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Introduction: Shipping and maritime transportation have gradually gained a key
role in worldwide economical strategies and modern business models. The
realization of Smart Shipping (SMS) powered by advanced 6G communication
networks, as well as innovative Machine Learning (ML) solutions, has recently
become the focal point in themaritime sector. However, conventional centralized
learning schemes are unsuitable in themaritime domain, due to considerable data
communication overhead, stringent energy constraints, increased transmission
failures in the harsh propagation environment, as well as data privacy concerns.

Methods: To overcome these challenges, we propose the joint adoption of
Federated Learning (FL) principles and the utilization of the Over-the-Air
computation (AirComp) wireless transmission framework. Thus, this paper
initially describes the mathematical considerations of a 6G maritime
communication system, focusing on the heterogeneity of the relevant nodes
and the channel models, including an Unmanned Aerial Vehicle (UAV)-aided
relaying model that is usually required in maritime communications. The
communication network, enhanced with the AirComp technique for efficiency
purposes, forms the technical basis for the collaborative learning across multiple
Internet of Maritime Things (IoMT) nodes in FL tasks. The workflow of the FL/
AirComp scheme is illustrated and proposed as a communication-efficient and
privacy-aware SMS framework, considering spectrum and energy efficiency
aspects under a sum transmitting power constraint.

Results: Then, the performance of the proposed methodology is assessed in an
important ML task, related to intelligent maritime transportation systems, namely,
the prediction of the Cargo Ship Propulsion Power using real data originating from
six cargo ships and utilizing long-short-term-memory (LSTM) neural networks.
Upon extensive experimentation, FL showed higher prediction accuracy relative to
the typical Ensemble Learning technique by a factor of 3.04. The AirComp system
performance was evaluated under varying noise conditions and number of IoMT
nodes, using simulation data for the channel state information by regulating the
power of the transmitting IoMT entities and the scaling factor at the shore base
station.
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Discussion: The results clearly indicate the efficiency of the proposed FL/AirComp
scheme in achieving low computation error, collaborative learning, spectrum
efficiency and privacy protection in wireless maritime communications, while
providing adequate accuracy levels with respect to the optimization objective.
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learning, unmanned aerial vehicle (UAV)

1 Introduction

The maritime domain is currently experiencing significant
transformational shifts, boosted by the digitization of the related
infrastructure, communication networks, as well as the
modernization of the relevant marine services. The concept of
Smart Shipping (SMS) has recently emerged, including smart
services and applications that can be provided on-demand to
smart vessels, smart ports and indirectly to all the involved
stakeholders (for instance, trading and transportation companies
and public authorities, transportation passengers, etc.) (Schaefer and
Barale, 2011; Wang et al., 2020). These applications, however, are
based on a rather complex interconnected mesh between marine
entities, such as ports, ships, vessels and maritime IoT (IoMT) nodes
that are becoming omnipresent (Trakadas et al., 2022; Nomikos
et al., 2023). To this end, more efficient implementation of the smart
applications can be achieved by leveraging Machine Learning (ML)
approaches, since they are virtually the sole methods that base their
performance on considerable amounts of historical data, while they
can also provide corrective suggestions and make decisions in such
complicated environments, revealing complex interdependencies
between parameters that seem uncorrelated and cannot be
modeled by conventional techniques (Akyuz et al., 2019; Alop,
2019). Critical parameters associated with the intelligent
maritime transportation systems that are subjected to
optimization from the ML algorithms include, amongst others,
vessel fuel consumption, vessel speed, ship routing, predictive
maintenance of vessel equipment and port resources
(Giannopoulos et al., 2023b).

Noteworthy, all the aforementioned variables that are targeted
for optimization are linked to increased energy consumption, since
the marine domain is characterized by a significant environmental
footprint (Jahanbakht et al., 2021). In addition, the recent gradual
population of the marine environment with IoMT nodes is expected
to further escalate its environmental impact (Foretich et al., 2021).
Although the imminent requirement of finding energy-efficient
solutions is partially addressed by the introduction of ML
methods, the support of the asymmetrical scaling of the number
of devices that need to participate in the marine environment as
active nodes is unsustainable in the long-term. More specifically, all
these heterogeneous IoMT devices (fishing vessels, underwater
devices, ferries, etc.) that are present in a marine network need
not only to periodically provide their collected data to a cloud server,
but they need to actively communicate with each other, participating
in learning frameworks (Xia et al., 2020). For this reason, it is
typically required that the IoMT nodes have a minimal
computational power and an energy surplus to execute simple
ML tasks. In this context, state-of-the-art ML methods that are

currently being developed for the maritime sector need to adhere to
three basic requirements: (i) high-performant in terms of accuracy,
since they base their predictions on considerable amounts of
historical data and aim at regulating configuration parameters of
vessels; (ii) energy-efficient, targeting to optimize parameters that
influence directly the energy consumption. This consideration also
includes the transmitting power of the IoMT nodes, which is one of
the main reasons related to battery depletion. Even though
communication protocols for wireless sensor networks can be
modified and utilized, the energy related to task execution needs
to be further reduced; (ii) privacy-preserving, since the data that are
shared among the IoMT nodes or between the nodes and a
centralized cloud server are, in most cases, sensitive and owned
by multiple stakeholders (for instance private companies, public
authorities, etc.). Therefore, the technical solutions must take into
account data privacy issues, without degrading the performance of
the IoMT nodes, as well as the accuracy of the ML algorithms.

1.1 Federated learning and over-the-air
computation

Each individual IoMT node in the maritime network possesses a
certain amount of computational capacity, in order to be able to
execute simple tasks during the training and inference phases of the
included ML logic, as well as perform fundamental computations,
linked to the communication operation with other nodes or a cloud
server. It is critical that these processes are conducted in a coherent
manner, in terms of energy efficiency and resource optimization (for
instance spectrum efficiency maximization and cpu utilization
minimization), without deteriorating the performance of the ML
predictions. Current ML schemes are based on centralized learning,
where data from all the IoMT devices are transmitted to a cloud
(centralized) server through the mobile or the satellite network (Xia
et al., 2020; Giannopoulos et al., 2021; Wang et al., 2021). The ML
model that resides in the cloud server is hence trained with the data
encountered by all the nodes that participate in the learning
framework, providing wider observability and leading to
enhanced performance. However, the centralized approach
involves data transmission and data gathering to the centralized
server and is therefore energy inefficient. In addition, this approach
exhibits high latency during the inference phase of the algorithm,
since data queries are transmitted to the cloud to be used as input for
ML model inference, and the output (model estimation) needs to be
also transmitted back to the respective IoMT node (Niknam et al.,
2020). Finally, the data generated at the IoMT devices do not remain
at their origin, potentially jeopardizing privacy preservation and
violating data ownership.

Frontiers in Communications and Networks frontiersin.org02

Zetas et al. 10.3389/frcmn.2023.1280602

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2023.1280602


On the other hand, completely decentralized approaches involve
tailored ML models that have been trained with local data
experienced by each individual vessel. Although the ML models
are hosted directly at the IoMT devices (data transfer is not required
in decentralized methods) and data ownership is guaranteed, they
suffer from the generalizability principle, since they have been over-
fitted to the local data (Wahab et al., 2021). For instance, the ML
model of a vessel that targets to predict the fuel consumption and has
only encountered in its local environment specific conditions (e.g.,
low winds), is expected to perform rather poorly when it is in the
presence of generic environmental conditions (e.g., medium or high
winds). To overcome this challenge, federated learning (FL)
methods have been introduced, leveraging the collective
intelligence based on the data encountered by a swarm of IoMT
devices (Victor et al., 2022; Giannopoulos et al., 2023a). Instead of
using centralized schemes, where the performance of the ML model
is preferable due to full visibility of the data from all the participating
nodes, FLmethods enable the indirect aggregation of the local model
parameters that have been constructed via the locally observed data
to transfer intelligence that has been extracted from the IoMT nodes
(McMahan et al., 2017; Aledhari et al., 2020).

In this context, the nodes that participate in the FL scheme
might be individual vessels (e.g., a fishing boat), but also clusters of
IoMT nodes owned by a single stakeholder. The optimization
variables typically include parameters such as optimized
trajectory according to external weather conditions and
optimized speed and power for minimum fuel consumption
(Wahab et al., 2021; Zhang et al., 2021). In the FL framework,
the cloud server is used to aggregate the parameters of the device
models, which have been trained with the locally observed data. The
individual ML model parameters of the edge IoMT nodes are then
fused into a collaborative global model, which is then periodically
acknowledged back to the local devices to update their models
during the training process (Niknam et al., 2020; Giannopoulos
et al., 2023b). The FL model therefore exhibits collective intelligence,
since it uses knowledge extracted from various local data originating
frommultiple IoMT nodes, while also retaining high accuracy in the
performance of the ML tasks. Moreover, the FL methods involve
reduction of the transmission-related energy and minimization of
inference-related latency, compared to the centralized methods.
Finally, the FL process provides data privacy preservation, since
data remain at the edge nodes while the local and global model
parameters that are transferred through the wireless medium can be
encrypted.

The FL framework can be further enhanced and complemented
by the use of spectrum-efficient methods for optimization of the
wireless resources. Typical multiple access techniques for higher
spectrum utilization include, amongst others, frequency division
multiple access and non-orthogonal multiple access (NOMA)
schemes. Furthermore, the Over-the-Air computation (AirComp)
method has been recently introduced to encompass multiple signals
originating from heterogeneous sources (Zang et al., 2020). In an
AirComp system, all nodes transmit simultaneously their pre-
processed signals, using the same bandwidth over a mobile
network. The AirComp method leverages the superposition
property of the transmitted signals, which are temporally
combined together and received by a fusion center. The latter
entity applies a nomographic scaling function to the combined

received signal, directly obtaining an estimation of the desired
signals originating from the IoMT sensors (Liu et al., 2020).
AirComp is considerably efficient in terms of spectrum
utilization and effectively fits to the FL distributed scheme, since
the pre-processed signals sent to the receiver/fusion center represent
the ML model parameters of each IoMT node (e.g., neural network
weights) (Yang et al., 2020). The goal is to identify the power
allocation of the involved IoMT nodes, as well as the scaling
function in the fusion center in order to enhance the energy-
efficiency, albeit without degrading the performance of the
AirComp system (Cao et al., 2020).

The integration of AirComp with FL addresses several
limitations in distributed ML-aided systems by improving
computational efficiency and resource utilization. FL enables
collaborative model training on decentralized devices while
preserving data privacy, but resource- and energy-constrained
edge nodes might not be able to cope with excessive computation
requirements. In greater detail, running complex ML models on
resource-constrained edge devices will quickly deplete their
batteries. By integrating AirComp with FL, computation tasks
can be offloaded to more powerful devices, thus reducing the
burden on the edge devices, improving energy efficiency and the
lifetime of battery-dependent network nodes, and guaranteeing
scalability in IoT deployments, comprising a massive number
of devices.

1.2 6G maritime communication networks

A Maritime Communications Network (MCN) is formed in a
localized geographical area and contains multiple nodes that need to
access the network. This can be achieved through a shore Base
Station (shore BS) that is located on the land, in close proximity to
the sea level, and has backhaul connectivity to the mobile network
and the internet (Nomikos et al., 2022). Alternatively, the
connectivity of the MCN nodes can be achieved through satellite
communications, in cases that they are not located in the vicinity of a
shore BS (Wang et al., 2021). Considering the former cellular
communication scheme, it is worth noting that the propagation
characteristics of the maritime wireless channels often involve severe
channel losses, resulting in signal re-transmission, poor spectrum
utilization and increased energy consumption (Wang et al., 2018).
Furthermore, the satellite communications are not in principle
preferred as the primary communication solution, due to their
increased cost and inferior spectral efficiency (Huo et al., 2020).
The nodes constituting the MCN can be fishing boats, vessels for
search and rescue (SAR) or ocean exploration operations, IoMT
sensors that monitor the water quality or quantify the pollution
levels, etc. (Wang et al., 2018).

Recently, Unmanned Aerial Vehicles (UAVs), Unmanned
Surface Vehicles (USVs) and Unmanned Underwater Vehicles
(UUVs) have been also introduced as active nodes in the MCNs
(Wang et al., 2021). Although these nodes can assume the typical
role of a participating node, their mobility also enables their
utilization for dynamic resource provisioning, extending the
performance and the range of the cellular networks (Bithas et al.,
2020). For instance, UAVs are expected to generally support mission
critical services and disaster relief operations in remote locations (Li
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et al., 2020). Regarding the maritime requirements in modern 6G
networks, UAVs, USVs and UUVs will act as relaying nodes in the
MCNs, enabling multi-hop communication between shore BSs and
the maritime nodes (Nomikos et al., 2022). In this manner, theMCN
can guarantee high-capacity links and an adequately broadband
quality of service to the IoMT devices, permitting the transmission
of real-time video and control (Luo et al., 2022).

1.3 Paper contributions

In principle, the present paper proposes the joint adoption of FL
and AirComp in the 6G-enabled maritime networks. Both FL and
AirComp are well-established methodologies that are used in the
frame of the future highly-demanding networks. FL emerges as a
privacy-preserving technique for enabling distributed and
collaborative intelligence across multiple local learning agents,
while AirComp is a physical-layer spectrum-efficient technique
that allows multiple agents to transmit data over a common
multi-access channel, instead of using multiple transmitting
channels. Note that, in the AirComp concept, all agents
contribute to the computation of a nomographic function (e.g.,
mean, sum). Given that FL is proposed as the dominant ML method
in the future 6G networks (massive maritime IoT nodes are served
by the MCNs) for purposes of privacy protection and knowledge
sharing, a major obstacle is faced by the strict requirements for
excessive transmissions (frequent transmissions between nodes and
base stations) and high spectrum availability (massive links are
used). To mitigate the need for high spectrum usage and high energy
consumption, AirComp is coupled with the FL towards improving
energy (all AirComp agents respect a predefined transmission power
budget) and spectrum (all AirComp agents transmit over a single
multi-access channel) efficiency.

To this end, we present a coalescence of FL and AirComp
solutions for communication-efficient and privacy-aware smart
shipping. The present framework is primarily motivated from the
need for data communication load reduction, along with the
optimization of the wireless resources (transmitter power and
spectrum utilization), the privacy preservation that the FL and
AirComp methods foster, as well as the enhanced model sharing
abilities and energy efficiency aspects. More specifically, our work
focuses on intelligent maritime transportation systems where
communication among geographically dispersed network nodes
(ships) and a shore-based BS at a data fusion center is
established by UAVs. This setup requires the efficient integration
of privacy-preserving ML techniques with energy- and spectral-
efficient wireless communication. Thus, our FL-based solution
promotes the participation of stakeholders in the data sharing
process due to data gravity, overcoming limitations of centralized
learning approaches where data are transferred to central locations
for processing. Meanwhile, lifetime maximization and
communication reliability for the battery-dependent maritime
and aerial nodes that support critical maritime services is
ensured through AirComp. In summary:

1) We couple FL methods with AirComp in the frame of the future
6G MCNs, so as to promote over-the-air model sharing between
the local agents and beneficial spectrum utilization towards

communication efficiency, while boosting the privacy
preservation and promoting data ownership.

2) A heterogeneous system model is proposed for the
representation of the MCN, including a plethora of maritime
entities that take part in the learning process, such as UAV, USV,
UUV, buoys, vessels and cargo ships. In addition, to allow fast
model aggregation, we consider the shore BS being equipped
with Data Fusion functionality such that local model parameters
are combined via MAC.

3) In contrast to the majority of current AirComp studies that
consider peak-power constraint at each FL agent, we optimize
the system parameter configuration to provide low computation
error, flexibility in power allocation and adjustable energy
efficiency for the whole MCN. Towards this end, a sum
power budget among the participating IoMT nodes is
considered, meaning that power control of the existing
maritime entities ensures that total power consumption limits
are not exceeded.

4) Experimental results regarding both the FL performance and the
AirComp-based error minimization are demonstrated. For the
former, we built LSTM models and an FL model based on real
data, towards predicting the fuel consumption of large cargo
ships. For the latter, we simulated realistic channel conditions
(considering both small- and large-scale fading) and measured
the AirComp error for different MCN densities and
environmental noise conditions.

1.4 Paper structure

The rest of the paper is organized as follows: Section 2
describes in detail the system and communication model of
the heterogeneous MCN, introducing the relevant parameters
and mathematically formulating the channel models and the
relaying links using UAV nodes. Moreover, Section 3 provides
considerations related to the AirComp system, illustrating the
key parameters that affect its performance, namely, the power
allocation of the IoMT nodes and the scaling factor of the fusion
center. Section 4 presents the workflow of the proposed FL
method in conjunction with the AirComp system, while
performance evaluation based on the experimental data is
provided in Section 5. Finally, Section 6 concludes the paper,
describing extensions of the current work.

2 System and communication model

This section describes the system model associated with a
heterogeneous MCN. To this end, diverse types of IoMT entities
are considered to be located across the three layers of the MCN,
namely, the Underwater IoMT (UWI) layer, the Sea-Surface IoMT
(SSI) layer and the Aerial-Relay IoMt (ARI) layer. For purposes of
providing collaborative intelligence, MCN allows the interaction
between the three-tier IoMT Area and a Land Area, where the shore
BS-Data Fusion (SBS-DF) is able to fuse multiple signals received
through a MAC. AirComp is also supported to enable
communication efficiency, with an MCN Agent exploiting the
Channel State Information (CSI) from all IoMT entities to
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propose power control and Data Fusion scaling policies. In this
manner, this section also presents the channel modelling associated
with the uplink communication, which in turn is crucial for the
AirComp performance.

2.1 Heterogeneous MCN model

A general-purposeMCN is assumed, as depicted in Figure 1. The
MCN includes three layers of heterogeneous IoMT entities (UWI,
SSI and ARI) intercommunicating with each other for exchanging
data, sharing alarms or forwarding local models. The lower UWI
layer contains the UUVs which are capable of collecting underwater
data (e.g., images, sensing, temperature, sea currents, pollution
levels) and either send them horizontally to another UUV, or
forward them vertically to their managing entity, which is one or
multiple USV(s). The middle SSI and the upper ARI layers include
intelligent IoMT entities that are able to train their own local models
based on locally collected data. In line with the foreseen 6G
communications, the considered MCN can also deploy an on-
demand aerial relay network in the ARI layer, so as to allow
distant communication between SSI entities and the shore BS.
UAVs can also act as relays when an SSI entity intents to
transmit data under harsh propagation conditions. The final
communication links directed towards the shore BS as the
destination of information are combined though a MAC. Under
this system model, MCN can enable all the learning IoMT agents to
locally built AI models and, then, to collaboratively construct FL
models by performing the model averaging over-the-air (through
the MAC). Finally, the computation error associated with the
difference between the desired and the achieved model average

can be minimized by properly regulating: (i) the transmitting uplink
power of the learning IoMT agents and (ii) the data fusion scaling
factor. To that end, an MCN Agent directly linked with the SBS-DF
(via a backhaul link) is responsible for running a computation error
minimization algorithm, so as to proactively suggest an optimal
configuration of the uplink power levels and the Rx-scaling factor.

Formally, we letN � {1, 2, . . . , N} denote the set of the SSI/ARI
entities participating in the learning process. This means that N
contains the IDs of all FL agents that aims to send their locally
trained models directly or indirectly (via the relay network) towards
the SBS-DF for averaging. The set of the locally pre-trainedmodels is
denoted asM � {M1,M2, . . . ,MN}, whereMn is the local model of
FL agent n (n ∈ N ). Note that, Mn can be considered as a pre-
processed function in the form of an array that contains the adjusted
model weights/parameters upon local training rounds. The
dimensions of the array exclusively depends on the
dimensionality of the local AI model. Also, we let the set of the
aerial relay nodes to be notated as R � {R1, R2, . . . , RL}, where L is
the total number of the relay nodes.

Since the AirComp system only concerns the IoMT entities that
transmit towards the SBS-DF, we separate the set of the learning
agentsN from the set of the AirComp participants, which is denoted
as A � {a1, a2, . . . , aK}, where K is the total number of AirComp
participants (see green links in Figure 1). Also, since a given relay
node Rl (l ∈ {1, 2, . . . , L}) can serve multiple learning agents, this
means that the total number of AirComp participants is at most
equal to N, i.e., K ≤ N. In the extreme cases in which either: (i) all
learning agents transmit directly to the SBS-DF or (ii) each learning
agent has its own relay node for forwarding the model weights to the
SBS-DF, then K = N. Note that, each element ak ∈ A is the ID of the
kth AirComp participant and is drawn from the union set N ∪ R.

FIGURE 1
A heterogeneous 6G Maritime Communication Network (MCN) which is comprised of a Land Area and a three-tier Internet of Maritime Things
(IoMT) Area. At the IoMT Area, there are three layers including a set of Underwater, Sea-Surface and Aerial Things, which are capable of training their own
models and send them (in)directly towards the shore BS for averaging. At the Land Area, there is a shore BS, which is able to fuse multiple signals
transmitted over a multi-access channel, and the corresponding MCN Agent, which implements all the algorithmic, intelligence and management
operations related to the MCN.
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This means that each AirComp participant is either: (i) a learning
agent directly transmitting to the SBS-DF or (ii) a relay node
transmitting to the SBS-DF the model parameters of another
learning agent.

Each AirComp participant ak ∈ A transmits at the power level of
pk, whereas the sum power of all AirComp participants Ptotal cannot
exceed a maximum power threshold Pthres. This means that the total
power allocation should satisfy the following equation:

Ptotal � ∑K
k�1

pk ≤Pthres (1)

We also denote asP � {p1, p2, . . . , pK} the set of the power levels
of the AirComp participants. At the Land Area level, we assume that
the superposed signal Ŷ received by the SBS-DF is scaled by applying a
scaling functionG(·) at the Data Fusion. Given known channel quality
indicators related to the links of the AirComp participants, a software
algorithm (running at the MCN Agent) calculates the proper
configuration of the scaling function G(·) and the power allocation
set P that ensures low computation error (see Section 3) and respects
the maximum power budget. Finally, the algorithmic results are
acknowledged to the AirComp participants before they start to
upload their local pre-trained models (see Section 2.2 for the
uplink channel modelling). More details about how the relaying
process is achieved are presented in Section 2.3, whereas details on
how the learning cycle unfolds are provided in Section 4.

2.2 Channel models

In this subsection, the channel models related to all IoMT-to-
IoMT and IoMT-to-SBS interfacing are described. Note that, the
channel models engaging UWI entities are not modelled, since
underwater communications are beyond the scope of this article
and do not result in loss of generality. Thus, below, we formally
present all the uplink channel models that are engaged in the
paths connecting local models (i.e., the learning agents) to the
Data Fusion for averaging. For ease of exposure, Figure 2 shows
the geometrical considerations associated with the channel
models described below.

2.2.1 From sea things to shore BS
Here, the direct (without relaying) communication link between

SSI entities and the SBS-DF is analyzed. Given that the propagation
conditions of a maritime environment are characterized, in general,
by the mixing of both a large-scale fading (LSF) and a small-scale
fading (SSF) component, the SSI-to-SBS channel model includes
both LSF and SSF components. The LSF component is slowly-
varying and is composed by a Line-of-Sight (LoS) term reflecting the
signal attenuation due to path loss, as well as a Non-Line-of-Sight
(NLoS) term representing the signal attenuation due to the presence
of scatterers (e.g., scattering, shadowing, diffraction). The SSF
component is rapidly-varying and reflects the signal loss due to
multi-path propagation (Tang et al., 2021). In addition, the LoS
component is affected by the density, the maximum dimensions, the
height of scatterers that are located in the MCN area, and the
elevation angle between the SSI entity and the SBS-DF. Based on the
aforementioned and according to previous studies (Nasir et al., 2019;
Nomikos et al., 2023), the SSI-to-SBS channel coefficient can be
expressed as:

hSSI−to−SBSi � CSSF
i ·

����
CLSF

i

√
, (2)

whereCLSF
i is the LSF coefficient of the link between the ith SSI entity

and the SBS, and CSSF
i is the SSF coefficient of the SSI-to-SBS link

that follows the complex Gaussian distribution CN (0, 1). The LSF
coefficient can be expressed in dB as:

CLSF
i dB[ ] � ηLoS − ηNLoS

1 + αe−b ρi−α( ) + 20 log10 di( ) + 20 log10
4πf
c

( )
+ ηNLoS, (3)

where di is the distance between the ith SSI entity and the SBS, f is the
carrier frequency, c is the speed of light, ηLoS, ηNLoS are coefficients
related to the LoS and NLoS terms, respectively, and α, b are
constant propagation parameters. The parameter ρi quantifies the
elevation angle between the ith SSI entity and the SBS:

ρi �
180
π

arcsin
HSBS

di
( ), (4)

where HSBS is the height of the shore BS (above the sea level).

FIGURE 2
Geometrical considerations and mathematical notations underlying the channel modelling of all communication links.
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The channel coefficient reflects the quality of a given link under
specific propagation conditions. We assume that CSI of all the
involved communication links is accurately estimated at the
moment of the communication link establishment, or it can be
estimated on-demand by the SBS (Du et al., 2022). Noteworthy,
although the channel coefficients are in general time-varying due to
the dynamic environmental conditions, here we assume static channels
without loss of generality, since CSI estimation is done rarely in time
(when an AirComp participant needs to upload the local model
parameters), thus giving instantaneous CSI estimations with high
precision. Finally, the variance of thermal noise at a given receiver r
is denoted by σ2r (where r ∈ R refers to an ARI entity or r = SBS refers
to the SBS), which corresponds to an Additive White Gaussian Noise
(AWGN) distribution with zero mean and variance equal to σ2r .

2.2.2 From sea things to aerial things
Following similar concepts as in the SSI-to-SBS case, the channel

coefficient between the ith SSI and the jth ARI entity, hSSI−to−ARIi,j , is
given by Eq. 2. To compute the LSF coefficient, we use Eqs. 3, 4 by
replacing di with di,j, which denotes the distance between the ith SSI
and the jth ARI entity, andHSBS withHARI

j , which is the height of the
jth ARI entity above sea level.

2.2.3 From Aerial Things to shore BS
In the same manner, the channel coefficient between the jth ARI

entity and the SBS, hARI−to−SBSj , is given by Eq. 2. The LSF coefficient
is calculated via Eqs. 3, 4 by replacing di with dj, which denotes the
distance between the jth ARI entity and the SBS, and HSBS with
|HARI

j −HSBS|, which is the relative height between the jth ARI entity
and the SBS.

2.2.4 From aerial things to aerial things
Similarly, the channel coefficient between the ith and the jth ARI

entities, hARI−to−ARIi,j , is given by Eq. 2. The LSF coefficient is computed
by Eqs. 3, 4 by replacing diwith di,j, which denotes the distance between
the ith and the jth ARI entities, and HSBS with |HARI

i −HARI
j |, which is

the relative height between the ith and jth ARI entities.

2.3 Relaying model

In this subsection, we describe the principles underlying the
UAV-based relay network that is considered in this paper. Without
loss of generality, we only describe the single-hop relaying (one hop
from learning agents to the destination relay node), whereas the
described modelling can be easily extended for the multi-hop
relaying case. Considering a time slot based counting, at a given
time slot, the relay network is formed by a subset of active ARI
entities drawn from the set R for purposes of forwarding the local
model weights of the SSI entities, which experience poor channel
conditions. To allow optimum placement of relay nodes, we assume
that the UAV positioning is achieved by applying a known algorithm
(Chen et al., 2018). We also assume buffer-aided UAVs, meaning
that each ARI entity is able to store the models to be forwarded in a
buffer. Let B � {B1, B2, . . . , BL} be the set of buffers’ occupation
level, which means that element Bl denotes the number of pre-
trained model arrays (drawn from the set M) that are stored in the
buffer of relay node Rl ∈ R.

The relaying model includes all the algorithmic logic that is
followed to empty all the buffers when an aggregation step is
requested. In other words, emptying the buffers means that all the
stored models are successfully forwarded to the MAC for over-the-air
computation. Local training steps of all learning agents are performed in
every time slot, whereas aggregation steps are performed every TFL time
slots. Assuming that an aggregation step is to be performed at time slot t,
there is a delay for emptying all the buffers before aggregation starts, so
as to ensure that all local models participate in the averaging. Given that
each AirComp participant can transmit only one pre-trained model
over MAC at a time slot, the total delay required for emptying all the
buffers is defined by the worst-case buffer (i.e., the mostly-occupied
buffer), which requires Bworst time slots to be emptied. To this end, the
delay (in time slots) required for emptying all the buffers is equal to the
highest occupation level Bworst at the moment of aggregation step
request, and is given as:

Bworst � max
Rl∈R

Bl (5)

From the aforementioned and Eq. 5, it is implied that the pre-
trained models stored in the buffers are sequentially offloaded to the
SBS-DF over MAC, with the latest pre-trained model being
offloaded at time slot t + Bworst (where t is the time slot of
aggregation step request).

For clarity, Figure 3 depicts an example of how the relaying
process unfolds, given that an aggregation step is to be performed at
time slot t. The example considers N = 8 learning agents, L = 3 relay
nodes and K = 5 AirComp participants. The pre-trained models of
the learning agents 1, 2, . . . , 8 are denoted as M1, M2, . . . , M8,
respectively. The temporal sequence from time slot t to the time slot
of the aggregation completion t + Bworst is the following:

• Time slot t: All the buffers are empty, all the links are inactive,
all local models are kept at the learning agents.

• Time slot t + 1: Learning agents 1 and 2 directly transmit their
models over MAC, relay node R1 transmits the model M3,
relay node R2 transmits the model M4 and stores models
M5 and M6, relay node R3 transmits the model M7 and
stores model M8.

• Time slot t + 2: Relay node R2 transmit the model M5 and
keeps stored modelM6, relay node R3 transmits the modelM8.

• Time slot t + 3: Relay node R2 transmits the modelM6. At the
end of this time slot, all models are averaged and ready to be
scaled by the SBS-DF by applying G (·).

Notably, delays introduced by buffer emptying prerequisites are
met only during the training process of the FL and do not produce
significant waiting times (usually a few time slots). Also, these delays
have zero impact on the final inference phase of the FL operation,
since the final FL models can be directly inferred without
aggregation and relaying steps.

3 Over-the-air model sharing

This section formulates the AirComp error minimization
problem, which enables: (i) all the AirComp participants to
properly regulate their power levels and (ii) the SBS-DF to
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properly define the Rx-scaling, targeting at the error minimization
between the desired and the received signal. The AirComp algorithm
is executed in the MCN Agent, which, upon performing some
calculations (see equations of Section 3.2), sends the proposed
Tx/Rx-scaling factors to the actors (Data Fusion and AirComp
participants) immediately before the beginning of each
aggregation step.

3.1 Problem formulation

AirComp is an emerging technology and has been proposed
as a mathematical tool for function representation in a plethora
of 5G and beyond use cases. Recently, AirComp has been coupled
with FL techniques, so as to leverage effective collection and
computation across multiple local agents via signal
superposition. This section mathematically describes the
AirComp problem formulation, expressed in terms of the
maritime system model. Contrary to the majority of the
existing AirComp studies that consider peak-power constraint
at each FL agent (e.g., IoMT entity), here we present an optimal
system parameter configuration (i.e., Tx/Rx scaling policy) to
minimize the computation Mean Squared Error (MSE) of an
AirComp-aided MCN under a sum-power of all AirComp
participants.

In brief, a wireless distributed ML paradigm is considered, in
which each IoMT entity inside the MCN adopts distributed
Stochastic Gradient Descent (SGD) algorithms for ML model
training. Each IoMT entity computes the gradient of its local cost
function (based on its own dataset) in terms of the model weights.
Concurrently, forwards themodel weight array to the SBS-DF or to a
relay node. AirComp participants send all the parameters to the

SBS-DF over MAC, which then applies an Rx-scaling function to
produce an accurate computation of the average of the gradients.
Finally, SBS-DF broadcasts the FL model to the involved parties for
further iteration until convergence (Liu et al., 2020).

An AirComp-aided MCN sytem with K single-antenna
AirComp participants is assumed. When an aggregation step is
requested at time t, each AirComp participant ak ∈ A has to
transmit (over MAC) the pre-processed signal Mk ∈ M. Pre-
processed signals have zero mean and normalized variance (Liu
et al., 2020). Each AirComp participant’s antenna linearly scales the
signal Mk by the factor

��
pk

√
, whereas the wireless channel further

scales the transmitted signal by the coefficient hk, where hk �
hSSI−to−SBSk or hk � hARI−to−SBSk . The receiver SBS-DF applies the
Rx-scaling factor G targeting at minimizing the computation
distortion between the received signal Ŷ and the wanted signal Y.
The wanted signal is given by Eq. 6 as:

Y � ∑K
k�1

Mk (6)

Due to Tx-scaling, channel losses and Rx-scaling, the received
signal is computed by the following formula:

Ŷ � G ∑K
k�1

��
pk

√
hkMk + n⎛⎝ ⎞⎠ (7)

where n is the reception noise at the SBS-DF with zero mean and
variance σ2. Considering a linear Rx-scaling G(x) = G · x, the
computation distortion is literally the MSE between Y and Ŷ and
can be computed as (Zang et al., 2020):

MSE � E |Y − Ŷ|2[ ] � ∑K
k�1

|Ghk ��
pk

√ |2 + σ2|G|2 (8)

FIGURE 3
An example of relaying temporal sequence starting from the aggregation step request at time slot t. (A) The initial state where all the buffers are
empty, all the links are inactive, and all local models are kept at the learning agents. (B) Learning agents 1 and 2 directly transmit their models over MAC,
whereas each of the relay nodes transmits one model and stores the remaining models. (C) One model is again transmitted by each of the non-empty
relay nodes. (D) The mostly occupied relay node transmits the last model and all the local models are now uploaded for aggregation.
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Using the definition of MSE from Eq. 8 and the total power
bugdet from Eq. 1, an optimization problem regarding the
computation distortion minimization under the total power
limitation can be formulated by Eqs. 9a, 9b as:

P1( ): min
pk{ },G ∑K

k�1
|Ghk ��

pk

√ |2 + σ2|G|2 (9a)

subject to∑K
k�1

pk ≤Pthres (9b)

3.2 Controlling transmitters and receiver

Problem (P1) is non-convex and can be converted into a convex
one (Zang et al., 2020). Then, the solution of the convex problem is
derived as the global minima of the target function, according to
which the minimization ofMSE is solely achieved by handlingG and
{pk}. The optimal Rx-scaling factor Gopt is given by:

Gopt � 1
Pthres

∑K
k�1

Pthreshk
σ2 + Pthresh

2
k

( )2⎛⎝ ⎞⎠1/2

(10)

Finally, the optimal power level of the kthAirComp participants
is written as:

popt
k � P3

thresh
2
k

σ2 + Pthresh
2
k( )2∑K

k�1
Pthreshk

σ2+Pthresh
2
k

( )2,∀k � 1, 2, . . . , K (11)

Eqs 10, 11 define the Tx- and Rx-scaling regulation policy
applied by the MCN Agent before AirComp transmission takes
place. To this end, assuming that the aggregation step is periodically
requested, a channel estimation round is performed one slot prior
the aggregation step, so as to provide the channel coefficient
measurements {hk} for the calculation of {popt

k } and Gopt.
In summary, the AirComp system aims to jointly regulate the

transmitting power levels {pk} of the AirComp participants and the
Rx-scaling factor η of the SBS-DF, ensuring: (i) minimization of
the computation distortion (MSE) and (ii) no excess of the total
power budget.

4 Distributed learning workflow

This section outlines the complete learning workflow across the
distributed FL agents. We considered that the nomographic target
function is the extraction of the mean weight matrix across the local
weights, an approach known as FedAvg (McMahan et al., 2017). The
proposed pipeline can be easily adopted for any other nomographic
target function, such as FedSGD (McMahan et al., 2017) or other
mean-based method (Skianis et al., 2023).

The workflow sequence of the proposed distributed AirComp-
aided learning method for MCNs can be summarized in the
following steps:

1) Local data collection: The learning process is initiated when the
distributed learning agents have sufficient data samples to be
trained on. To this end, proper sensing equipment has been

installed to each IoMT entity. For the case of USVs, data can be
collected though multiple UUVs.

2) Parameter initialization: Random weights are assigned to all
local models before the beginning of the training phase. Also, the
SGD optimizers are set for the upcoming batch learning rounds.

3) Hyper-parameter tuning for local training: Local
experimentation with regards to the impact of the crucial
hyper-parameters (e.g., learning rate, model density) takes place
to ensure optimal performance convergence. Model evaluation is
based on testing the model performance by inferring it with
samples that are not encountered during the training.

4) Local training rounds: When the optimal tuning is obtained,
multiple training epochs are performed to compute the matrix
of local model parameters. Note that, the training is based on
feed-forwarding batch of training samples, whereas an epoch
is completed when the whole training set has been fed
to the model.

5) Relay network placement: Periodically (let TFL be the
aggregation period), the local models should be averaged via
AirComp. To achieve this, it is firstly essential to optimally place
all the UAVs, such that the maximum reliability is achieved. We
assume that the placement policy is implemented as in (Chen
et al., 2018), guaranteeing that the placement of both static and
mobile UAVs is aware of the total power loss, the overall outage,
and the overall bit error rate.

6) Estimation of channel state: All channel coefficients are
acknowledged to the SBS-DF, which in turn sends the CSI
indices to the MCN Agent though a backhaul link. Notably,
under highly dynamic conditions, channel estimation is
quite challenging, since successive channel estimation
steps are required for accurate outcomes. However, in the
considered case, AirComp transmission takes place every TFL

time slots, thus the channel estimation is performed rarely in
time, and not in every time slot, without incurring high
overheads.

7) Calculation of AirComp scaling policy: With known channel
coefficients, MCN Agent is able to compute the optimal Gopt

and {popt
k } according to Eqs 10, 11, respectively, for the

upcoming AirComp transmission. The suggestions are sent
back to the SBS-DF and AirComp participants.

8) Relay network emptying: By applying the relaying model
presented in Section 2.3, the UAVs carrying models from
local learning agents are sequentially offloaded.

9) AirComp transmission: The AirComp participants transmit
over MAC the local model weights. Before transmission, each
AirComp participant scales the signals according to the power
levels suggested by the MCN Agent.

10) Target function calculation: When the superposed signal is
arrived at SBS-DF, the suggested Rx-scaling factor is applied to
ensure optimal computation distortion.

11) Local model update: The FL model is returned back to all the
learning agents via the path used for uploading the local models.

12) Learning termination: Steps 4–11 are repeated until a high-
performance FL model is derived. The learning termination
condition can be convergence-based, threshold-based or
timeout-based.

13) Learning restart: A restarting operation can be also
supported when further training is requested based on
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more recently-collected datasets upon observing
performance degradation.

14) FLmodel re-usability: Finally, there is also a possibility for new
IoMT learning agents entering the MCN to exploit the pre-
trained FL model. This transfer learning approach enabled by
FL can ensure that no time-consuming training process are
required for new-comers, as the transferred models have global
MCN-wide observability. Note that, different transferring
policies could be also adopted driven by specific needs or
observations (e.g., a type-specific IoMT inherits the model of
the same type IoMT entities).

To concretely describe the sequence of the training steps,
Figure 4 depicts a simplified workflow for the offline FL
training of multiple AirComp participants. Note that, we have
merged some of the analytical steps presented above for the ease
of readability.

5 Numerical results

In this section, a numerical scenario related to the presented
MCN architecture is demonstrated. Using a real dataset, the key
goal is to quantitatively show how UAV-aided MCNs can
leverage FL and AirComp technologies to provide data
privacy, communication efficiency and collaborative learning.
We conducted: (i) experiments to fine-tune the local hyper-
parameters of multiple FL agents, (ii) experiments about the
FL performance among multiple FL agents considering real data
and (iii) simulations (due to the lack of real maritime-related
channel data) about the AirComp errors achieved by a
heterogeneous MCN, considering multiple AirComp
participants and aerial relay nodes.

All algorithmic materials ran on Python 3.11 using Sci-kit learn
and Tensorflow v2.12 libraries. The training was carried out on a
personal desktop (AMD Ryzen 7 1800X Processor CPU, 8 Cores,
3.60 GHz, RAM 32 GB).

5.1 Experimental scenario

Based on a real dataset containing Automatic Identification
System (AIS) data, we designed a multivariate regression problem
to predict the temporal patterns of the Cargo Ship Propulsion Power
(CSPP) and solved it via FL. Specifically, the dataset included
AIS data for six twin cargo ships, with the following available
timeseries data:

1) Ground Speed (GS): The speed (in knots) of the cargo ship
relative to the static observer at the land.

2) Water Speed (WS): The speed (in knots) of cargo ship relative to
water currents.

3) Wind Intensity (WI): The wind strength (in Beaufort or bft)
ranging from integer values between 0–12.

4) Wind Angle (WA): The wind direction (in degrees) with respect
to the instantaneous heading of the cargo ship.

5) Ship Trim (ST): This is the mid-line depth (in meters) of the
ship which is calculated as the difference between the depth at the
bow’s perpendicular and the stern’s perpendicular. It is measured
relative to the waterline at the middle of the ship and indexes the
minimum depth to sail without risks.

6) Cargo Ship Propulsion Power (CSPP): The primary propulsive
power (in kilo-Watts or kW) of the cargo ship, expressed in kW.
It is linearly related with the electrical requirements of the diesel
engine, thus presenting positive correlation with fuel oil
consumption.

FIGURE 4
Simplified algorithmic workflow of the offline FL training procedure. Steps 2–7 are repeated for R aggregation rounds.
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The sampling period of all timeseries was 15 min, whereas the
recordings refer to several pathways of the cargo ships. The dataset
size exceeded the 20,000 samples per variable.

The experimental scenario considers an wide MCN area that
monitors the six cargo ships through a connected pair of SBS and
MCN Agent. The MCN supports UAV-based relaying to facilitate
the distant communication between the ships and the MCN Agent.
We consider an aerial relay network with fixed size, including
12 UAVs to enable single or two-hop relaying for each ship. The
channel models for the UAV-to-UAV, UAV-to-SBS and Ship-to-
UAV links are derived by the equations of Section 2.2. Each cargo
ship is able to locally store the collected AIS data, as well as to
periodically perform local training rounds based on local data. The
common goal of the cargo ships is to build a distributed FL model,
that will be generalized with respect to the knowledge of all
individual ships. The intelligent maritime transportation system
target in this scenario is the prediction of future CSPP values based
on the current and previous values of the AIS data. Thus, each ship
trains a Long Short-TermMemory Memory Network (LSTM) using
a 5-variable input, namely, GS, WS, WI, WA and ST, as predictor
and the future values of CSPP as forecasting output. LSTMs exhibit
the ability to estimate (non-)linear complex relationships between
input(s) and desired output, while also handling temporal
dependencies of timeseries, so their utilization was preferred in
this scenario.

In intelligent maritime transportation systems, accurate
prediction of the fuel consumption can enable prognostics,
proactive strategies and timely adjustments that, in turn, can
reduce both the operational costs and the environmental footprint
of the ship. In addition, FL can facilitate ships to estimate their
upcoming fuel consumption in unknown conditions, i.e., they can
grasp the knowledge of the other ships through the federation. To
concretely describe the aspects of the proposed system, the structure of
the experimental scenario is as follows:

• The impact of the critical hyper-parameter of the local ship
models was initially investigated towards learning optimality
and stability.

• Comparison of the FL-based LSTM model against a baseline
distributed learning algorithm, which is based on the
Ensemble Learning (EL) technique across the six local
ship model.

• Validation of the AirComp-based model sharing under varying
power constraints and noise conditions. Simulations regarding
this task aim to quantify the computation error depending on
the number of the AirComp participants.

5.2 Impact of local learning parameters

Before testing the performance of the collaborative FL scheme, a
local parameter tuning was conducted. In this subsection, several
parameter configurations of the local LSTM models are tested to
ensure optimum setup. The construction of a single LSTM model,
constructed by stacking several LSTM cell and a Multi-Layer
Perceptron (MLP) layer, requires careful selection of hyper-
parameters, especially those presenting high impact on the model
convergence. The most critical parameter is the learning rate α,

which controls how abruptly or smoothly the LSTM weights are set
during backpropagation iterations. Another crucial learning factor is
the LSTM depth D, which determines the model size and,
subsequently, the overall model complexity. Both parameters
have a potential influence on the model performance, so they are
both selected for fine-tuning. In general, the configuration of a deep
and dense neural network is not a priori known. Hence, all the
hyperparameters (learning rate α, number of hidden layers D, etc.)
are adjusted upon extensive simulations. The goal is to optimally set
the values of the hyperparameters, so as to ensure low error
convergence. Based on this ground-truth, the selection of α and
D is totally driven by experimental simulations.

The following LSTM setups were considered: (i) activation
function of all LSTM units: Rectified Linear Unit (ReLU), (ii)
optimizer to implement SGD during backpropagation iterations:
Adaptive Moment estimation (Adam), (iii) Past-values window
length: 5, (iv) Forecast moment: 15 min, (v) Number of neurons
in each hidden layer were {128, 64, 32, 16} forD = 4, {128, 64, 32} for
D = 3, {128, 64} for D = 2, and {128} for D = 1.

We also trained each cargo ship model using 90% of the data
samples, while keeping the residual 10% for testing the model
performance on unseen samples. By setting diverse values for
both α and D, we extract a trained model, for each local LSTM
model. Figure 5 shows the learning curves (i.e., MSE as a function of
training epochs) for different values of the learning rate α = 0.0001,
0.001, 0.01, exhibiting optimum performance for α = 0.001 in all
single models. Similarly, Figure 6 shows the learning curves for
different values of the LSTM depth D = 1, 2, 3, 4, showing the lowest
error for D = 1 hidden layer with 128 neurons. The aforementioned
values are selected to obtain a reasonable trade-off between neural
network density and performance. In this sense, almost all ship-
specific models exhibited the best accuracy for D = 1, whereas
negligible performance gain was obtained for D = 2 in two ships.
Note also that, all ship models are required to finally have the same
dimensions and architecture for successfully train the FL scheme,
since FL uses edge-by-edge averaging and aligned dimensionality
across local models is essential.

5.3 Comparative performance

A straightforward solution to combine different local models
and achieve collaborative predictive capabilities would be that given
a new data sample that requires model inference, the collaborative
prediction for that sample can be the average prediction across the
local predictions of each ship model. This prediction policy is similar
to the concept of Ensemble Learning (EL) and does not require any
federation process except for the training of the local models. Such
an EL approach is less complex than the FL and it was unknown
whether it could be more effective than FL. Thus, this section
compares the following two schemes, as an attempt to test the FL
efficiency against the baseline:

• Federated Learning (FL): This scheme is implemented
according to the FedAvg method (McMahan et al., 2017).
Following this approach, each AirComp participant uploaded
the local model weights and the SBS-DF extract the weight
average across the local parameters. The weighting is based on
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FIGURE 5
Training Loss curves for the six training ships. Each subplot depicts the training MSE as a function of the training epochs for varying values of the
learning rate a = [10–4,10–3,10–2,10–1]. Panels (A–F) correspond to the ships 1–6, respectively.

FIGURE 6
Training Loss curves for the six training ships. Each subplot depicts the training MSE as a function of the training epochs for varying values of the
number of LSTM layers NLSTM = [1,2,3,4]. Panels (A–F) correspond to the ships 1–6, respectively.
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the sample size of each AirComp participant’s model, so as to
make the large (or small) sample sized contribute the largest
(or lowest) to the FL model.

• Ensemble Learning (EL): This scheme basically trains all local
models based on local ship data. Then, the inference data are
passed through each local model and, then, to get the final
prediction, all prediction outputs are averaged. In this way, the
average “opinion” across all ship models is derived.

The performance of the two methods is validated against a
subset of samples from the testing set that have not been
encountered during the training process. In specific, the testing
data consists of the final 50 testing samples from all six ships
integrated into a single dataset in order to quantify the output
performance of the two methods in heterogeneous inputs and verify
the collaborative learning framework. To that end, the predicted
values of the CSPP variable are illustrated in Figure 7 for the FedAvg
and ES methods and compared to the ground-truth values of the
testing set. To quantify the performance of both methods, we
computed the goodness of fit (GoF) between the model-predicted
and actual curves, with FedAvg presenting a GoF of 90.3%, whereas
EL showed a GoF of 29.7%. Note that, both methods were able to
capture the trends of the CSPP curves, with FL being also accurate in
predicting the absolute CSPP values, as opposed to EL. Evidently, the
FedAvg method outperforms the EL collaborative scheme,
approximating the variations of the testing samples and achieving
a higher goodness of fit by a factor of 3.04.

5.4 Forecast moment versus past-values
window

The main goal of this section is to investigate the impact of the
look-back window and the forecast moment, given that it is not

feasible to know the exact relationship between them towards
achieving optimal performance. Thus, we experimented with nine
combinations of Past-Values Window and Forecast Moment pairs
(3-by-3 pairs) in order to select the optimum configuration, offering
the highest accuracy (or the lowest error). In practice, we conducted
nine different FL model training sessions. Each FL model was
derived by multiple aggregation rounds across six local LSTM
models. Finally, we measured the FL algorithms’ performance as
the inverse error function (i.e., accuracy).

To this end, we quantify the impact of these two variables related
to the input timeseries in the prediction accuracy of the CSPP. The
forecast moment represents the temporal prediction ability of the
presented framework, i.e., the particular point in the upcoming
future time instances where prediction of CSPP is required. In this
context, large values of forecast moment are in principle preferred in
the maritime domain, since timely predictions allow significant time
windows for prognostics, predictive maintenance and in general,
proactive strategies. Furthermore, the past-values window variable
denotes the temporal window before the current time instance that
the model requires for prediction. Specifically, small values of past-
values window variable signify that the CSPP estimation is based on
recent environmental conditions and cargo ship parameters (latest
values of the 5-variable input are taken into account in the CSPP
forecast), whereas larger values of the parameter target to
additionally consider long-range dependencies that may be
present in the input variables (e.g., biased ship trim,
independence of CSPP from long-term WA values, etc.).

We therefore investigate a balance between the configuration of
the two aforementioned parameters and the accuracy in the CSPP
prediction. It is worth mentioning that increased past-values
windows result in significant augmentation of the computational
overhead. Although this increase may have negligible impact in the
training process of centralized schemes in terms of latency
requirements, it should in general be avoided during the training

FIGURE 7
Estimated values generated by the FedAvg and EL collaborative models vs. ground-truth CSPP values. To assess the overall federated performance
across all ships, the testing curves were comprised of testing samples from all six ships (50 samples per ship).
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and inference phases of collaborative learning frameworks that aim
at incorporating lightweight ML models. In addition, it is expected
that large values of forecast moment will result in gradual
degradation of the prediction accuracy, since intuition dictates
that future CSPP values cannot be estimated only by long-range
dependencies, but also exhibit short-term relationships.

Figure 8 demonstrates the resulting accuracy for various values
of the past-values window and forecast moment parameters. The
results are shown for forecast moment values of {15, 45, 75} min,
whereas the past-values window length took the values 5, 10 and 15
(equal to the number of previous data samples). Moreover, the
prediction accuracy is expressed as the Mean Absolute Error (MAE)
between model-predicted and actual curves. To highlight the relative
performance across the various learning configurations and scale
the performance in the range 0–1, the final MAE values were

transformed in normalized accuracy values based on the
minimum MAE (i.e., the normalized MAE was equal to the
minimum MAE divided by the measured MAE. This means that
the optimal normalized accuracy was unity for the minimum-MAE
configuration. We observed that a forecast moment of 15 min and a
past-values window of equal to 5 was the best configuration.

As readily observed in Figure 8, for the minimum past-values
window, the relative normalized accuracy deteriorates as the forecast
moment increases (normalized accuracy of 0.78 and
0.43 respectively). On the other hand, the best normalized
accuracy is observed for the minimum past-values window length
of 5 and the shortest forecast moment of 15 min. For the case of 45-
min forecast moment and 10-point long past-values window, we
obtain a close-to-unity performance. Finally, it is evident that the
prediction accuracy degrades for a past-values window of 15,
regardless of the value of the forecast moment parameter, which
can be attributed to the complexity escalation of the LSTM network
(larger input layer size). Towards this direction, a reasonable trade-
off between computational complexity, proactive strategies, timely
adjustments and accuracy in the CSPP estimation indicates the use
of forecast moment and past-values window of 15 min and five
points, respectively, as optimal fine-tuned parameters.

5.5 Impact of power budget and noise on the
AirComp error

Following the workflow described in Section 4, the AirComp
solution is used to transmit all the local neural network weights that
were derived by local training rounds in the FL framework. The
transmitting power levels are obtained by the AirComp solution to
ensure low computation error. This means that, once each ship-
specific model completes a predefined number of local training

FIGURE 8
Impact of Forecast moment and Past-values Window parameters on the accuracy of the CSPP prediction. The normalized accuracy was computed
as the ratio between the minimum and the measured MAE and ranges between 0–1.

TABLE 1 Environment and maritime network characteristics.

Characteristic Value

Number of learning agents N {15, 25, 35, 45, 55}

Number of AirComp participants K {10, 20, 30, 40, 50}

Number of relay nodes L 12

Power budget Pthres {10, 100, 1000}Watt

Noise variance at SBS-DF σ2 {−107, −87, −67}dBm

Carrier frequency of MAC f 700 MHz

Speed of light c 3 · 108 m/s

Propagation constants α, b, ηLoS, ηNLoS 5.02, 0.35, 0.1, 21

SBS-DF height hSBS (above sea) 300m

UAV height hARIi,j (above sea) {100–500}m based on (Chen et al., 2018)
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epochs (thus updating locally its model weights), the resulting model
parameters are transmitted through the MAC towards the shore BS.
Finally, the shore BS computes the mean across all local model
parameters (nomographic function), scales the mean signal to
ensure optimal computation distortion (the difference between
the actual and the transmitted superposed signals) and returns
the averaged model to the local nodes.

In this context, this subsection aims to show the outcomes of the
AirComp solution (see Section 3.2) applied in a maritime setting,
especially when the critical factors for the AirComp performance are
varying. Those crucial factors are the power budget Pthres and the
noise variance at the AirComp receiver σ2. We assume an MCN area
with a shore BS that superposes the signals from many MIoT nodes.
These nodes send their data to the shore BS for FL purposes within
the area. Due to the absence of real data regarding the channel
coefficients of all links, we use the equations presented in Section 2.2
to calculate the uplink channel coefficients. The IoMT entities are
randomly spread in the area at a random distance from the SBS
between [Dmin, Dmax]. Table 1 summarizes the network and
environmental characteristics considered in this subsection.

Figure 9 shows the AirComp error as a function of N for
different values of Pthres and σ2. In general, MSE decreases with
increasing N regardless of Pthres and σ2, suggesting that dense MCN
areas with multiple learning agents can show enhanced AirComp
performance than sparse MCN areas. In turn, given that the 6G era
envisions all sectors, including maritime, to be extremely densified,
coupling FL with AirComp can be the optimal choice for the
provision of communication efficiency and privacy preservation.
As expected, MSE is inversely proportional to the Pthres given that
large power budget improves the propagation conditions and, thus,
the AirComp performance. More importantly, this positive relation
between MSE and Pthres defines a trade-off between the AirComp
efficiency and the power consumption/energy efficiency of the whole

MCN, since larger Pthres will improve the MSE at the expense of
degrading the energy efficiency. Thus, given specific power
consumption and MSE limitations, the optimal selection of Pthres
should ensure an equilibrium between sufficient MSE and
conservative power consumption. Finally, MSE increases with
increasing σ2 due to the presence of noise at the receiver input.
This fact adds another factor in the Pthres selection in the sense that,
depending on the application or use case, σ2 may impose further
increment in Pthres to guarantee the target MSE.

Key observations from the scaling policy presented here and in
Section 3.2 are summarized as follows:

• The optimal Rx-scaling factor Gopt monotonically decreases as
a function of the total power budget Pthres.

• The optimal transmitting power levels {popt
k } monotonically

increase as a function of the total power budget Pthres.
• The links showing low or high quality channel conditions use
lower power level than those showing medium quality channel
conditions.

• The optimal MSE monotonically decreases as a function
of the Signal-to-Noise Ratio (SNR = Pthres/σ

2) and the
channel-power gains.

6 Conclusion and work extensions

In summary, this paper presented a general architecture of 6G
heterogeneous maritime communication networks (MCNs),
including underwater, sea-surface and aerial nodes. To support
decentralized learning framework across multiple Internet of
Maritime Things (IoMT), the Federated Learning (FL) technique
is adopted. Contrary to the conventional centralized learning
schemes, FL enables collaborative, privacy-preserving and

FIGURE 9
AirComp error as a function of N for different values of Pthres and σ2.
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communication-efficient learning. To allow further communication
efficiency, model sharing operations required by FL are
implemented over-the-air following the principles of Over-the-
Air Computation (AirComp) system. According to AirComp, all
local model parameters are transmitted in a common access channel
towards the data fusion, which in turn scales the superposed signal
to derive the average model. System optimization design included
the selection of the power levels of IoMT entities and the scaling
factor of the data fusion to guarantee efficient computation of the
average model, while respecting the total power budget. Based on a
numerical scenario regarding the fuel consumption prediction of the
six cargo ships, the performance and the influential aspects of the
FL/AirComp system were outlined. Overall, combining FL with
AirComp in the future 6G maritime networks can address the
challenging collaborative learning and communication-related
needs expected in the upcoming intelligent maritime systems.

Some of the work extensions that could be implemented on the
basis of the presented framework are summarized as:

• The proposed scheme could be adopted to support multi-hop
relaying of the local models. In this direction, total hopping
delay and/or power consumption could be considered for
minimization.

• The objective function of the optimization problem could be
reformed to focus on jointly minimizing the computation
distortion and the energy-efficiency of the MCN (Spantideas
et al., 2021).

• The impact of the AirComp-induced error in the FL
performance should be evaluated. In specific, the effect of
the computation error of the fused signal expressed by Eq. 7
due to the transmitter power-scaling and the receiver
denoising-scaling in the accuracy of the FL training needs
to be quantified, taking into account real CSI data.

• The MCN could be also be partitioned into multiple AirComp
subsystems for further improving the spectral and energy
efficiency of the system. For instance, this means that a
given UAV collecting data from multiple SSI entities can be
considered as data fusion that receives the diverse signal over a
MAC, so as to optimize its own computation error.

• Another possible extension could the consideration of
intelligent reflecting surfaces attached on the UAVs,
enabling fast yet reliable model aggregation under
unfavorable wireless propagation maritime environments.
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