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In this paper, we present a machine-learning technique to counteract jamming
attacks in underwater networks. Indeed, this is relevant in security applications
where sensor devices are located in critical regions, for example, in the case of
national border surveillanceor for identifying anyunauthorized intrusion. To this aim, a
multi-hop routing protocol that relies on the exploitation of a Q-learning
methodology is presented with a focus on increasing reliability in data
communication and network lifetime. Performance results assess the effectiveness
of the proposed solution as compared to other efficient state-of-the-art approaches.
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1 Introduction

War events in the last year have highlighted the relevance of supporting surveillance
applications in both terrestrial and underwater scenarios. Today, this is a primary concern
from the perspective of international cooperation groups that work to guarantee the security
of national borders against external aggressions. Situation awareness and prompt alert
communication have, thus, become a priority in the context of terrestrial and underwater
scenarios. From this perspective, recently, some relevant papers have been published. As an
example, in Akyildiz et al. (2005), the exploitation of both static and mobile autonomous
underwater vehicles (AUVs) equipped with heterogeneous sensors is proposed to monitor
either the seabed or the sea surface to guarantee prompt situation awareness. Further work in
this direction was proposed in PAO (2017) by CMRE NATO. In this case, a hybrid
multistatic network is proposed; this includes active sonars placed on the surface
communicating directly with AUVs moving underwater for controlling purposes.

By way of acoustic, optical, or magnetic sensors, these underwater devices can identify
unsafe and abnormal conditions and promptly send alerts to security centers to stimulate
appropriate actions. These sensors, which we will simply denote as nodes, will autonomously
and naturally set up a communication network around one or more surface gateway nodes to
invoke the support of surface vessels to execute appropriate security operations.

Despite the different types of security threats, jamming attacks are among the most
critical since they cause communication disruption and can block transmissions at the
physical level. Although different underwater communication technologies are available
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(acoustic, optical, or radio frequency), in this paper, we focus
specifically on acoustic solutions. We consider different types of
potential jamming attacks, caused, for example, by intruders or
jammers who deliberately try to disrupt communications and
contrast transmissions at the physical layer. To counteract this
action, we propose to exploit path redundancy to increase the
probability of successfully detecting an intrusion or a hazard that
threatens a region. To this aim, a technique that relies on the use of
machine learning and, specifically, reinforcement learning, to
preserve reliable delivery, while reducing energy consumption, is
proposed. Considering that the batteries of underwater nodes
cannot be replaced or recharged, and should be long-lasting, it is
important to decrease the energy consumption of individual nodes,
thus increasing the network lifetime. This is also in consideration of
the fact that jammers intentionally send acoustic signals with the
aim of depleting target sensor batteries, leading to denial-of-service
attacks. Furthermore, due to the intrinsic complexity of underwater
scenarios, characterized by long propagation delay, low bit rate, and
high error probability, jointly solving communication and security
issues is a challenging problem and a primary concern.

From this perspective, in this work, we present a machine-learning
framework to support efficient underwater communications in noisy
and insecure environments. Specifically, underwater devices that
endure several channel impairments, for example, possible bad
channel conditions, noise, and/or ongoing jamming actions,
employ a Q-learning approach relying on Markov decision
processes to make optimal relay choices by taking into
account not only their residual energy but also the average
residual energy at nodes in the area. This is the aim of also
pursuing fair energy balancing inside the network. Accordingly, a
trade-off between energy consumption, delivery delay, and
network lifetime is achieved. The efficiency of the proposed
joint approach is finally assessed through simulations and
comparisons with state-of-the-art efficient solutions.

Compared to previous literature on jamming in underwater
networks, our contributions are multiple:

• We consider the problem of jamming in underwater networks
from the perspective of multi-hop routing designs;

• We introduce a Q-learning routing methodology for
underwater networks impaired by an ongoing jamming
action, while also detailing the set of procedures
characterizing its functioning;

• Our solution jointly addresses the problem of data delivery
and energy consumption fairness among network nodes, to
allow increasing network lifetime, while not unfairly
exhausting node batteries;

• We incorporate an underwater channel model and test the
effectiveness of the proposed approach;

• We provide an extensive study of the impact of the jammer
position on the efficacy of the anti-jamming procedure while
also comparing the effectiveness of our methodology to the
one achievable by other state-of-the-art solutions, such as
Zhang et al. (2021);

• We analyze the impact of the proposed approach on multiple
performance metrics, such as energy efficiency, latency, and
delivery rate, showing the stability of the proposed approach
compared to existing alternative solutions.

The rest of the paper is organized as follows. Some preliminary
literature in the field of underwater jamming is discussed in Section
2. In Section 3, we provide a description of the considered system. In
Section 4, we illustrate, in detail, the jamming action. In Section 5, we
detail the distributed communication and routing protocol
employed by underwater nodes. In Section 6, we present the
considered Q-learning framework, while in Section 7, we describe
the Markov model assumed for describing the underwater channel.
In Section 8, we provide numerical results to assess the effectiveness
of the proposed approach, also in comparison with state-of-the-art
solutions. Finally, in Section 9, conclusions and considerations on
future directions of the work are drawn.

2 Related work

Underwater acoustic network applications typically span from
national border security and control to environmental and marine
wildlife monitoring.

Due to the critical challenges posed by marine scenarios, the design
of underwater (UW) communication networks is hard, both from the
point of view of hardware features and from the perspective of reliable
and robust communication protocols (Akyildiz et al., 2005). At the
physical level, three main technologies can be employed (acoustics,
optical, and radio frequency technologies), but all highlight the need to
trade off hardware costs, bandwidth, and coverage. To this aim, the
most widespread commercial approach is to employ acoustic
communications. However, the low available bandwidth offered by
acoustic communications poses challenges in terms of the amount of
information that could be transmitted. At the channel level, the UW
medium itself is highly time-varying, unstable, and impaired by
multipath propagation and fading. Furthermore, the long
propagation delay (in the order of 1,500 m/s) and the Doppler
effect, which are intrinsic to the relative mobility of nodes, can make
the design even more complex. Concerning also the practical
deployment of underwater networks, compared to terrestrial ones,
additional difficulties related to equipment and installation costs
emerge. An additional feature is related to robustness to corrosion,
environmental disturbances, and damage, which must be supported
upon acting in a wet, unattended, saline environment.

Within the area of UW network design, security and privacy
have also attracted the interest of researchers. To this aim, in Dini
and Lo Duca (2012), Caiti et al. (2012), and Liu et al. (2008), the
authors present a comprehensive gateway security suite to protect
the system from internal attacks, such as spoofing, replay, and Sybil
attacks (Aman et al., 2023); (S.A.H.Mohsan et al., 2023). To protect
the integrity and confidentiality of messages, cryptographic-based
authentication can be used.

In Kulhandjian et al. (2014), the authors consider the problem of
securing an underwater network through a cooperative jammer that
employs CDMA-based analog network coding. The cooperative
jammer sends information that is known to the receiver, which,
thus, suppresses the interfering contribution and reconstructs the
original information. Along the same line of reasoning, in Ye et al.
(2020), the authors deal with the problem of preventing
eavesdropping in underwater wireless networks, where it is not
possible to use cryptographic techniques. To this aim, fictitious
interference is created in the vicinity of the transmitter and receiver.
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Coordinated multipoint communication (CoMP) is then used to
ensure that the intended recipient receives the data correctly.

In Aman et al. (2023), an overview of techniques aimed at
supporting security in underwater scenarios is presented. Similarly
in Ahmad et al. (2021), the type of security threats and the solution
mechanisms that can be employed at different levels of the protocol
stack to solve those threats are discussed. In Samir et al. (2014), the
authors also focus on vulnerabilities in underwater acoustic
networks by specifically applying this to the case of commercial
modems which use heterogeneous transmission schemes.

However, when focusing on privacy attacks, the jamming attack
should also be specifically accounted for. Jamming is the act of
deliberately disrupting signal transmission by emitting signals that
either resemble the standard network traffic or disrupt authorized
traffic. The effect of jamming is similar to that of noise, meaning that
when the jamming effect increases, packets can be forced to travel
longer routes or be diverted. As an effect of the jamming action,
packets can be corrupted and/or sometimes lost, which leads to a
decrease in the packet delivery ratio (PDR).

In Zuba et al. (2015), the authors investigate the characteristics
of different jamming attack patterns on multiple commercial brand
acoustic modems and a prototype multiplexing modem.

In Kalita and Sahu (2015), an uncoordinated direct sequence
spread spectrum technique for managing receivers in the context of
anti-jamming multi-channel underwater communications is
presented, and multiple metrics are investigated in a simulated
environment.

To cope with jamming, for example, RACUN, Wang et al. (2017)
propose an online learning anti-jamming algorithm called a multi-
armed bandit (MAB)-based acoustic channel access algorithm to
achieve jamming-resilient acoustic communication. It implements a
hiddenMarkov model (HMM), based on which the potential reward
is estimated, along with an appropriate probability that the channel
is jammed. Each underwater acoustic channel will be sensed
according to this probability, the value of which is lower for
those channels more prone to be jammed.

Jamming scenarios in underwater networks have been
theoretically analyzed and modeled by way of different
approaches. For example, in Xiao et al. (2014), a game theoretic
framework is studied to model a jamming game. The
communication between jammers and sensors is modeled as a
game, and an anti-jamming power control policy is proposed to
assist the sensors in choosing their transmission power without
having any knowledge of the channel gain. A Bayesian zero-sum
game is formulated in Vadori et al. (2015) to enable the sensor
network to maximize the transmission capacity, despite the presence
of a jammer that tries to disrupt communication. In this
contribution, the resulting equilibrium due to the effects of the
nodes’ positions is investigated. In Goetz et al. (2011), a multipath
routing protocol, in a jamming scenario for an underwater network
working in the frequency band of 4–8 kHz, is addressed. Restricted
flooding and adaptive source routing are selected to enable
multipath transmissions and achieve jamming resilience by also
taking into account the noise from the boat propellers, which
interferes with this frequency band.

Reinforcement learning and deep learning have also been used
to describe and model such jammed systems. For example, in
Schmidhuber (2015), a historical survey summarizing relevant

works on supervised and unsupervised learning, reinforcement
learning, and evolutionary computation is presented. In Erpek
et al. (2019), a cognitive transmitter uses a pre-trained classifier
to predict the current channel status based on recent sensing results,
based on which it decides whether to transmit or not. In Shi and
Sagduyu (2017), the jammer node is modeled through a deep
learning classifier, and the received signal strength is analyzed
under different attack mechanisms.

In Di Valerio et al. (2019), a reinforcement learning
methodology for forwarding data based on varying channel
conditions is presented. This is based on the exploitation of
multiple paths, which can be switched adaptively based on
energy considerations and packet delivery ratio estimation. In
Xiao et al. (2018), reinforcement learning is also considered in
the framework of anti-jamming applications. More specifically,
control of transmission power and mobility of nodes are used to
counteract jamming. In Xiao et al. (2020), a deep reinforcement
learning (RL)-based relay scheme is further employed to improve
relay performance. In Signori et al., (2021) and Signori et al., (2020),
a multistage game is presented to model a jamming scenario where
the jammed node may use packet-level coding as a countermeasure
against the attack. The authors also consider real experimental data
and perform a sensitivity analysis to compare the effect of the real
channel model compared to that of the modeled one. In Signori et al.
(2022), the same authors analyze the effectiveness of a reactive and a
blind jammer using a game theoretical model considering different
scenario geometries. Various anti-jamming strategies are also
compared (e.g., using additional energy to protect the
communication or avoiding jamming signals by randomizing the
transmission pattern).

In Xiong et al. (2020), jamming is also addressed from the
perspective of the jammer’s effectiveness. A distributed barrage
jamming layout strategy is proposed. Detection performance is
estimated using signal processing methods. Accordingly, the
Cramer–Rao bound (CRB) of multiple targets estimated by an
underwater sensor network with distributed jammers is
calculated, which applies independently of the specific signal
processing method. The proposed optimization is then solved
numerically by using heuristics.

In Bagali and Sundaraguru (2019), cooperative jamming
detection is proposed. In particular, a cross-layer Efficient
Channel Access (ECA) model using cross-layer design for
mitigating reactive jammer action is presented. By optimizing the
cooperative hopping probabilities and channel accessibility
probabilities of an authenticated sensor device, the effectiveness
of this cooperative strategy, compared to that of non-cooperative
ones, is proven.

In Su et al. (2022) and Xiao et al. (2015), collaborative jamming
as a countermeasure to security threats is considered as well.

In Zhang et al. (2021), a reinforcement learning-based
opportunistic routing protocol (RLOR) is proposed by combining
opportunistic routing and the reinforcement learning algorithm.
The RLOR consists of a distributed routing approach, which
considers the peripheral location of the nodes to select the
appropriate relay nodes and employs a recovery mechanism to
enable the packets to bypass void areas efficiently.

However, none of the aforementioned works combines either
consideration of the real features of the underwater communication
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channel or estimates the effect of different jamming actions and
jammers’ positions on end-to-end data delivery. In this work,
instead, in line with Hu and Fei (2010), we consider an
underwater network under an intermittent jamming attack. By
taking into account the realistic channel time variability of the
underwater scenario, similar to the model presented in Pignieri
et al. (2008), which considers realistic measurements and traces, we
design a resilient protocol that facilitates the support of efficient and
long-lasting data communication under ongoing jamming attacks.

In the following section, we will start by detailing the considered
system scenario.

3 System architecture

Figure 1 illustrates the scenario we consider in our work. The
network comprises diverse underwater devices that can sense,
interpret, and respond to external conditions when they are
activated remotely. Furthermore, we have considered the
devices as heterogeneous in terms of their capabilities (e.g.,
complex underwater vehicles or simple sensing devices that
have acoustic transducers embedded in them), as well as in
the type of data they sense and process (e.g., images detailing
the marine wildlife or data that correspond to the water salinity
level and data revealing the differences in seawater acidity as a
result of pollution due to fossil fuels, temperature, etc.).
Furthermore, some of the considered devices are vehicles that
are operated remotely by a surface vessel with the aid of a cable
(e.g., a remotely operated vehicle (ROV)), and others are
unmanned underwater vehicles (UUVs) that can move closer
to the surface or deeper without any human intervention; other
devices can also be static or cabled to a depth buoy. Moreover, the
network of underwater devices is assumed to be interconnected
with a terrestrial network or with border surveillance stations

that are equipped with servers where the gathered data are
elaborated and processed. Moreover, to meet these
requirements, we have assumed the availability of surface
buoys equipped with long-distance connection capabilities
(e.g., cellular or satellite networks) heading towards coastal
facilities that enable the connections of the underwater
network with the terrestrial one. Even if optical and radio
frequency technologies are also available for use in underwater
scenarios at the cost of a very low transmission range due to
attenuation in water or expensive hardware costs, in the rest of
this work, we specifically consider the scenario where only
acoustic technology is employed to support communication in
the underwater network. This is justified by the relative hardware
simplicity and cost reduction, as well as by the longer
communication range they provide. This is the most
widespread underwater technology that is employed for
commercial purposes by major vendors (Evologics, 2023);
(TeledyneMarine, 2023).

In the considered scenario, a malicious adversary node tries to
avoid being identified as an intruder by network nodes and generates
a jamming signal to disrupt communications in the underwater
surveillance network. Accordingly, this jamming action makes it
difficult to exercise any countermeasure to ensure border protection.
Moreover, the scenario can be characterized by a high level of
marine noise due to cargo, vessels, and maritime platforms
navigating across the area. It should be noted that this type of
noise can have relevant effects, especially in the range of low
frequencies.

In the next section, we will detail how a jammer can execute a
jamming action to disrupt communications in the addressed
scenario. Then, we will detail the communication protocol
executed by network nodes to cope with this type of risk and the
mathematical framework that relies on Q-learning, which can be
promiscuously combined with the communication protocol to

FIGURE 1
System scenario.
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increase the chances of performing successful data delivery at the
destination.

4 Jamming

In a communication environment, jamming results in the
deliberate disruption of signal transmissions by emitting
interfering signals that either resemble standard network traffic
or disrupt authorized traffic by acting similarly to noise.

Jammers use powerful devices to prevent the proper functioning
of network nodes. If a jamming action is aimed at paralyzing a
central node, for example, a base station, an access point, or a
gateway, this can lead to a collapse of the entire network (Cong et al.,
2010). In the context of underwater networks, jamming is, thus, a
type of denial-of-service (DoS) attack that intentionally causes
interference over the range of acoustic frequencies used by
legitimate underwater network nodes (Shi and Perrig, 2004), thus
prohibiting reliable data transfer.

Due to the high impact of this type of attack, the use of defense
mechanisms to deal with jamming in underwater networks has
gained the utmost importance. Furthermore, while designing
countermeasures, one should take into account the constraints
the underwater networks exhibit, like limited energy, low
processing capability, limited memory, and vulnerability to
physical capturing when insecure communication channels are
used. In the following section, we will briefly recall the main
types of jamming attacks which can threaten an underwater
network.

4.1 Type of jamming attacks

Usually, in jamming attacks, jammers aim to decrease the signal-
to-noise ratio (SNR) of legitimate transmissions.

One of the most popular methods used by jammers is spot
jamming (Mpitziopoulos et al., 2009). In this case, a jammer works
on a single frequency channel and employs all its transmitted power
to make the original signal ineffective. It is a powerful jamming
technique, which can, however, be easily overcome by switching to
another frequency channel, once the legitimate users realize there is
an ongoing attack. Another popular jamming technique is sweep
jamming. It is quite different from spot jamming; in this case, the
power of a jammer is employed to rapidly jam over different
frequency channels. Although this jamming method is capable of
jamming a range of frequencies, all of them are not affected
simultaneously; hence, the jamming technique is not very
effective. Nevertheless, this type of jamming may lead to sizeable
packet loss, thereby resulting in re-transmissions that consume
precious energy resources of legitimate users. This jamming
technique on its own is much more complex and energy-
consuming for the jammer node itself. Another type of
widespread jamming attack is barrage jamming, which affects a
range of frequencies simultaneously. However, as the number of
frequencies increases, this jamming attackmay become ineffective as
the power emitted by the jammer on each frequency channel may be
significantly reduced. Deceptive jamming is an alternative jamming
attack, where a jammer can either jam over a single frequency or

multiple frequency channels. In this case, a jammer that does not
want to disclose its presence simply floods the network with
legitimate data that resemble those of the network traffic to
deceive the network defense mechanism, thereby misleading
network functioning and causing a waste of bandwidth available
for legitimate nodes that remain in the receiving mode only.

Another relevant classification among different types of
jamming techniques can be carried out upon considering the
activation of the jamming action (see Figure 2). From this
perspective, different jamming actions are possible: constant
jamming, random jamming, and reactive jamming. A constant
jammer continuously radiates random radio signals. The jammer,
indeed, intends to keep the channel busy by transmitting random
bits, thereby causing interference to the communication that has
already been commenced by a node, resulting in corruption of the
packets or prevention for a node to access the channel. A random
jammer instead moves to a sleep state for a random time interval ts
and jams the network for another random time interval tj.
Depending on the operating conditions, different levels of
efficacy and power saving can be achieved by tuning the duration
of time of sleep and jamming action. Another variant is reactive
jamming. A reactive jammer listens to the activity in the channel.
When a legitimate activity is detected, a reactive jammer
instantaneously emits a random signal that collides with the
useful signal on the channel, which leads to the corruption of the
transmitted data packets.

By comparing these different types of jamming actions, it is
evident that constant and reactive jammers are effective in causing
the packet delivery ratio to plummet to almost 0, especially if they
are in the proximity of victim nodes. However, constant jammers
may exhaust their energy quickly, and, thus, reactive jammers are
preferred from the perspective of jammer efficiency. However, due
to long propagation delay, which is intrinsic in underwater
scenarios, a reactive jammer could react too late, and, thus, its
action can be ineffective. Consequently, it could be more efficient
and simpler for the jammer to perform a random jamming action.
Accordingly, in the rest of this paper, we assume that a jammer
randomly jams a set of legitimate nodes in its proximity according to
an average assigned duty cycle.

5 Communication and routing protocol

To counteract a possible jamming action performed by an
intruder node, legitimate nodes belonging to the underwater
network implement a communication and routing protocol,
which will be detailed in the rest of this section. This protocol
will exploit a machine-learning methodology to identify possible
clues of ongoing jamming action. In Section 6, this Q-learning
methodology will be detailed.

In the following section, we present the communication protocol
employed by underwater sensor devices to transmit information to
the gateway surface node to advertise the presence of possible
intruder nodes. In particular, we will discuss how the availability
of multiple paths from source to destination can reduce the impact
of the jamming effect. Furthermore, considering that the
propagation delay is high in seawater, the proposed
communication protocol needs to execute a proactive action to
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provide paths before the actual network operation begins. To this
purpose, nodes implicitly or explicitly collect routing information to
build the communication topology. In this way, paths can be
established before they are used, thereby resulting in faster data
delivery.

While an on-demand route discovery process would take too
long to be executed due to the long propagation delay, to take into
account the noise and jamming effects, the route establishment
procedure is executed and updated every Tup seconds. It should
be noted that tuning this timer can be useful in limiting the
overhead associated with the route establishment procedure. If a
neighbor node is not heard for more than Tup seconds, it is
assumed that a topology change has occurred, possibly because a
node is no longer available or has been jammed. In this context,
the node is considered no longer available until the next update
window.

5.1 Route establishment procedure

The route establishment procedure is initiated by the sink and
executed to refresh the topological information every Tup seconds.
The route establishment packet, RE_packet, sent by the sink (i.e., the
gateway node) carries various pieces of information, including its
ID, a sequence number, and a hop count field, which is increased
every time each relay forwards this packet to its neighboring nodes.
Each network node, upon receiving this packet from the sink, adds
the sink node to its neighbor table, as well as the hop counter to the
sink. Furthermore, the ID of the one-hop neighbor, which
forwarded the packet, is added to this table. Upon receiving this
packet for the first time, a node after having updated its table
increases the hop counter and again relays the packet in
broadcast. In the case of reception of a duplicate packet delivered
by different one-hop neighbors, their identities are saved in the
perspective of finding alternative routes to the sink. This may be
needed in the case of bad channel conditions, temporary

interference, and jamming or node failures. This allows the nodes
to rapidly store alternative paths that can be made available for
possible future use. Routing entries are periodically updated, either
because they expire after a certain time To or because a new packet
with a different sequence number can be received. It should be noted
that to reduce the network signaling overhead, the exchange of
information needed by the route establishment procedure can be
implemented through piggybacking on data packets that are
periodically sent to the sink1.

5.2 Message forwarding procedure

In this section, we detail the procedure executed by underwater
nodes to forward data packets into the network, toward the surface
gateway node, while selecting the most appropriate forwarder2.

Each node periodically sends in broadcast to its neighbors’
information regarding its ID, the residual energy value, and the
Q value parameter needed for the execution of the Q-learning
protocol as described in the following sections.

Each packet is identified through an MID parameter set by the
initial source that never changes during the delivery process, while
all the other fields of the packet are updated by each forwarding
node. Moreover, an indicator of the average residual energy of its
one-hop neighbor node is also added, together with the result of the

FIGURE 2
Possible mechanisms for jamming activation in a typical underwater network.

1 Specific definition of frequency of data exchanges and route signaling is
out of the scope of this paper. However, we are assuming that the time
scale of the exchange of data and signaling are similar. Note that in case
these time scales are not comparable and, thus, more frequent exchange
of signaling is needed as compared to data, the route establishment
procedure will be explicitly invoked, and the corresponding system
overhead will need to be accounted for.

2 In our work we assume that the network is cooperative in the sense that all
network nodes collaborate and cannot get away from forwarding packets
if selected as next hop relay.
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computation of the previous hop node and the selected next
forwarder as estimated based on the Q value (see the following
sections for details).

Before sending a data packet considering the previous successes
and failures in the forwarding process and the topological
information associated with the one-hop neighbors, each current
forwarder will identify the best next relay and will add this
information to the packet relayed.

Upon hearing this packet, the node that has been selected as the
best next relay among the one-hop neighbors of the previous relay or
source will extract some information from the sender, including the
residual energy and the Q value associated with the learning
procedure, as discussed in the following section. The selected
next relay will update the associated entry in the local neighbor
list owned by each node and will use it to estimate the Q value of its
one-hop neighbors to proceed to the next selection step. All the
other nodes, once not selected as the next hop relay, will discard the
packet after having extracted from the packet the information
needed to update the Q values and the status of the
corresponding one-hop neighbors.

An implicit confirmation is implemented to identify whether or
not a packet has been successfully delivered by analyzing the traffic
issued by the selected next-hop relay node. In particular, a packet
sent and heard by the previous forwarder will be considered an
implicit acknowledgment. If, instead, the relayed packet is not heard,
a maximum number of re-transmissions will be allowed before a
packet is assumed to be lost.

In several scenarios, it is impossible or impractical to know
the global network topology and its status. Therefore, our
solution is based on the exchange of local information only.
The downside of such a design decision is that a packet may
arrive at a node that is unable to send the packet further toward
the destination. This is a well-known void problem, and several
solutions have been proposed in the literature, even in the specific
context of underwater networks. In our solution, we propose to
use the void-circumnavigating approach discussed in Coutinho
et al. (2017), Mhemed et al. (2022).

6 Q-learning framework

This section details the machine-learning mathematical
framework that we have used in this work to increase the
system’s robustness in defending against possible jamming
attacks.

Reinforcement learning is a category of machine-learning
approaches, where, by trial and error, through interactions with
the dynamically changing environment, actions can be taken by
agents to maximize a given reward. To describe the environment, a
Markov decision process (MDP) can be employed. It consists of a set
of states S, a set of actions A, a reward function R, and a state
transition matrix P. Elements of the latter identify the probability of
making a transition from state si to state sj using action a ∈ A.
Elements in R are, instead, the related rewards for making a
transition from state si to state sj using action a. We observe that
the actions taken not only have an impact on the sender’s reward but
also on all the future evolutions of the system.

In Cybenko et al. (1997), Q-learning, a variant of the RLmechanism
based on the value of state–action pairs, has been presented. In this case,
agents can learn to act optimally in Markov environments by assessing
the consequences of their actions.

The policy π is a way of associating each state, s ∈ S, and possible
action, a ∈ A, to the probability of executing the action when in state
s. The value of taking an action a in state s under a policy π is defined
as Q (s, a) and represents the expected return for taking an action a
and using policy π.

Considering time evolution, the optimal policy at time t is
denoted as V*(st) and is represented by the maximum overall
possible actions a ∈ A of the value Q (st, a), i.e.,

V* st( ) � max
a

Q st, a( ){ } (1)
where

Q st, a( ) � rt + γ ∑
st+1∈S

pa
stst+1 max

a
Q st+1, a( ){ } (2)

and at each iteration, Q (st, a) can be updated as

Q st, a( ) ← 1 − α( )Q st, a( ) + α rt + γ ·max
a

Q st+1, a( ){ }[ ] (3)

In the aforementioned Eqs. 2, 3, the term rt is the reward. After
executing an action a from state s at time t, rt results in

rt � ∑pa
st,st+1R

a
st,st+1 (4)

where pa
st,st+1 ∈ P and Ra

st,st+1 ∈ R. In Eqs. 2, 3, it should be noted
that α is the learning rate, which models the rate at which we estimate
theQ-values, and γ ∈ [0, 1] is a discount factor for future rewards, which
considers how recent actions affect the current value compared to future
ones. More specifically, γ specifies the importance given to future
rewards. When γ is set to 0, the system considers the current
reward only and tries to maximize the reward from a short-term
perspective. When γ is set to 1, the system will try to achieve a
long-term relevant reward. A balance between these two opposite
trends implies that a good choice of γ is in the range [0.5, 0.99].

The elements of the reward function R will be calculated as
discussed in the following sections; the computation of the transition
matrix P will instead be addressed in Section 7.

6.1 Calculation of the reward function

Despite the unreliability and time variability of underwater
link conditions, as well as needing to maximize the network
lifetime, a reward function can be used to stimulate data delivery
among nodes. This function appropriately measures both the
average energy consumption across all one-hop neighbor nodes
and the energy consumption at each node. This facilitates the
provision of fair energy consumption distribution in the network,
thus preserving network connectivity. In more detail, the initial
energy available at all network nodes can be spent to send and
forward any type of packet, both data and management packets.
Accordingly, residual energy keeps decreasing at each node n
every time it is used as a relay. Two parameters can be employed
to account for this energy consumption, namely, c(n) and d(n),
which are included in the reward function. In particular,

Frontiers in Communications and Networks frontiersin.org07

Mertens et al. 10.3389/frcmn.2023.1179626

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2023.1179626


• c(n) is the cost function associated to the residual energy at a
node n, i.e., c(n) � 1 − Eres(n)

Einit(n)
• d(n) is the reward term due to energy consumption
distribution across a whole group of one-hop sensor
nodes, i.e., d(n) � Eres(n)−Eavg(n)

Einit(n) .

By setting all nodes as having the same initial energy, it follows
c(n) ∈ [0, 1] and d(n) ∈ [−1, 1].

A function Ram
sn,sm

, that represents the reward can be introduced
to measure the costs in the one-hop transmission from a node n to a
neighbor m. In this work, we identify the state sn with the condition
when a packet is held by node n, and we identify action am as the
action to forward a packet to node m. Specifically, in the case of a
successful forwarding, the reward function is

Ram
sn,sm

� −g − α1 c n( ) + c m( )[ ] + α2 d n( ) + d m( )[ ]. (5)

Instead, in the case of transmission failure from node n tom, the
reward function is

Ram
sn,sn

� −g − β1c n( ) + β2d n( ). (6)

In the aforementioned equations, g identifies a constant cost
incurred when a node forwards a packet, independently of the
outcome of the packet transmission. Parameters α1 and α2
measure the cost function terms, thus figuring out a trade-off
between a reduction in the number of hops to the destination
and the selection of nodes with higher residual energy.
Analogous considerations apply to parameters β1 and β2.

Equations 5, 6 can be used in Eq. 4 to estimate rt. We observe
that Ra

st,st+1 is always negative and, thus, all the Q (s, a) values for the
non-destination nodes are negative. In our scenario, we assume that
the sink is the only final destination for all transmissions. The Q
value of the destination node will be set to 0 because it has to be the
largest among all the Q values. Considering the model described so
far, we associate each packet forwarding attempt with energy and
channel bandwidth consumption, as well as a resulting delivery
delay. By appropriately choosing the measures assigned to the cost
terms, it is possible to balance opposite targets: minimize the delay
and the corresponding number of hops and balance the network
energy consumption. This could sometimes increase the hop
counter, but with a gain in terms of network lifetime, since
nodes are alive for a longer time, and the network gets more
chances to remain connected.

In the next section, we will provide underwater channel
modeling through the calculation of the values of the state
transition matrix P needed in the Q-learning model.

7 Markov channel model

In underwater scenarios, upon propagating the acoustic signal
from a transmitter to a receiver, numerous replicas are found due to
seabed and sea surface reflections, resulting in serious multipath
fading. More specifically, signals traveling on different paths can
result in both in-phase and out-of-phase components. Moreover,
vertical temperature and pressure variations, as well as the salinity of
water and pH, impact propagation losses, which are tightly
frequency-dependent because of the frequency selectivity of the
channel.

Ambient noise sources, e.g., due to environmental features in the
proximity of the surface (e.g., wind and rain) or exogenous sources,
e.g., ship activity of cargoes and thermal noise or turbulence, play a
crucial role in path attenuation and losses. In the recent past,
multiple underwater channel models have been presented, e.g., B.
Tomasi et al. (2010), Casari and L. Finesso and G. Zappa and K.
McCoy and M. Zorzi (2010), and Pignieri et al. (2008)3. Among
these, for the sake of simplicity, we refer to Pignieri et al. (2008),
where a discrete-time Markov chain (DTMC) model of an
underwater acoustic channel was elaborated from real traces
collected in the Mediterranean Sea. More specifically, a DTMC is
a simple discrete-time memoryless stochastic process, where the
current state of the channel only depends on the previous one and
not on the history of the previous process states.

A transition probability matrix can be obtained, where the
generic element pi,j represents the probability that the process is
in state j at time t, given that at time t−1, it was in state i.

In the transition probability matrix, the sum of the elements of
each row is always equal to 1, i.e.,

∑n
j�0

pi,j � 1 i � 0, 1, 2 . . . .n (7)

Transition probabilities are used to characterize the efficiency of
the links. To describe the underwater channel state by way of a
DTMC, the stationarity needs to be proved. Accordingly, in Pignieri
et al. (2008), a Reverse Arrangement Test (Bendat and Piersol, 1986)
was used to calculate the distribution of the sojourn time, proving
that the sojourn time is exponentially distributed. Then, through the
Kolmogorov–Smirnov test (Montgomery, 2003), DTMC models of
order Kwere derived with the aim of capturing different degradation
levels in the underwater channel.

As employed in Pignieri et al. (2008), we consider a DTMC
channel model of order K, where multiple channel states can be
used. To reach a trade-off between complexity and fidelity in
channel description, in our previous paper (Shivani et al., 2020),
we compared different Markov channel models with various
numbers of states and consequent increasing size and complexity.
In particular, we considered a Markov model with several states
ranging from 2 to 8. What emerged from this comparison is that,
despite the complexity coming from the use of the Markov model
with multiple states, the 2-state channel model is reliable and
complete and can realistically describe the underwater channel in
a chosen setting.

Accordingly, in our work, only good and bad channel states are
considered, and the transition probability matrix [for a setting with a
Doppler frequency of 3 Hz, a BER of approximately 6%, and
assuming OFDM multiplexing (Pignieri et al., 2008)] can, thus,
be given as

P � 0.8718 0.1282
0.4659 0.5341

( ) (8)

3 Different underwater channel models could be used to more or less
accurately describe the channel. An alternative choice would only
impact on the numerical values of the p^{a}_{s_{t},s_{t+1}} transition
probabilities but without still affecting the validity of the design framework.
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It should be noted that if the channel conditions on all possible
outgoing links for a node are bad, it defers transmission until
channel conditions improve and the channel can be identified as
being in a good state.

Consequently, in the following numerical analysis, we restrict
our modeling of the underwater channel to the specific case of a 2-
state Markov model.

8 Performance analysis

To assess the effectiveness of our proposed protocol, in this
section, we analyze the achievable system performance.

In our work, we considered a network of 10 underwater nodes
deployed at different depths. All the nodes are assumed to be in
connection with each other if the distance between them is less than
300 m, provided that the channel is in a good state and they are not
impacted by any ongoing jamming action. In our scenario, we have
assumed that the sink node is placed on the top of the network,
i.e., closer to the surface, and acts as a gateway device to which all the
transmitted packets will be delivered. The sink (which acts as a data
receiver only) will, for instance, represent the edge of the underwater
network and could be connected in some way to the remote
terrestrial network. Packets are continuously generated at random
by any network node. Furthermore, the packet generation time is
assumed to be instantaneous, while packet length is fixed and equal
to a one-time unit. The jamming action instead is variable and can
last for multiple time units. Simulations were conducted considering
that the jammer jams according to a duty cycle equal to either 50%
or 90%. This means that provided that the jammer is located in the
proximity of a transmitting node, both in the case of our approach
and in the RLOR, the jammer can impair the transmission for a
given percentage of the packet transmission window (i.e., 50% or
90%, respectively).

Simulations carried out consider the transmission of up to
1,000 packets in a simulation time of 3,000 time units. Each

packet transmission is assumed to be executed in one time unit.
It should be noted that each packet transmission corresponds to
100 training epochs/episodes for the Q-learning algorithm and
implies a consequent update of the Q matrix. The mean reward
is calculated for each episode and taken into account for every
100 packet transmissions to investigate the performance of the
Q-learning approach. As it is well-known that the performance
of the agent will be poor in the initial stage and will be improved with
training, the mean episode reward will be lower during the initial
stage of learning and will increase after the transmission of a certain
number of packets.

We have assumed that for each network node, an initial energy
of 1 KJ is available and that for each packet transmission, 1 J of
energy is spent. Concerning the hyperparameters of the Q-learning
model, we have assumed that the learning rate used in Eq. 3 is α =
0.5, while the parameter g, which identifies a constant cost incurred
when a node forwards a packet, independently of the outcome of the
packet transmission, is equal to 1. Concerning the discount factor of
the rewards, which considers how recent actions affect the current
value compared to future ones, it is chosen as γ = 0.5. Furthermore,
the parameters used in the calculation of the reward function were
chosen as α1 = β1 and α2 = β2.

As discussed previously, to realistically characterize the
underwater channel, while also reducing the complexity of the
modeling, a 2-state Markov model is employed, namely, the one
in Eq. 8.

To estimate the possible impact of jamming performed by
misbehaving nodes, we also consider a jammer node located at
two different positions inside the network, as shown in Figure 3. For
more in-depth information, we investigate the case when the
jammer is located at the bottom of the network and another case
where the jammer is located in a more central position. Both
situations are depicted in Figure 3.

We investigate how different jamming positions and different
duty cycle choices impact the overall achievable data delivery
performance upon employing our Q-learning routing mechanism.

In the scenarios shown in Figures 2, 3, nodes i and j are in each
other’s coverage range, if their distance is less than 300 m. Link
conditions vary with time, and, thus, if the channel state is good in
the link between the two nodes and there is no ongoing jamming
action, the transmission will be successful; otherwise, it will not be
successful.

The channel state is updated before each packet transmission.
The probability that the channel state is in a specific state i,Πi can be
calculated by considering the well-known Markov conditions, i.e.,

Π · P � Π∑
i
Πi � 1{ (9)

All the simulation experiments were performed using Python in the
Google Colab environment, as it provides all the relevant tools for
supportingmachine-learning experiments and provides the transparent
use of GPU resources in the case of intensive computations. However, it
is also possible to run our proposed machine-learning approach on
devices that support Python programming language, although limited
in terms of power and computational resources, such as in the case of
microprocessors, e.g., Raspberry Pi.

For the sake of comparison, in this section, the effectiveness of
the proposed protocol solution to counteract jamming attacks has

FIGURE 3
Jammer positions in the network (in the case of 10 nodes).
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been investigated and compared with a benchmark approach,
i.e., the well-known RLOR algorithm proposed in Zhang et al.
(2021), which is the most relevant to our work.

In particular, the RLOR protocol Zhang et al. (2021), similar to
our approach, is a reinforcement learning-based routing solution
developed for underwater acoustic sensor networks. The relay nodes
are selected based on their status and on some topological
information. In Zhang et al. (2021), the focus is on avoiding
incurring void nodes, which do not allow for finally delivering
the intended data to the receiver sink node.

The RLOR algorithm combines learning and opportunistic
routing to identify the relay nodes for forwarding data. First, a
set of possible nodes is selected based on the residual energy, node
depth, and neighboring node count. Second, the best relay nodes are
selected based on a Q-learning approach, where the reward function,
unlike ours, considers that, at time t, if the current packet is held by
node ni, the reward function will depend on the number of neighbors
above node ni, their residual energy, the depth difference, and the
probability of successful packet transmission. The latter depends on the
signal-to-noise ratio and, thus, on the distance between the
intermediate source and destination, as well as on the
characteristics of the physical level modulation methodology
being used. The RLOR also includes an opportunistic
methodology, in which a node first forwards the packets to
each node selected based on the algorithm, and each candidate
node holds a copy of the packets. A timer is set for each node to
hold the copies. Once the timer is over, that particular node will
be selected as the relay node. The timer is set based on several
parameters such as the maximum communication range of the
node and the propagation speed of sound in water.

The RLOR was compared in Zhang et al. (2021) with other
reinforcement learning-based protocols, and simulation results
show that the RLOR outperforms the other protocols in terms of
end-to-end delay, energy efficiency, and reliability, resulting in
better performance. This motivates our choice to compare the
RLOR with our proposed approach.

8.1 Energy efficiency performance

In this subsection, we evaluate and compare the energy
consumption in both our approach and the RLOR. In our

FIGURE 4
Comparison of energy consumption for each network node in the 10-node topology in the presence and absence of the jammer, using the
approach proposed in this paper (jamming executed with a duty cycle of 90%).

FIGURE 5
Energy consumption at network nodes when the Jammer is
located in the bottom of the network with Duty Cycle 90% (A) and
Duty Cycle 50% (B) (our approach).
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experiments, we executed 10 tests, in which the values were averaged
and reported in the following figures. Furthermore, it should be
noted that based on the t-Student distribution properties (Ifram,
1970), our results provide a confidence interval of 90%.

As shown in Figure 4, we preliminarily compare the energy
consumption achieved using our approach in the case that the
jammer is active and when the jammer is not active. Concerning
the case of the ongoing jamming action (for all cases, a duty cycle of
90% is assumed), we report, in the same figure, the case of a jammer
that is active all the time, the case of a jammer that acts only for 50%
of the time and then switches off, and the case of a jammer that acts
only for 30% of the time and then switches off. As is evident in the
figure, the energy consumption is significantly higher when the
jammer is active compared to when it is not. Furthermore, a longer
jamming action causes more serious energy depletion.

Figures 5, 6 show that the energy consumption at network nodes
in our approach is a function of the number of packets transmitted
inside the network and the duty cycle. It should be noted that these
figures have been obtained for both the jammer positions (bottom
and central jammer). It should also be noted that when a jamming
action is ongoing, in the case of our approach, re-transmissions are
avoided. Indeed, an alternative path is identified, even if this implies
a change in the direction of propagation with a deviation from the
shortest path direction.

By comparing the different plots, we observe that the energy
consumption is higher for nodes 1 and 2, irrespective of the

jammer positions. The reason is that nodes 1 and 2 are far from
the other nodes and they undergo many unsuccessful
transmission events due to the impact of the jammer’s
presence on the other nodes. In fact, in both cases, the jammer
is located in the bottom part of the network, and therefore closer
to nodes 1 and 2, or the center of the network; transmissions of
1 and 2 will either be directly jammed by the jammer with high
probability or indirectly unsuccessful when nodes 3, 4, and 9 are
attacked by the central jammer and not able to forward the
packets coming from 1 and 2 themselves. The residual energy
in node 1 is completely drained out after 300–400 packet
transmissions, depending on the jammer setting. Node 3 also
suffers from higher energy consumption than other nodes due to
its closer proximity to the jammer in both settings. At the
remaining nodes, the energy consumption is instead similar,
apart from the fact that a larger duty cycle at the jammer
implies slightly more energy consumption at the network
nodes. It should be noted that by moving to the scenario
where the jammer is in a central position in the network, the
energy consumption of network nodes slightly moves right. In the
case of our approach, even in the situation where an aggressive
jamming action is ongoing (i.e., longer duty cycle), our protocol
reacts quite efficiently, and, thus, the energy consumption
remains unchanged.

Similarly, in Figures 7, 8, we report the energy consumption at
network nodes when the RLOR protocol is used for different

FIGURE 6
Energy consumption at network nodes when the jammer is
located in the center of the network with Duty Cycle 90% (A) and Duty
Cycle 50% (B) (our approach).

FIGURE 7
RLOR energy consumption at network nodes with the jammer at
the bottom of the network with Duty Cycle 90% (A) and Duty Cycle
50% (B).
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jammer positions. In the case of the central jammer, we note that
nodes 1 and 2 consume less energy, whereas node 3 consumes
more energy. Furthermore, in general, more energy consumption

(about a 100% increase) is found than that in our case. The reason
is that the proposed methodology, compared to state-of-the-art
approaches such as the RLOR, tries to achieve a fair energy
consumption balance among network nodes, with the aim of
increasing the network lifetime. Instead, this is not the main
target of the RLOR. It should also be noted that the impact of an
increase in the jammer duty cycle is more relevant for the RLOR
compared to our approach, especially in terms of the load on
nodes 2 and 4.

In Figures 9, 10, we compare the average energy consumption
and residual energy for both our approach and the RLOR, for
different jammer positions. We observe that the average energy
consumption in the RLOR case increases at a faster rate than in our
approach, irrespective of jammer positions.

In Figure 9, we note that the average energy consumption
changes its slope and tends to stabilize after the transmission of
approximately 400 packets. This is a clue to the convergence of our
proposed Q-learning algorithm after the transmission of a given
number of packets (i.e., 400 packets in this case) as a consequence of
the improvement in the mean episode reward after the initial
learning phase. This is a common behavior that can be somehow
observed in Figure 5 to Figure 8, although sometimes for different
values of the number of packets.

Similarly, the residual energy reduces faster in the RLOR than
in our approach. This indicates that our proposed methodology is
efficient (efficiency is almost doubled) in terms of energy
consumption, independent of the jammer position and duty
cycle.

Finally, for the sake of the completeness of our work, we also
consider multiple topologies to study the energy consumption
associated with our proposed approach. More specifically, we
consider topologies consisting of 20 and 30 nodes, in addition to
the basic topology with 10 nodes. We illustrate in Figure 11 the
average energy consumption, average residual energy, and Jain’s
fairness index for the three considered topologies. The fairness index
has been calculated using (Vandalore et al., 2000):

FIGURE 8
RLOR energy consumption at network nodes with the jammer in
the center of the network with Duty Cycle 90% (A) and Duty Cycle
50% (B).

FIGURE 9
Comparison between our approach and the RLOR in terms of the
average energy consumption, with the jammer in the center and at the
bottom of the network and a duty cycle of 90%.

FIGURE 10
Comparison between our approach and the RLOR in terms of
average residual energy, with the jammer in the center and at the
bottom of the network and a duty cycle of 90%.
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F x1, . . .xn( ) � ∑n
i�1xi( )2

n∑n
i�1x

2
i

, (10)

where xi denotes the average energy consumption at the ith
node, i ∈ 1. . ..n.

As shown, the energy consumption is higher when a topology
with a lower number of nodes is considered. On the other hand, with
larger topologies, the average energy consumption improves.
Consequently, as expected, the fairness is higher for larger
topologies. Furthermore, we noticed that the Fairness index is
poor at the beginning and gets better after some packet

transmissions. The reason for this behavior is related to the
proposed routing mechanism. In fact, depending on the ongoing
jamming action, as well as on the availability of multiple paths,
energy consumption results from the balancing of residual energy
considerations at different nodes. In the case of a smaller topology
(i.e., 10 nodes only), the routing of packets during an ongoing
jamming action can be problematic since fewer nodes are available
for forwarding packets toward the final destination. This also implies
higher consumed energy at all network nodes as directly or
indirectly suffering the jamming action. Instead, in the case of
larger topologies, e.g., 20 or 30 nodes, the machine-learning-
based routing scheme will show its potential in terms of
exploitation of multiple alternative paths with a consequent
decrease in average energy consumption at network nodes and
better fairness. It should be noted that this robustness is
observed, independently of the position where the jammer device
is located. Furthermore, it should be noted that when a limited
number of packets is considered (less than 300), in the case of 20 or
30 nodes, similar behavior is exhibited since few packet
transmissions are not sufficient to exhaust node batteries, and
thus, the choice of relayer is less critical. On the other hand,
upon increasing the number of packets, the solution can adjust
and respond well to the presence of multiple nodes and, thus,

FIGURE 11
Average energy consumption (A) and average residual energy (B)
in our approach for multiple topologies (10, 20, and 30 nodes) and
different jammer positions. Fairness index for multiple topologies (C).

FIGURE 12
Comparison between the average residual energy of the network
with 10, 20 and 30 nodes with Duty Cycle 90% for 5000 packets (A)
and Average residual energy of the network with 10 nodes and Duty
Cycle 90% for 10000 packets (B).
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multiple possible relayers. Dual considerations apply in the case of
the average residual energy.

In Figure 12, we report the average residual energy with a duty
cycle of 90% and different topologies for the jammer and a different
number of network nodes. It should be noted that upon increasing
the number of packets, the average residual energy keeps decreasing.
However, it should also be noted that, as discussed previously, in the
case of a larger number of nodes, the average residual energy
remains higher. For the most critical scenario of 10 nodes, we
also explored the network lifetime evolution, showing that for the
case of the bottom jammer, the average residual energy is larger than
in the case of the central jammer (see Figure 12B).

8.2 Average latency and delivery rate

In this section, we report results about the average latency and
the packet delivery rate obtained using both our approach and
the RLOR.

In Table 1, we show the average latency and packet delivery rate in
our approach for all the possible jammer positions and different values

of α1 and α2. In Table 1, we also report the average latency and packet
delivery rate for the RLOR case. It should be noted that the RLORdoes
not consider parameters α1 and α2. As is evident in this table, the
average latency is significantly larger in the RLOR case than in our
approach. Furthermore, the packet delivery rate achieved using our
solution is larger, always achieving values larger than 58%–60%,
independently of the jammer position. The higher rate of energy
depletion in the RLOR case causes the inactivation of certain nodes in
the network, resulting in packet drops and a lower delivery rate.

Furthermore, it is interesting to note that, in our approach, the
delivery rate is quite stable and the nodes are not significantly
impacted by jammer position and/or α values. This assesses the
relevant protocol reliability and robustness provided by our
proposed solution.

For the sake of completeness, in the same table, we have also
considered larger topologies, in which there are 20 and 30 nodes. By
observing that the algorithm is quite stable and the α1 parameter
does not play a relevant role, we have chosen to show the latency and
delivery rate results in the case of α1 = α2 = 0.5, for 10, 20, and
30 nodes and duty cycle values equal to 50% and 90%. It should be
noted that in the case of a larger number of nodes, i.e., 20 or

TABLE 1 Latency and packet delivery rate for our proposed approach and the RLOR.

Approach α1 α2 Latency
(Center)

Delivery rate
(Center)

Latency
(Bottom)

Delivery rate
(Bottom)

Duty cycle of 90%; number of nodes: 10

Our approach 0.5 1 2.834 0.6 2.981 0.6

0.5 0.75 3.08 0.796 3.594 0.820

0.5 0.5 3.014 0.646 3.539 0.839

0.5 0.25 3.062 0.671 2.869 0.591

0.5 0.05 2.829 0.579 3.13 0.806

RLOR - - 4.67 0.432 4.822 0.430

Duty cycle of 50%; number of nodes: 10

Our approach 0.5 0.5 2.883 0.605 2.883 0.727

RLOR - - 4.706 0.431 4.76 0.415

Duty cycle of 90%; number of nodes: 20

Our approach 0.5 0.5 4.888 0.972 4.994 0.99

RLOR - - 12.797 0.266 12.687 0.290

Duty cycle of 50%; number of nodes: 20

Our approach 0.5 0.5 4.818 0.961 4.967 1.0

RLOR - - 12.848 0.295 12.737 0.303

Duty cycle of 90%; number of nodes: 30

Our approach 0.5 0.5 3.686 1.0 4.379 1.0

RLOR - - 16.174 0.420 16.202 0.444

Duty cycle of 50%; number of nodes: 30

Our approach 0.5 0.5 4.242 1.0 4.06 1.0

RLOR - - 16.33 0.410 16.285 0.422

Frontiers in Communications and Networks frontiersin.org14

Mertens et al. 10.3389/frcmn.2023.1179626

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2023.1179626


30 nodes, our approach always outperforms the RLOR scheme,
although, as expected, in general, the latency is a bit higher than that
in the case of 10 nodes because of the longer detour resulting from
the use of multiple hops. However, it should be noted that the
topology with 30 nodes performs better than that with 20 nodes in
terms of latency because the detour can be partially reduced thanks
to the denser topology. The stability of the approach is also
guaranteed, despite the different duty cycles. Concerning the
delivery rate, the values obtained in our approach are
significantly higher than those of the RLOR, and a delivery rate
of 100% is achieved in the case of 30 nodes. This is due to the dense
network topology, which efficiently counteracts the jamming action.
In the case of the RLOR for 20 and 30 nodes, the latency is much
larger than in the case of 10 nodes, which reflects the fact that the
RLOR does not cope efficiently with jamming. Our approach,
instead, works effectively even in scenarios with a larger number
of nodes, providing a higher delivery rate and lower latency.

9 Conclusion

The use of national border surveillance to identify possible
unauthorized intrusions has, in the recent past, been proven critical
in the context of terrestrial or marine attacks. In this paper, we have
introduced a machine-learning-based routing methodology to cope
with jamming attacks aimed at denial of service in underwater
scenarios. The proposed methodology, relying on the use of
Q-learning to choose which neighbor node to relay data to, under
an ongoing jamming attack, has relevant applications in security-
preserving contexts. The proposed methodology was shown to
increase reliability in data delivery while preserving robustness and
low complexity. Extensive simulation and performance analysis, also
comparing the proposed approach to other state-of-the-art solutions,
and considering different positions for the jammer and a duty cycle
mechanism, showed that the proposed solution is effective and efficient
in reducing useless energy consumption, while at the same time,
balancing energy expenditure across network nodes and preserving
the data delivery rate and limited latency.
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