K. Let �xj ∈ CK×1 be the data vector in
frequency domain transmitted by the jth transmitting antenna with j =
1, 2, . . ., n andKon≤K. The transmitted samples is obtained performing
an inverse discrete Fourier transform (DFT), leading to

χj � FH
K�xj. (1)

where FK ∈ CK×K is the unitary Fourier matrix. In order to protect
the transmit samples χj ∈ CK×1 against the intersymbol interference
(ISI) introduced by a dispersing channel, a cyclic prefix (CP),
consisting in the last Ncp ≥ L samples of (1), is appended to its

FIGURE 1
Simplified block diagram of a generic and communication system.

FIGURE 2
Block diagram of the Iterative MMSE-PIC detector.
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beginning, leading to ~χj ∈ CNt×1 where Nt = K + Ncp. The
transmission is performed concatenating the sample blocks into a
sample based sequence ~χj(t).

At the receiver side, the received signal from the ith antenna at
instant t can be represented as

~γi t( ) � ∑n
j�1

∑L−1
ℓ�0

~hij ℓ( )~xj t − ℓ( ) + ωi t( ), (2)

where i = 1. . .m and ωi(t) ~ CN (0, σ2ω) is the AWGN at the ith
receiver antenna.

Assuming perfect time and frequency synchronization, the
demodulated signal from the ith receive antenna is �yi ∈ CK×1

given by

�yi � FKγi, (3)
where γi ∈ CK×1 is the received symbol without the CP and given by

γi � ∑n
j�1

�Hi,jχj + ωi. (4)

In (4), �Hi,j ∈ CK×K is a circular convolution matrix obtained from
the channel impulse response between the jth transmit and ith
receive antennas and ωi ∈ CK×1 is the AWGN vector.

Introducing 1) and 4) into 3) yields to

γi � FK ∑n
j�1

�Hi,jF
H
K�xj + ωi

⎛⎝ ⎞⎠
� ∑n

j�1
FK

�Hi,jF
H
K︸			︷︷			︸

�Hi,j

�xj + FKωi︸		︷︷		︸
�wi

� ∑n
j�1

�Hi,j�xj + �wi,

(5)

where �Hi,j ∈ CK×K is a diagonal matrix whose elements are the
channel frequency response (CFR) between the jth transmit and ith
receive antennas and �wi ∈ CK×1 is the noise in the frequency domain
at the ith receive antenna.

From (5), the received signal for the kth subcarrier at the ith
receive antenna is

�yi k[ ] � ∑n
j�1

�Hi,j k[ ]�xj k[ ] + �wi k[ ], (6)

where k = 1. . .Kon is the subcarrier index and �Hi,j[k] ~ CN (0, 1) is
the kth diagonal element from matrix �Hi,j, representing a Rayleigh
fading channel applied over the kth QAM symbol �xj[k]. Equation 6
allows us to define the received signal at subcarrier k for all m
receiving antennas through a matrix structure considering all m × n
antennas as

�y1 k[ ]
..
.

�ym k[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸			︷︷			︸

y k[ ]

�
�H1,1 k[ ] . . . �H1,n k[ ]

..

.
1 ..

.

�Hm,1 k[ ] . . . �Hm,n k[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸										︷︷										︸

H k[ ]

�x1 k[ ]
..
.

�xn k[ ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸			︷︷			︸

x k[ ]

+
�w1 k[ ]
..
.

�wm k[ ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸				︷︷				︸

w k[ ]

y k[ ] � H k[ ]x k[ ] + w k[ ] (7)
where y[k] ∈ Cm×1 is the received signal for allm receiving antennas
at the kth subcarrier, H ∈ Cm×n is a flat fading channel matrix
between each transmitting and receiving antennas for the kth

subcarrier, x ∈ Cn×1 represents the data symbols transmitted by
the kth subcarrier andw[k] ∈ Cm×1 is the noise in the kth subcarrier.

Indeed, 7) can be seen as a system factorization, where the
orthogonal multicarrier detection problem splits into Kon

subsystems with dimension m × n, m ≥ n. In general, for linear
estimators employing matrix inversion, the expected complexity
order is Konm

3. It is easy to note that, for high order MIMO
applications, where dozens or even hundreds of antennas are used,
not only solving the entire system requires prohibitive
computational cost but also other challenging aspects arise, e.g.,
high signaling coordination on MIMO channel estimation,
considering each transmitting antenna. It is worth to mention
that, for systems exploring diversity gain and employing a
sufficiently high number of receiving antennas, an especial
situation named channel hardening takes place, where the
resulting fading channel behaves as deterministic (Gunnarsson
et al., 2020). In this sense, a simple linear detector, e.g., the zero-
forcing (ZF) detector, approaches the MLD performance while
granting a significant simplification in the system implementation.

From now on, suppressing the subcarrier index in (7), for
notation simplicity, yields to a linear model representation of the
orthogonal multicarrier MIMO PHY, for a given subcarrier, that is
widely used in next sections.

2.2 Linear model

Taking into account that the coding and decoding blocks can be
seen as independent and separated functions, the linear model that
represents the communication chain of the orthogonal system is
given by

y � Hx + w, (8)
where y ∈ Cm×1 is an observable random vector,H ∈ Cm×n is a linear
transformation matrix and x ∈ Cn×1 is the non-observable vector,
which an estimate is desired amid the presence of the noise vector
w ∈ Cm×1. In (8), we omitted the corresponding resource and
antenna indexes for simplicity of notation.

According to Section 2.1, the proposed model consists in a CP
protected orthogonal multicarrier scheme resulting in a equivalent
block-fading channel from subcarrier perspective, where each
element of H is a flat fading scaling factor associated with each
m × n path between all transmit and receiving antennas. The
probability density function (PDF) of the random elements of H
and w are assumed to be complex Gaussian.

TABLE 1 Common matrix algebra computational complexity.

Description Notation FLOPs

Matrix-Vector Prod. Θn×mϕm×1 8nm − 2n

Matrix-Matrix Prod. Θn×mΦm×p 8nmp − 2np

Matrix-Diagonal Prod. Θn×mΩm×m 6nm

Matrix Inversion (Λm×m)−1 4m3 + 8m2 + 10m

HQR factorization QR = HQR (Γm×n) 2mn2 − 2n3/3
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For the linear model in (8), and also assuming that x and y are
independent and identically distributed (iid), the cross covariance
and the covariance matrices can be described in terms of the
independent random variable (RV) as

Cxy � CxxH
H (9)

and

Cyy � HCxxH
H + Cww . (10)

These matrices are, in general, part of the linear estimation solution
and are also present in the associated error covariance matrix of the
estimator, which is a common parameter for performance analysis.

3 Definitions on complexity evaluation

Before describing the linear estimation and detection techniques,
we present a comprehensive review on the algorithms complexity
analysis in order to allow a comparison among techniques.

Table 1 summarizes the amount of FLOPs demanded on
common matrix algebra (Hunger, 2007) and the implicit
Householder QR factorization (HQR) (Trefethen and Bau, 1997).
In this context, ϕ ∈ Cm×1, Θ ∈ Cn×m and Φ ∈ Cm×p are arbitrary
matrices, while Ω ∈ Cm×m is a diagonal matrix and Λ ∈ Cm×m is a
positive definite matrix. For the HQR, we consider Γ ∈ Cm×n with
m ≥ n. The FLOP account for the complex float-point operations
(CFLOPs) in (Hunger, 2007) considers that a complex summation
consists of only 2 FLOPs (2 real summations), a complex
multiplication requires 6 FLOPs (4 real multiplications and 2 real
summations), a complex square takes 3 FLOPs (2 real
multiplications and 1 real summation), a complex square root
(Mopuri and Acharyya, 2017) demands 10 FLOPs (2 real
multiplications, 2 real divisions, 3 real summations and 3 real
square roots) and a complex division takes 11 FLOPs (6 real
multiplications, 2 real divisions and 3 real summations).

Moreover, Table 2 presents some useful finite sum identities
(Rosen, 2010), which were widespread applied on the complexity
formulation for the investigated techniques.

4 Linear estimation techniques

In this subsection, we describe the most relevant techniques on
linear estimation that are commonly used in digital communications
systems, such as synchronization, channel estimation, and equalization.

4.1 Linear minimum mean squared error
estimator

The LMMSE is a simple implementation of the classic MMSE
estimator that presents low complexity and sub-optimal
performance once it is constrained to be linear. The LMMSE
estimator (Huemer et al., 2017; Albreem et al., 2021a) for a
random vector x̂ is

x̂l � Aly + bl, (11)
where Al and bl are, respectively, a coefficient matrix and an offset
vector that minimizes the MSE for the linear estimation of x. Sub-
index l is used as an identification for the LMMSE estimator. The
MSE matrix stores the covariance among the desired random vector
and its estimation as

El � E{ x − x̂l( ) x − x̂l( )H}, (12)
where El ∈ Cn×n.

The parameters Al and bl, s.t. Al ∈ Cn×m and bl ∈ Cn×1, can be
obtained introducing (11) into the optimization problem

argmin
x̂l

El( ) � ∇Al ,blEl x̂( ) � 0, (13)

which is detailed in Supplementary Appendix SA, yielding to

Al � CxxH
H HCxxH

H + Cww( )−1 (14)
and

bl � μx − AlHμx . (15)
Notice that for a zero mean parameter μx, (15) reduces to a null
vector. Introducing (14) and (15) in (11) results in

x̂l � CxxH
H HCxxH

H + Cww( )−1 y −Hμx( ) + μx . (16)
Applying the expectation operator on (16), allows us to
verify that the LMMSE estimator is globally unbiased, as
E{x̂l} � E{x}, where the attribute global indicates that the
unbiasedness condition is made on the whole parameter
vector x.

The associated computational complexity of (16), in terms of
FLOPs, is

Ol � 4m3 + 16m2n + 8m2 + 20mn + 10m. (17)
It is worth to mention that, for the specific case when n =m andH is
diagonal, the operations in (16) involves only diagonal matrices,
reducing the overall complexity to Ol (47n).

The error covariance matrix of the LMMSE estimator is given by

El � Cxx − CxxH
H HCxxH

H + Cww( )−1HCxx, (18)
whose diagonal represents the estimation error variance on x̂.

4.2 Steepest-descent estimator

The steepest-descent (STPD) is an iterative procedure that can
be applied to LMMSE and other estimators non-subject only to
MMSE performance criteria. In particular, applying the STPD
procedure to the LMMSE allows to reduce its overall complexity,

TABLE 2 Useful finite sum identities.

Index Identity expression

1 ∑n
i�1c � nc

2 ∑n
i�ℓc � c(n − ℓ + 1)

3 ∑n
i�1i � n(n+1)

2

4 ∑n
i�1i2 � n(n+1)(2n+1)

6

5 ∑n
i�ℓ i � ∑n

i�1i −∑ℓ−1
i�1 i � n(n+1)−ℓ(ℓ−1)

2
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once no matrix inversion is necessary. As a result, the STPD scheme
can achieve the same MSE performance as the LMMSE. Consider
the STPD linear estimator for (8) as

x̂s � Asy + bs, (19)
where As and bs are, respectively, the final coefficient matrix and an
offset vector that recursively converges to the MMSE criteria for the
linear estimation of x. The sub-index s denotes the STPD linear
estimator. The parameter As ∈ Cn×m can be approximated in a
interactive fashion by

Ast � Ast−1 + δ CxxH
H[

−Ast−1 HCxxH
H + Cww( )] (20)

where t is an iteration index and δ is the step-size parameter which
defines the behavior of the recursive algorithm. This is a crucial
parameter and should be chosen carefully to guarantee a reasonable
trade-off between convergence speed and stability (Sayed, 2003).
The parameter bs ∈ Cn×1 is given by

bst � μx − AstHμx, (21)
which allows to express (19) at iteration t as

x̂st � Ast yt −Hμx( ) + μx, (22)
and finally, the instantaneous MSE Est is given by

Est � Cxx − CxxH
HAH

st
− AstHCxx

+AstHCxxH
HAH

st
+ AstCwwA

H
st
.

(23)

As Ast converges to the optimal solution given by (14), (23)
approaches the final MSE Es, which is equivalent to (18).
Supplementary Appendix SB describes the procedure to obtain
these results. It is worth to notice that the complexity to
compute (19) is reduced once (20) requires no matrix inversion,
although a certain amount of iterations must be considered in order
to achieve convergence. Furthermore, as in the LMMSE, the prior
knowledge of the signal statistic information is necessary to compute
(20) and (21).

The complexity of computing (22), in terms of FLOPs, is

Os � 16m2n + 20mn. (24)
Notice that Os refers to the computational effort per iteration. For
the diagonal case, when n =m andH is diagonal, the complexity per
iteration reduces to Os(42n). In the next subsection, a popular
algorithm based on STPD is presented as an option to further
reduce the complexity and does not require previous knowledge on
the exact signal statistics.

4.3 Least mean squares estimator

The least mean squares (LMS) is a widely employed adaptive
algorithm solution involving unconstrained optimization
problems in linear estimation. It is based on stochastic-
gradient method that is obtained from steepest-descent
implementation with a suitable approximation (Sayed, 2003).
This approach dismiss the need to know the exact signal statistics
and also performs its role through an iterative learning and
tracking mechanism.

Retrieving from (9), (10) and (20), the LMS recursion can be
rewritten, replacing those statistic parameters by its instantaneous
approximations, leading to

Almst � Almst−1 + δ ~Cxtyt − Ast−1
~Cytyt[ ], (25)

where

~Cxtyt � xty
H
t (26)

and

~Cytyt � yty
H
t . (27)

Typically, the mean of the observable RVs are not known a priori
and, in order to calculate blms, it is necessary to employ some
estimation method, as the local-mean estimator (LME) (Lin and
Unbehauen, 1991), then estimate the mean information. It is also
worth to highlight that, although it is not necessary to know exact
values of Cxy, Cyy, μx and μy, it is mandatory to grant access to xt and
yt while processing the recursion. In practical applications, such as
channel estimation and equalization, this requirement can be
addressed employing a training sequence, also known as pilot
symbol, whenever the estimation procedure demands an update
(Sayed, 2003; Guimarães, 2010). Thus, the LMS parameters can be
defined as

Almst � Almst−1 + δ xty
H
t − Almst−1yty

H
t( ) (28)

and

blmst � ~μxt − Almst~μyt , (29)

where ~μy is locally estimated using a recursive moving average
structure as the leaky integrator (Prandoni and Vetterli, 2008) while
~μx can also be estimated in the same way or, in case of employing a
known sequence, it can be previously defined. Considering the local-
mean estimation approach, these parameters can be obtained
through the following recursions.

~μyt � ζ ~μyt−1 + 1 − ζ( )yt (30)
~μxt � ζ ~μxt−1 + 1 − ζ( )xt (31)

where ζ = (Mw − 1)/Mw is the real valued parameter that depends on
the moving average window of length Mw. Finally, the LMS
estimator is given by

x̂lmst � Almst yt − ~μyt( ) + ~μxt. (32)

The instantaneous estimation error is obtained directly from xt and
x̂lmst samples, which can be evaluated as

~Elmst � xt − x̂lmst( ) xt − x̂lmst( )H, (33)
and, as the algorithm converges, its magnitude decays.

Analyzing (28), while approaching the convergence state, the
update term also decays and, under some conditions, i.e., the choice
of a stable-convergent update coefficient, the final coefficient matrix
is approximately given by

Alms � xty
H
t yty

H
t( )−1. (34)

By replacing (34) into (32) and taking the expectation of (33), we can
obtain the expected MSE matrix of the LMS algorithm as
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Elms � Cxx − CxxH
H HCxxH

H + Cww( )−1HCxx . (35)
Eq. 35 is equivalent to the LMMSE MSE matrix from (18), which is,
in practical applications, a lower bound for the LMS MSE
performance.

The complexity to compute (32) for each LMS iteration is

Olms � 8m2n + 6m2 + 18mn + 8m + 6n, (36)
which already includes the estimator update task, incorporating the
computational cost from (28) and (29). As these equations depend
only on the instantaneous observations of the vectors xt and yt, even
when the transformation matrix H is diagonal, this condition does
not reduces the complexity, once the instantaneous approximations
~Cxtyt and

~Cytyt are evaluated through the outer products in (26)
and (27).

4.4 Component-wise conditionally unbiased
LMMSE estimator

The CWCU-LMMSE is a constrained linear and
conditionally unbiased version of MMSE estimator, where the
conditional expectation of each estimated component x̂ci is
individually forced to be equivalent to its associated indirect
observable RV xci (Huemer et al., 2017). The CWCU-LMMSE
performs unbiased estimation although it can not outperform the
LMMSE estimator in a MSE criteria, since it seeks to minimize
the MSE under additional constraints. We assume the already
defined vectors x and y as proper and jointly complex Gaussian
random variables, where proper means that the real and
imaginary parts are uncorrelated with equal variances. The
sub-index c is used to designate the CWCU-LMMSE
estimator, which can be defined as

x̂c � Acy + bc, (37)
where Ac and bc are, respectively, the coefficient matrix and the
offset vector that minimizes the MSE with the additional constraint
E{x̂ci | xci} � xci. The solution for this unbiased linear estimator, for
complex proper Gaussian xc, withmutually independent elements, is
described in detail at Supplementary Appendix SC and it is given by

Ac � DAl, (38)
and

bc � μx − AcHμx, (39)
where Al is the coefficient matrix of the LMMSE estimator and

Di,i �
σ2xci

CxixH
H HCxxHH + Cww( )−1HCxxi

(40)

are the real valued elements of the weighting diagonal matrix
D ∈ Rn×n, which, for x with mutually independent elements, can
also be expressed as

D � Cxx CxxH
H HCxxH

H + Cww( )−1[ HCxx]−1. (41)

The diagonal matrix D can also be obtained performing
D � Cxxdiag(diag(AlHCxx))−1. Considering the reduced
complexity on computing the diagonal matrix inversion and also

that Al and the resultant matrix multiplication HCxx are already
available, the required computational effort on obtaining D is

OD � 8n2m + 4n2 + 17n. (42)
Applying (38), (39) and (41) in (37) allows us to represent the
CWCU-LMMSE estimator as

x̂c � DAl y −Hμx( ) + μx, (43)
whose computational complexity in terms of FLOPs can be obtained
from (17), taking into account the weighting diagonal matrix D,
yielding to

Oc � 4m3 + 16m2n + 8n2m + 8m2

+4n2 + 26nm + 10m + 12n.
(44)

For the case when n =m andH is diagonal, the complexity decreases
to Oc(82n). The error co-variance matrix of the CWCU-LMMSE
estimator is described in Supplementary Appendix SC and it is
given by

Ec � HH HCxxH
H + Cww( )−1H[ ]−1 − Cxx . (45)

4.5 Maximum a-posteriori estimator

The maximum a-posteriori (MAP) estimator is an useful
approach to incorporate prior information into the data
estimation problem. The MAP estimator is based on posterior
probability maximization and it is close related to MAP
hypothesis testing (Yates and Goodman, 2005). Although the
MAP estimator could, in some cases, result in optimum
estimates, like the MSE, it can be cumbersome (or even
prohibited) to determine the exactly posterior probability
function. In general, the MAP estimate of the RV X given the
observation Y = y is

x̂map � argmax
x

fX|Y x | y( ), (46)

where fX|Y (x|y) is the conditional distribution function of X
given Y = y.

Retrieving the definition of the complex Gaussian random
vectors x and y from Section 2.2, which are connected through
the linear model in (8), its conditional PDF is given by the bi-variate
complex Gaussian distribution (Andersen et al., 1995) as

fX|Y x | y( ) � π−1det Σ( )−1
× exp − x − ~μ( )HΣ−1 x − ~μ( )[ ] (47)

where det (·) is the determinant operator,

Σ � Cxx − CxyC
−1
yyCyx (48)

and

~μ � μx + CxyC
−1
yy y − μy( ). (49)

Analyzing (47), it is clear that its maximum probability occurs when
its exponent is null, hence, when x � ~μ. This condition yields to

x̂map � μx + CxyC
−1
yy y − μy( ). (50)

Finally, replacing 9) and (10) in (50) leads to
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x̂map � μx + CxxH
H HCxxH

H + Cww( )−1 y −Hμx( ), (51)
which, in this specific case, resolves to the LMMSE estimator in (16).
Hence, its computational complexity is equivalent to (17),

Omap � 4m3 + 16m2n + 8m2 + 20mn + 10m, (52)
while the error covariance matrix corresponds to (18) and is given by

Emap � Cxx − CxxH
H HCxxH

H + Cww( )−1HCxx . (53)

4.6 Bayesian Cramér-Rao bound on
estimators

The BCRB defines a physical lower bound forMSE performance,
which is helpful to classify whether a given estimator attains the
BCRB criteria.

Since all our information is embodied in the observed data
and, eventually, in our prior knowledge about the unknown
parameter, the estimation accuracy depends directly on its
PDFs (Kay, 1993).

The BCRB is defined as a lower bound for the MSE matrix and it
is related to the inverse of the Bayesian Fisher information matrix
(BFIM) IB (Trees and Bell, 2007), which means that

EBCRB ≥ I−1B , (54)
where the matrix inequality means that EBCRB − I−1B is a non-negative
definite matrix. The elements of IB, whose row and column indexes are
given by the subscripts p and q, respectively, are obtained by

IB[ ]p,q � −E z2 lnfY|X y | x( )
zxpzxq

{ }
−E z2 lnfx x( )

zxpzxq
{ }. (55)

From the linear model in (8), replacing the corresponding PDFs

fY|X y | x( ) � π−1det Cww( )−1
× exp − y −Hx( )HC−1

ww y −Hx( )[ ] (56)

and

fx x( ) � π−1det Cxx( )−1
× exp − x − μx( )HC−1

xx x − μx( )[ ] (57)

in (55), allows to define the BCRB as

EBCRB � C−1
xx +HHC−1

wwH( )−1. (58)

5 Detection techniques

In this section we present the MLD as a reference for the
performance and complexity analysis once, considering the use of
multiple antennas on transmitting and receiving simultaneous
streams, is able to achieve optimal performance, minimizing the BER
although showing an unfeasible complexity depending on system
parameters. As a countermeasure for the prohibitive computational
cost, we also review two known detection techniques, one sub-optimal
and one close optimal, both with affordable complexity.

5.1 Maximum likelihood detector

As presented in Section 2, the detection task at the receiver is
basically a decision process applied on the received signal in order to
recover the transmitted message.

Retrieving the system model presented in (8), with m ≥ n, we
admit now that x holds a sequence of discrete symbols from an
alphabet D ∈ CM×1, with M distinct members. Under the
common assumption that all code words from D are
equiprobable and, in the case where w is AWGN, the
maximum likelihood (ML) detector criterion yields to the
minimization of the Euclidean distance (ED) (Bai and Choi,
2014), given by

x̂ML � argmin
~xk∈Dn, k�1,...,Mn

‖y −H~xk‖2, (59)

where ~xk ∈ Cn×1 is the kth column vector from the set Dn ∈ Cn×Mn

,
which contains all possible cross combinations of the elements inD,
taken n at a time. In general, finding the optimal solution requires an
exhaustive search over all Mn hypothesis (Albreem et al., 2020),
yielding to a n-exponential complexity order problem. Each
hypothesis contains n symbols and the MLD can be seen as a
lattice structure consisting of nMn nodes. The Algorithm 1
summarizes the MLD procedure whose complexity is mainly
dictated by the squared ED computation of each hypothesis at
line 3 and the comparison at line 5.

Result: x̂ML

1: ρ2 = ∞
2: for k ← 1 to Mn do

3: d2k � ∑m
i�1|yi − �Hi~xk|2

4: if d2k < ρ2 then

5: ρ2 � d2k
6: x̂ML � ~xk

7: end if

8: end for

Algorithm 1. ML Detector.
In the Algorithm 1, �Hi is the ith row of the matrix H and d2k is

the squared ED of the kth hypothesis. The required computational
effort on MLD, in terms of FLOPs, is

OML � Mn 8mn + 3m + 2( ). (60)
Supposing an alphabet with 16 distinct elements and n = 8, the

MLD needs a total of 4.29 × 109 hypothesis tests in order to detect
x̂ml. Although optimal, in certain applications the MLD requires a
prohibited computational effort (Albreem et al., 2020). In following
sub-sections, we present reduced complexity alternatives for the
MLD at the expense of sub-optimal performance.

5.2 MMSE with ordering successive
interference cancellation detector

TheMMSE-OSIC is a non-linear estimator that attempts to improve
interference cancellation in applications such as SM-MIMO, i.e., Bell
Laboratories layer space-time (BLAST) variances (Hampton, 2013).
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This method basically starts organizing the rows of the received
sequence y and the full-rank channel matrix H in ascending order of
SNR. Afterwards, starting from the last row, which holds the symbol
with higher SNR, decides by the most likely transmitted information at
layer ℓ throughML detection. The estimated symbol from layer ℓ = n is
then used, together with CSI, to remove its interference in the foregone
layer ℓ = n − 1, prior to ML detection. This procedure is repeated until
all layers ℓ = n − 1, . . ., 1 have been processed. Finally, original ordering
is reestablished undoing the initial sort operation. The idea to organize
the received sequence according to SNR is to avoid error propagation,
possibility that might occur in case we start the successive interference
cancellation (SIC) algorithm with an arbitrary low SNR signal (Golden
et al., 1999).

The ordained received vector and CSI can be obtained
performing

yo � Py (61)
and

Ho � PH, (62)
where P is a m × m binary permutation matrix, built based on SNR
estimation for each y element. It has exactly one entry of 1 in each
row and each column, with 0s elsewhere. For example, sorting a
vector in ascending order according to a given estimated SNR
sequence, e.g., (Zhang et al., 2017; Giordani et al., 2020; Tapio

et al., 2021), would require a left multiplication by P �
0 1 0
0 0 1
1 0 0

⎛⎜⎝ ⎞⎟⎠.

Underneath the common assumption that the constellation alphabet
D is zero mean with normalized energy and w is AWGN, the
estimated SNR at the ith receiver antenna after equalization is

γ̂i � σ2‖Ai‖2( )−1, (63)
where Ai is the ith row of a linear equalization matrix, e.g., the
LMMSE equalizer from (14).

Hereafter, the SIC at layer ℓ is accomplished by interference
cancellation and equalization through

�xo � �HH
oj

�Hoj
�HH
oj
+ Cww( )−1

× yo −∑n
ℓ+1

x̂osicℓ+1
�Hoℓ+1

⎛⎝ ⎞⎠,
(64)

followed by ML detection

x̂osicℓ � argmin
~xk∈D, k�1,...,M

| �xoℓ − ~xk|2. (65)

In (64), �xo is the ordained received vector yo right after interference
cancellation from upper layers, followed by equalization considering

�Hoj, which is the jth columns ofHo for j = [1, . . ., ℓ]. The interference
removal occurs on lower layers only, when ℓ < n, employing already
detected symbols x̂osicℓ+1 and �Hoℓ+1, which is the ℓ + 1 column of Ho.

In (65), the sub-indexed term x̂osicℓ is the ML detection result for
layer ℓ, where ~xk is the kth symbol constellation from the setD with
dimensionM × 1. It is worth to mention that x̂osic is already correctly
ordered. Algorithm 2 is proposed for MMSE-OSIC implementation.

Result: x̂osic

1: yo = Py

2: Ho = PH

3: for ℓ ← n to 1 do

4: j = [1, . . ., ℓ]

5: �xo � �H
H
oj
(�Hoj

�H
H
oj
+ Cww)−1(yo −∑n

ℓ+1x̂osicℓ+1
�Hoℓ+1)

6: x̂osicℓ�arg min
~xk ∈ D

| �xoℓ
− ~xk|2

7: end for

Algorithm 2. MMSE-OSIC.
Analysing Algorithm 2 and applying the summation identity∑n

ℓ�1ℓ � n(n + 1)/2 for the variable matrix size computations along
all n − layer iterations, the estimated complexity for the MMSE-
OSIC is given by

Oosic � 4m3n + 2m2n2 + 8m2n + 4mn2

+2m2 + 6mn + 10M − n2 − n.
(66)

5.3 Sphere detector

The SD (Fincke and Pohst, 1985) is an algorithm to address the
non-deterministic polynomial-time (NP) hard integer least squares
(ILS) problem and achieve optimal MLD performance with an
average polynomial complexity (Hassibi and Vikalo, 2005).

The principle of SD is to reduce the exhaustive search procedure
over all possible code words carried out by the MLD. This is
accomplished restricting the search only on hypothesis where the
distance from one possible code word are within a predefined radius
of a high-dimensional sphere, where each hypothesis can be seen as a
path with sequentially interconnected points in a finite tree
structure. Whenever a path segment reaches a cumulative
distance that exceeds the sphere radius, this segment and all
subsequent points are discarded, yielding to a variable complexity
reduction (Larsson, 2009).

In this way, depending only on the radius parameter ρ, a trade
off between performance and complexity can be trimmed. If ρ is
chosen sufficiently high and kept constant, all paths might be
checked and the SD behaves like the MLD. If ρ is too small, this
can result in non-eligible paths. In this situation, the procedure can
be repeated with an increased radius. A practical approach is to
initialize ρ =∞ or based on a code word given by a low complexity
technique (Dehghani Soltani et al., 2014), e.g., the ZF or MMSE
detectors (Proakis, 2007) and update the radius whenever a better
hypothesis is found during the search procedure.

We start introducing the HQR factorization (Koudougnon
et al., 2011) expressed asQR = HQR(H) for the full-rank channel
matrix H and admitting m ≥ n, where Q ∈ Cm×m is an
orthonormal matrix s.t. QHQ = Im and R ∈ Cm×n is an upper-

TABLE 3 Proposed cases for the performance analysis.

Case Scaling factor Noise energy Known rv Est. rv

1 High Low y1 x̂1

2 Low Low y2 x̂2

3 High High y3 x̂3

4 Low High y4 x̂4
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triangular matrix. Left multiplying the received vector from (8)
by QH yields to

~y � QH QRx + w( ) � Rx + ~w. (67)

Since Q is orthonormal, the noise distribution of ~w is still
AWGN and the detection problem is equivalent to (59),
including ~xk definition. Thus, the SD problem can be
represented by

FIGURE 3
Intensity chart for the complex random variables estimation example employing LMMSE, STPD or MAP.

FIGURE 4
Intensity chart for the complex random variables estimation example employing LMS.
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FIGURE 5
Intensity chart for the complex random variables estimation example employing CWCU LMMSE.

TABLE 4 Linear estimation result summary.

Estimator diag(A) b diag(E) O(x̂)
LMMSE, MAP [0.99,1.92,0.95,1.67] [0.01 + 0.01j,−0.05 + 0.05j,−0.07 − 0.07j,0.24 − 0.24j]T [0.01,0.04,0.05,0.17] 188

STPD [0.99,1.92,0.95,1.67] [0.01 + 0.01j,−0.05 + 0.05j,−0.07 − 0.07j,0.24 − 0.24j]T [0.01,0.04,0.05,0.17] 168

LMS [0.97,1.93,0.94,1.74] [0.05 + 0.06j,−0.11 − 0.05j,−0.14 − 0.07j,0.04 − 0.28j]T [0.01,0.04,0.05,0.19] 952

CWCU LMMSE [1.00,2.00,1.00,2.00] [0.00 + 0.00j,0.00 + 0.00j,0.00 + 0.00j,0.00 + 0.00j]T [0.01,0.04,0.05,0.20] 328

FIGURE 6
STPD and LMS convergence behavior for the proposed example.

FIGURE 7
FLOP counting for the presented linear estimators.
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x̂SD � argmin
~xk∈Dn, k�1,...,Mn

‖~y − R~xk‖2, (68)

which can be addressed through a point-sequence search
algorithm (Agrell et al., 2002). This structure resembles a
spanning tree, with a root node located at the top layer ℓ = n,
spanning to M nodes in the immediately next layer ℓ = n − 1. In
this way, each node from an upper layer connects to M nodes in
subsequent beneath layer. Each layer connection or path section
is defined here as a segment. A series of segments connecting a
root node to one of theMn nodes at the final layer ℓ = 1 forms one
distinct path among Mn possibilities. The total amount of nodes,
ηSD, in a given spanning tree structure has a close relation with
the SD complexity and can be obtained as

ηSD � ∑n
ℓ�1

Mℓ . (69)

The SD executes a top-down search along the tree while compute the
squared node distance d2

ℓ
at layer ℓ under analysis given by

d2
ℓ
� ~y

ℓ
−∑n

i��
rℓ,i~xi

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2

, (70)

where ℓ = n, n − 1, . . ., 1 is the layer index and ~xi is one of the M
distinct constellation symbols chosen from the set D. The scalar rℓ,i

is an element of matrixR and ~y
ℓ
is the ℓth element of vector ~y. When

d (ℓ,s)2 > ρ2, subsequent layers are pruned, leading the algorithm to
move on next segment direction or beginning a new path search. It is
worth to mention that, in order to avoid the square root in (70), this
comparison can be evaluated on the squared distances.

Algorithm 3 describes the SD mechanism to find x̂sd employing
a recursive function SD(ℓ) along the tree search task. For simplicity,
the algorithm initializes the parameter ρ2 = ∞. The variable s = 1,
. . ., M is the segment or constellation symbol index for each node
hypothesis test. It is also assumed that, when necessary, some
parameters are global accessible inside the algorithm environment.

Result: x̂SD

1: QR = HQR(H)

2: ~y � QHy

3: ρ2 = ∞
4: ℓ = n

5: function SD(ℓ)

6: for s ← 1 to M do

7: ~xℓ � Ds

8: d2
ℓ
� |~y

ℓ
− ∑n

i�ℓrℓ,i ~xi|2
9: if (∑n

i�ℓd
2
i < ρ2) then

10: if (ℓ == 1) then

11: x̂SD � [~xn, ~xn−1, . . . , ~x1]
12: ρ2 � ∑n

i�1d
2
i

13: else

14: SD (ℓ − 1)

15: end if

16: end if

17: end for

18: end function

Algorithm 3. Sphere Detector.
The task of finding an exact expression for the complexity of the

SD is not trivial once it depends not only on the transmission
channel matrix dimension but also on the sphere radius, which is, in
turn, a function of the SNR. Indeed, the SD FLOPs account is a

FIGURE 8
MSE versus BCRB for the investigated linear estimators.

TABLE 5 Parameters for the non-iterative and uncoded system simulation.

Parameter Symbol Value

Number of antennas [m, n] 4

CIR length L 16 samples

CP length NCP L

kth subcarrier frequency response H [k] CN (0m×n, 1m×n)

Number of subcarriers K 64 subcarriers

Bits per symbol μ 4

bit-symbol energy ratio Eb/Es (K + NCP)/(μK)

FIGURE 9
Monte Carlo simulation of an uncoded 16-QAM employing a 4 ×
4 SM-MIMO-OFDM in time-varying and frequency selective channel.

Frontiers in Communications and Networks frontiersin.org13

Gaspar et al. 10.3389/frcmn.2023.968370

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2023.968370


random variable with expected polynomial complexity although, in
the worst case scenario, it can reach exponential complexity (Hassibi
and Vikalo, 2005). Considering the worst case, where all nodes of
every segment are visited, the resulting complexity is given by

OSD � OHQR + O~y +Mn∑n
ℓ�1

Onode ℓ( ), (71)

where OHQR is the complexity of the HQR factorization at line 1 of
the Algorithm 3, given by Table 1, and the term O~y is the matrix-
vector product in line 2 of the Algorithm 3. The last term in (71)
represents the complexity of the recursive function SD(ℓ) with Mn

representing the total amount of segments in the spanning tree
search that multiplies the summation over all layers, which
represents a fully segment containing n nodes, connecting the
uppermost layer down to layer one. Finally, Onode is the
complexity of one node inspection at layer ℓ, given by

Onode ℓ( ) � ∑NT

i�ℓ
8 NT − i( ) + 11. (72)

With the aid of the identities given in Table 2, an upper bound
for the SD algorithm complexity is obtained as

OSD � 2n2 3m − n( )
3

+ 2m 4m − 1( )
+M

n 3n3 + 13n2 + 10n( )
2

,
(73)

where the last term on (73) is the predominant computational cost
associated with the recursive SD(ℓ) function.

In a first glance, the worst case scenario for the SD algorithm
exhibits higher complexity when compared with the MLD. This
happens due the fact that every visited node requires the
computation of the squared partial distances d2

ℓ
. However, as

the SD is able to reduce its complexity to a polynomial degree,
thanks to its segment pruning behavior based on partial
distances, in practice, the SD complexity is smaller than the
MLD complexity, specially at high SNR. On the other hand, the
MLD will always exhibits an exponential complexity, since all
hypotheses are always evaluated.

There are also some slight variants of the SD algorithm that seeks to
achieve a reduced (Arfaoui et al., 2016) or even fixed complexity
(Larsson, 2009) at the cost of sub-optimal performance. In (Burg
et al., 2005), some suitable approximations and simplifications are
admitted, leading to implementations with affordable complexities.

5.4 Iterative MMSE-PIC detector

This method relies on two concepts, parallel interference
cancellation and SISO channel decoding (Studer et al., 2011),
exchanging refined information between these two domains in a
iterative form. Differently from SIC, where data symbols are
individually detected removing the interference caused by already
decided symbols, the PIC estimates all data elements sharing the
same radio resource jointly. The PIC performs a detection on the jth
element xj of x assuming that all its other elements, denoted by x\j,
are interfering terms. Rewriting 8) as

FIGURE 10
SD complexity analysis for the simulated parameters.

FIGURE 11
FLOP complexity comparison for the main evaluated detection
methods.

TABLE 6 Supplementary parameters for the iterative detection simulation.

Parameter Symbol Value

Number of antennas [m, n] 4

CIR length L 16 samples

CP length NCP L

kth subcarrier frequency response H [k] CN (0m×n, 1m×n)

Number of subcarriers K 64 subcarriers

Bits per symbol μ 4

Coded bits per frame Nc 1024

Code rate r 1/2

Convolutional Code CC 7, [171, 133]

Number of iterations it. 4

bit-symbol energy ratio Eb/Es (K + NCP)/(μrK)
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y � �Hjxj +H\jx\j + w, (74)
where �Hj is the jth column of H while H\j is H removing the jth
column. Then, the PIC yields the signal ~yj given by

~yj � y −H\jμx\j
� �Hjxj +H\j x\j − μx\j( ) + w︸							︷︷							︸

~w\j

, (75)

with μx\j denoting μx removing the jth element, ~wj models the noise-
plus-interference, with varianceHCxxH

H + σ2I. Based on (75), all j =
1. . .n systems can be solved in parallel, employing independent
linear estimation processes, whose, in general, requirem ×mmatrix
inversions for each xj, normally yielding to cubic complexity order.
In (Matthe et al., 2016), the authors demonstrate that this process is

equivalent to a single linear estimation exploring a-priori
knowledge on x.

Figure 2 illustrates the block diagram for the proposed iterative
SISO MMSE-PIC detector. Its entry point considers, under the
assumption of perfect synchronization and channel state
information at the receiver (CSIR), the demodulated signal vector
y, the equivalent MIMO CFR and the corresponding AWGN
variance σ2w . The expectation and variance of x are estimated
with the help of a linear estimation function, in this case, we
consider the CWCU-LMMSE estimator, and the available
a-priori information μax and Ca

xx . Initially, when no a-priori
information is available, these parameters are initialized as a null
vector and an identity matrix, respectively. Next, the resulting
posterior estimates, μpx and Cp

xx , respectively obtained employing
(43) and (45), are used by the soft demapping function M−1

soft to
obtain individual bit probability estimation for each data symbol,
constrained by the constellation setD. Assuming uncorrelated noise
and dismissing the necessity of previous knowledge about the bit
sequence, the approximated LLRs, for a given subcarrier, are
efficient obtained with negligible impact on the overall detection
performance (Studer et al., 2011; Matthé et al., 2018) by

λpij,b �
1

diag Cp
xx( )j min μpx( )j −D 0( )

b

∣∣∣∣∣ ∣∣∣∣∣2(
−min μpx( )j −D 1( )

b

∣∣∣∣∣ ∣∣∣∣∣2) (76)

where λpi ∈ Rμn×1 is the intrinsic LLR vector, j = 1. . .n, b = 0. . .μ − 1,
with μ being the number of bits per symbol,D(0)

b andD(1)
b being the

subsets of constellation symbols whose bth bit is 0 or 1, respectively.
It is worth to mention that diverse LLRs sequences may be required
when considering SM-MIMO systems employing frame structures
that carry out integer multiples of a codeword, simultaneously
transmitted by n antennas in multiple block symbols per frame.
Thus, after properly gathering and organizing each codeword, soft
decoding is performed in every iteration of PIC procedure. In case of
random bit interleaving had been considered in the transmitter side,
a de-interleaving function must be done prior to channel decoding.
Afterwards, the same random bit interleaver operation is performed
over extrinsic LLRs before soft mapping. The interleaving is an
efficient option in order to improve the correction capacity. If the
noise coming into channel decoding is highly correlated, then the
convolutional decoder, commonly designed with a short constraint
length, is more likely to make a decoding error than if the noise was
independent. Since channel decoders are affected by burst errors, the
interleaver spreads these errors out, allowing the decoders to operate
with relative independent noise from bit to bit (Gallager, 2008).

The soft channel decoding is responsible for recovering the
transmitted bit information from demapper estimates, obeying the
code constraints. Usually, soft decoding applies algorithms able to
exactly compute or approximate the APP of the information bits or,
more generally, a reliability measure about each information bit.
Hence, soft decoding results decoded LLRs, required in order to
output re-encoded LLRs λai for a next iteration or by taking a final
hard bit decision b̂PIC. To improve the correctness of its decisions,
both demapper and decoding have to be fed with information which
does not originate from itself (Colavolpe et al., 2001), corresponding
to the so called extrinsic LLRs λe. Without loss of generality, we
assume convolutional codes as channel coding technique, which is

FIGURE 12
BERMonte Carlo simulation of a coded 16-QAM employing a 4 ×
4 SM-MIMO-OFDM in time-varying and frequency selective channel.

FIGURE 13
FER Monte Carlo simulation of a coded 16-QAM employing a 4 ×
4 SM-MIMO-OFDM in time-varying and frequency selective channel.
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sufficient to analyze the PIC concept. Therefore, Soft output Viterbi
Algorithm (SOVA) (Hagenauer and Hoeher, 1989) is also
considered hereinafter.

The extrinsic information gained during codeword domain
processing, denoted by λae, is soft modulated according to (Studer
et al., 2011). Let define the bth bit of the sth constellation symbol by
bs,b ∈ {0, 1} with probabilities P[bs,b � 1] � [1 + exp(λae)]−1 and
P[bs,b � 0] � 1 − P[bs,b � 1]. Then, mean and variance of the
a-priory constellation symbols are updated performing

μax( )s � ∑
x∈D

∏
b

P bs,b � M−1 x( )[ ]x (77)

and

diag Ca
xx( )s � ∑

x∈D
∏
b

P bs,b � M−1 x( )[ ]
×‖x − μax( )s‖2, (78)

This encloses the iterative MMSE-PIC loop, allowing to start a
new iteration considering the a-priory information gained from soft
decoding. Along successive iterations, both demapper and decoder
procedures self benefit from exchanged refined information between
each other. Algorithm 4 summarizes the required tasks for each
iteration.

Result: b̂PIC

1: for all k subcarriers do % K parallel instances,

suppressed indexes

2: (μp
x,C

p
xx) � CWCU − LMMSE[(y � Hx + w), CN (μa

x,C
a
xx), CN (0, σ2wI)]

% (43) and (45)

3: end for

4: λpi � M−1
soft(μp

x ,C
p
xx) % Soft Demapping according to (76)

5: �λ
p
i � Π−1(λpi)

6: λpe � �λ
p
i − λae

7: (λai,bPIC) � SOVA(λpe) % Soft Decoding (Hagenauer and

Hoeher, 1989)

8: �λ
a
e � λai − λpe

9: λae � Π(�λae)
10: (μa

x ,C
a
xx) � Msoft(λae) % Soft Mapping according to (77)

and (78)

Algorithm 4. Iterative MMSE-PIC Detector.
With respect to computational effort comparison, it is

reasonable to consider the estimation processes at line 2,
detaining the majority complexity executing Algorithm 4. Since
demapping and decoding are, in general, common tasks in every
digital communication system, it is sufficient to express the MMSE-
PIC detector complexity per iteration by

OPIC ≈ KOc, (79)
The estimation stage employs up to K parallel instances of the
CWCU-LMMSE estimator to solve each m × n linear systems,
corresponding to the number of active subcarriers. Retrieving
(44), the complexity order of Algorithm 4 is mainly dictated by a
cubic behavior on the employed MIMO dimension. In order to
further reduce the computational cost involved in MMSE-PIC
detection, approximated estimators that avoid costly matrix
inversion can be considered (Matthé et al., 2018; Zhang and
Kim, 2019; Park, 2022).

5.5 Genie-aided detector

The MLD energy efficiency is commonly taken as reference for
performance analysis involving alternative detectors. According to
Section 5.1, the computational effort required to evaluate the ML
detection is, in general, unfeasible, depending on system order, even
for simulation purpose. In order to overpass this demanding
condition, we can consider employing an hypothetical Genie-
Aided Detector (GAD).

The GAD access additional transmission side information
carried to the detector through a non-dispersive and unitary gain
parallel channel, representing the genie (Eriksson et al., 1995). In the
receiver side, upon decision of the transmitted data, the ED ϱR
between the detected information x̂ and the received signal y is
compared with the ED ϱT of the transmitted data x and y. If ϱR < ϱT,
an optimal MLD would also detect the wrong data sequence, leading
to a frame error. On the contrary, when ϱR ≥ ϱT, it is assumed that
the MLD would have found the correct data sequence and the
detector under analysis not, accumulating a frame error. This
procedure overestimates the MLD performance yielding to a
lower bound on ML detection (Matthé et al., 2018). The validity
of this bound is a direct consequence of the fact that any composite
hypothesis test cannot perform better than the corresponding
perfect measurement test (Anastasopoulos, 2003). Algorithm 5 is
used to evaluate the MLD frame error rate (FER) lower bound
employing a GAD.

Initialize:

1: total_frames = 0;

2: frame_error = 0;

For each iteration results: FERML

3: total_frames = total_frames + 1;

4: ϱ2R � ‖y − Hx̂‖2
5: ϱ2T � ‖y − Hx‖2
6: if ϱ2R < ϱ2T then

7: frame_error = frame_error + 1;

8: FERML � frame_error
total_frames

9: end if

Algorithm 5. Genie-Aided Detector.
The GAD description encloses this section and finally allows to

evaluate the aforementioned concepts, involving the estimation and
detection techniques.

6 Simulation results

In order to demonstrate the properties of the investigated
estimators and detectors, we propose three numerical examples.
The first one seeks to evaluate and compare the resultingMSE on the
estimation of four different RVs, each one considering a specific
scenario, chosen to allow an easy visualization of its characteristic
biasedness. The second example focus on the uncoded and non-
iterative detection task considering a hypothetical SM-MIMO
system, where a Monte Carlo simulation is conducted for the
BER performance evaluation. The complexity comparison is
performed, in both examples, analyzing the involved
computational effort as a function of its respective cost sensitive
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parameters. The third example evaluates the iterative MMSE-PIC
and compare its FER performance w.r.t. an overestimated and
hypothetical SISO MLD with the help of a GAD.

6.1 Numerical example of linear estimation

Consider a linear system as in (8) with m = 4 and n = 4, where
each element of the observable random vector y is yi � ∑n

j�1Hi,jxj +
wi for i = 1, . . ., m.

The elements of H, x and w are mutually independent, where
wi ~ CN (0, σ2wi

) for σ2
w � [0.01, 0.01, 0.05, 0.05], Hi,j are the

elements of H and xj is a discrete uniform RV from the set
{ej(2j−1)π/4 + μxj}, with μxj � 2ej(2j−1)π/4 and variance σ2xj � 1.
Here, xj was defined in order to position each RV on different
quadrants of a complex plane to facilitate its visual identification.
Moreover, the linear estimation applied to a finite set of discrete RV
allows to analyze the biasedness aspect of the different estimators.
The co-variance of the random vectors x and w are Cxx = In and
Cww � diag(σ2

w), respectively.
The proposed transformation matrix H = diag ([1, 0.5, 1, 0.5])

was built in order to allow the investigation of the MSE in some
specific cases, varying from unitary transform coefficient and lower
noise energy to low scaling factor with high noise energy. Table 3
outlines the proposed cases of study.

Figures 3–5 shown the intensity charts of the relative
frequencies for each estimates in the complex plane. High
incidence values are marked in red, while low occurrence
values are plotted in blue. The × markers indicate possible
values assumed by the discrete RVs xj.In the top right
quadrant, we have the intensity color plot for the RV x1,
corresponding to the proposed case 1 from Table 3 and, in
counterclockwise direction, the remaining quadrants illustrate
the resulting estimation of x2, x3 and x4, respectively, related to
cases 2, 3 and 4, in this order. The plot from Figure 3 reproduces
the results for the LMMSE estimator and are equivalently
obtained when employing STPD or MAP estimators. Figure 4
and Figure 5 show the relative frequencies obtained by the LMS
estimation and the CWCU-LMMSE estimator, respectively.

For the case 1, where the scaling factor equals one and the SNR is
high, all estimators perform equally in terms of the MSE. This result
is also observed for cases 2 (low scaling factor and high SNR) and
case 3 (high scaling factor and low SNR). For case 4, with low scaling
factor and low SNR, the MSE increases in relation to the other cases.
In this situation, one can observe that the LMMSE, STPD and MAP
estimators, whose restriction relies only on the linearity constraint,
achieve the smallest MSE. The exception is the LMS estimator,
which shows an poorer performance, mainly because of its built-in
approximations. The CWCU-LMMSE estimator cannot outperform
the LMMSE estimator in a MSE sense since it has additional
constraints. However, the CWCU-LMMSE estimator features its
inherent conditional unbiased property, which is evidenced in study
case 4, whose result can be visualized at Figure 5. The CWCU-
LMMSE has its estimates centered around the true RV events, since
this estimator holds the established constraints. In contrast, the
LMMSE based estimators introduce a small bias towards the prior
mean, μxj in order to avoid noise enhancement and attains
the MMSE.

Table 4 summarizes the most relevant results for the
performance analysis of the estimators considered in this review.
Columns 2, 3 and 4 from Table 4 present the diagonal components
of the coefficient matrixA, the elements of the offset vector b and the
diagonal elements of the resulting MSE matrix E, respectively. Each
element corresponds, from left to right, to the proposed cases 1 to 4,
in this order. The last column shows the required computational
cost in FLOPs on estimating x̂ for each method, considering all
involved operations, from the computation ofA and b to x̂ itself. It is
worth to highlight that, since H is a square diagonal matrix, the
overall matrix algebra complexity is reduced, except for the LMS
algorithm, where, as stated in Section 4.3, it does not take advantage
from a diagonal transformation matrix. Furthermore, the presented
complexities for the STPD and the LMS algorithms relate to only
one iteration. Although, in this specific example, the LMS algorithm
exhibits to be the most costly procedure, when considering non-
diagonal transformation matrices, this algorithm requires no more
FLOPs than the other presented methods.

Figure 6 illustrates the convergence behavior for the iterative
STPD and LMSmethods in terms of the instantaneous squared error
estimation and, as expected, it decays along successive iterations. In
this example, the error decreases rapidly in the first iterations, and
few more are necessary to reach a stable convergence state.Figure 7
represents the amount of FLOPs as a function of the dimensions of
the m × n non-diagonal transformation matrix. The STPD and the
LMS iterative methods are the less costly algorithms, since no matrix
inversion is involved and their complexity accounts only the amount
of FLOPs per iteration. However, in practical applications, these
algorithms requires no more than few iterations to converge, as
exemplified by Figure 6. The LMMSE and the MAP estimators are
equivalent and show intermediary complexity, while the CWCU-
LMMSE is the most complex algorithm because it employs an
additional weighting operation.

In Figure 8, one can visualize the MSE of the linear estimators
against the BCRB. Parameter α is the noise energy and parameter β is
the transformation matrix gain, where Cww = αIn and H = βIn, for
n = 4. The LMMSE and theMAP estimators attain the BCRB and are
considered optimal in a Bayesian sense. The iterative STPD and LMS
methods are, at least in theory, lower bounded by the LMMSE
performance once they depend on further convergence aspects of
the algorithms. As expected, the CWCU-LMMSE does not attain the
BCRB and it shows low performance in terms of MSE, especially in
cases with intense noise enhancement (high α and low β).

6.2 Numerical example of non-iterative and
uncoded detection in a digital
communication system

In this subsection, an n × m SM-MIMO digital communication
system based on the model presented in Section 2 is considered. We
adopted n = m = 4 antennas for both the transmitter and receiver,
such that n different data streams are transmitted simultaneously.
Furthermore, no channel coding neither iterative detection are used,
these are the reasons why we excluded the MMSE-PIC from this
analysis. The system uses a 16-QAM tomap bits into symbols, which
are transmitted through a time-varying and frequency selective
channel employing an orthogonal multicarrier scheme, i.e., CP
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protected OFDM. Assuming a symbol length with K = 64 samples, a
CP with NCP = 16 samples, which is larger than the maximum
channel delay profile. In this case, the channel coherence bandwidth
is wider than the bandwidth of a subcarrier and the channel
frequency response can be considered to be a flat Rayleigh
channel per subcarrier. We also assume perfect symbol time and
carrier frequency synchronization and that the CSIR is available.
The simulation parameters are given in Table 5.

Figure 9 illustrates some selected energy efficiency Monte Carlo
simulation results. It relates the BER versus the Eb/N0 ratio for the
main presented estimation and detection techniques. The so called
MMSE process performs a LMMSE equalization over the received
and demodulated symbols, which can be applied in this case, since
the system model is linear. The denominated CWCU-LMMSE
further employs a diagonal weighting on the LMMSE
equalization matrix, as demonstrated in Section 4. Then, right
after equalization, ML detection is used to find the most probable
transmitted sequence. According to (63), an equalization matrix is
required to estimate the SNR in the MMSE-OSIC described in
Algorithm 2. In this example, we used the aforementioned
equalization matrices, the LMMSE and its weighted CWCU-
LMMSE version. Besides these detectors, we present the results
for the SD, described by Algorithm 3 The MLD, described by
Algorithm 1, has also been implemented as a benchmark for the
techniques considered in this paper.

The detectors exploiting the diagonal weighting, namely
CWCU-LMMSE and CWCU-LMMSE-OSIC, show a slight
improvement in the BER performance when compared with the
corresponding MMSE and MMSE-OSIC, in this order. This small
improvement is a result of a better fitting of the CWCU-LMMSE
equalized signal on the constellation grid prior to detection. This
characteristic holds for the Rayleigh flat-fading channel, where the
symbols after CWCU LMMSE equalization remains unbiased, while
the symbols equalized by the LMMSE tends to introduce a small bias
towards the expected value of the discrete RV set, which, for a
symmetric equiprobable QAM constellation, is zero. On the other
hand, for AWGN channel, both equalizers performs equally in terms
of BER (Lang and Huemer, 2015). The SD achieves a performance
that is equivalent to the one observed for the MLD and over-
performing all previous detectors.

In Figure 10, we analyze the SD complexity for the proposed
example in terms of the average number of visited nodes at each layer.
We notice that this parameters is not so dependent on the SNR as the
average amount of visited nodes slight decays with the Eb/N0.
Furthermore, bottom layers are more commonly visited once the
tree search structure exponentially expands towards the underneath
layers. From the average number of visited nodes and (72), we obtain
the average complexity in FLOPs. This is an important parameter once
it allows to compare the upper bound of the SD complexity, given by
(73), its average computational cost, and the MLD complexity given by
(60). This behavior can be seen graphically in Figure 11, that brings the
complexity growth, in log scale, of the presented detection methods, in
terms of FLOPs counting as a function of the constellation sizeM, while
assuming n =m. Among the presented detectors, the MMSE-OSIC has
the lowest and restrained computational cost once that (66) follows a
cubic expansion rate with the number of receive antennas. This
behavior can be extended for the iterative MMSE-PIC considering
the linear dependency on the number of iterations.We can also infer, as

described in (73) and (60), an exponential growth in the worst case
scenario for the SD and for the MLD, respectively. The average
complexity of SD for the proposed example is also pointed in the
graph, which confirms that, in average, the SD achieves the MLD
performance at an smaller complexity (approximately 4 Oosic in this
example), although it can still reach exponential computational cost.

It is easy to see that both SD and MLD algorithms, although
optimal in terms of BER performance compared with the OSIC
approach, exhibits prohibitive complexity when the modulation
order or the number of antennas increases, which is the case of
high order communication systems, such as massive MIMO
(Albreem et al., 2019). In these cases, different solutions, in
general some slight variances of the presented methods, as those
already cited in Section 1, or even new proposals that might emerge
from that, should also be considered.

6.3 Numerical example of iterative detection
in a digital communication system

This example focus on the iterative MMSE-PIC detector,
described in Section 5.4, employing a convolutional code aiming
error correction capability. In order to provide an optimal reference
for energy efficient comparison, we consider the GAD to emulate a
SISO MLD, resulting in a hypothetical FER lower bound. We also
present the results for the non-iterative detectors MMSE-OSIC and
SD, both employing intra-frame interleaving, hard demapping and
hard channel decoding. The simulation employs the same
parameters used in the uncoded example with supplementary
information given by Table 6.

Figure 12 illustrates the BER behavior for the same channel
coding parameters, accenting the difference between non-
iterative hard detectors and an iterative soft approach. The
MMSE-OSIC poorly performs as a result of error propagation
and single iteration execution. The conventional SD, although
able to close achieves the ML criteria, are also still far away from
the iterative MMSE-PIC once its detection is based only on the
constellation constraint. It is worth to mention the availability of
SISO-SD in literature (Studer and Bölcskei, 2010; Witte et al.,
2010) that approaches the optimal performance in SM-MIMO
applications. In this work, we replace this intricate detector by the
so called genie detection.

In Figure 13, we analyze the FER performance w.r.t. a reference
lower bound given by the GAD, based on the detected codeword
from the MMSE-PIC. Whenever a bit error is detected in a
codeword, the simulation accounts for a frame error. Once again,
both non-iterative MMSE-OSIC and SD are positioned on the right
of the iterative MMSE-PIC, this last one exhibiting a close to optimal
result. This demonstrates that, among all detectors analyzed, the
MMSE-PIC shows a prominent performance not only in terms of
energy efficiency but also in complexity meaning, comparable to the
cubic order of the MMSE-OSIC.

7 Conclusion

In this review, linear estimators based on the classical
LMMSE was discussed, including its intricate derivations,
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generally omitted even in textbooks. These detailed descriptions
might be helpful on proposing new estimators or low complexity
approximations. Regarding on complexity, a substantiated
computing method is employed, based on FLOP counting for
diverse involved operations, which can be a useful tool on the
evaluation and comparison of different procedures. Moreover,
the proposition of a BCRB permits to use an absolute reference
for the MSE analysis. Although the CWCU-LMMSE MSE
diverges from the BCRB in cases with potential for noise
enhancement, this result does not reflect in the BER, being
attributed to its unbiasedness characteristic, yielding to a
better constellation grid fitting prior to detection. Note that,
in similar situations, the LMMSE would also require a re-scaling
in order to fit the constellation grid. In the case of the CWCU-
LMMSE, this process is inherent.

With respect to detectors, those visited in this work were
described through easy implementable algorithms and analysed
in terms of its energy efficiency and computing cost. Although
both MLD and SD achieves optimal performance, its intrinsic
exponential complexity implies harsh restrictions on practical
MIMO applications, s.t. small constellation sizes and few
simultaneous data streams, limited by the number of transmit
and receive antennas. Although the MMSE-OSIC presents
affordable complexity, its performance is far from optimal. In
contrast, the iterative MMSE-PIC associates expressive results,
being able to closely achieves optimal performance with a
computational cost comparable to the MMSE-OSIC. The iterative
MMSE-PIC poses as a feasible alternative to SM-MIMO, even for
massive MIMO applications, especially considering recent
researches that seeks to reduce the complexity on the system
solution problem, employing suitable approximations to the
matrix inversion (Park, 2022).

In summary, in order to achieve the challenging and
contrasting requirements of future mobile communication,
different radio access techniques, among them the SM-MIMO
scheme, will be a fundamental tool. In this sense, the presented
tutorial contributes with a common framework that allows a fair
comparison among the settled studied solutions and provides an
initial guideline for researchers that are looking for a general view
of the main techniques available for SM-MIMO detection and
estimation.

Future works on these topics might also embrace the use of
iterative estimators, specially some mixture of the STPD or the
LMS with the CWCU-LMMSE weighting diagonal, in order to
attain unbiasedness and avoid costly matrix inversion while
keeping a channel tracking mechanism, jointly with parallel
interference cancellation methods applied on non-orthogonal

waveforms in SM-MIMO applications, with potential to
harvest diversity while achieving multiplexing gain at the same
time. Moreover, artificial intelligence is a prominent alternative
to replace the statistical-based solvers discussed here by more
generalist algorithms.
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Glossary

1G first generation

5G fifth generation

6G sixth generation

APP A-Posteriori Probability

AWGN additive white Gaussian noise

BCRB Bayesian Cramer-Rao bound

BER bit error rate

BLAST Bell Laboratories layer space-time

BFIM Bayesian Fisher information matrix

BS base station

CC Convolutional Code

CFLOP complex float-point operation

CFR channel frequency response

CIR channel impulse response

CP cyclic prefix

CSI channel state information

CSIR channel state information at the receiver

CWCU component-wise conditionally unbiased

DFT discrete Fourier transform

ED Euclidean distance

FEC forward error correction

FER frame error rate

FLOP float-point operation

GAD Genie-Aided Detector

HQR Householder QR factorization

IAI inter-antenna interference

ILS integer least squares

iid independent and identically distributed

ISI intersymbol interference

LLR log-likelihood ratio

LME local-mean estimator

LMS least mean squares

LMMSE linear minimum mean squared error

MAP maximum a-posteriori

MIMO multiple-input multiple-output

ML maximum likelihood

MLD Maximum Likelihood Detector

MSE mean squared error

MMSE minimum mean squared error

OSIC ordering successive interference cancellation

MSE mean-squared error

NP non-deterministic polynomial-time

OFDM orthogonal frequency division multiplexing

OSIC ordering successive interference cancellation

PDF probability density function

PHY physical layer

PIC Parallel Interference Cancellation

QAM Quadrature Amplitude Modulation

QoS quality of service

RIS reconfigurable intelligent surfaces

RV random variable

SD sphere detector

SIC successive interference cancellation

SISO soft-input soft-output

SM spatial multiplexing

SM-MIMO spatial multiplexing multiple-input multiple-output

SNR signal-to-noise ratio

SOVA Soft output Viterbi Algorithm

STPD steepest-descent

UE user equipment

ZF zero-forcing
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