
O-RAN architecture, interfaces,
and standardization: Study and
application to user intelligent
admission control

Mohammad Alavirad1*, Umair Sajid Hashmi2, Marwan Mansour3,
Ali Esswie4, Ramy Atawia5, Gwenael Poitau4 and Morris Repeta1

1Advanced Wireless Technology, Dell Technologies, Ottawa, ON, Canada, 2Advanced Wireless
Technology, Dell Technologies, Toronto, ON, Canada, 3Telecom Systems Business Unit, Dell
Technologies, New Cairo, EG, Egypt, 4Advanced Wireless Technology, Dell Technologies, Montreal, QC,
Canada, 5Telecom Systems Business Unit, Dell Technologies, Ottawa, ON, Canada

Open radio access network (O-RAN), driven by O-RAN Alliance is based on the
disaggregation of the traditional RAN systems into radio unit (RU), distributed unit
(DU) and central unit (CU) components. It provides a unique opportunity to reduce
the cost of wireless network deployment by using open-source software, serving
as a foundation for O-RAN compliant functions, and by utilizing low-cost, generic
white-box hardware for radio components. Relying on the two core pillars of
openness and intelligence, there has been a coordinated global effort from
operators and equipment providers to enhance the RAN architecture and
improve its performance through virtualized network elements and open
interfaces that incorporate intelligence in RAN. With the increased complexity
of 5G networks and the demand to fulfill requirements, intelligence is becoming a
key factor for automated deployment, operation, and optimization of open
wireless networks. The first thrust of this paper surveys the AI/ML architecture
in O-RAN specifications, key discussion points and future standardization
directions, respectively. In the second part, we introduce a proof-of-concept
use case on AI-driven network optimization within the near real-time RAN
intelligent controller (near-RT RIC) and non-real time RIC (non-RT RIC). In
particular, we investigate the user admission control problem, led by a deep
learning-based algorithm, implemented as an xApp for network performance
enhancement. Extensive system-level simulations are performedwith NS-3 LTE to
assess the proposed admission control algorithm. Accordingly, the proposed
dynamic algorithm shows a significant admission control performance
improvement and flexibility, compared to existing admission control static
techniques, while satisfying the stringent quality of service targets of admitted
devices. Finally, the paper offers insightful conclusions and findings on the AI-
based modeling, model inference performance, key performance challenges and
future research directions, respectively.
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1 Introduction

The fifth generation (5G) and beyond cellular networks are
envisioned to support multiple quality of service (QoS) classes which
demand a diverse and wide set of radio performance targets such as
broadband data rates, stringent radio latency, strict link reliability,
advanced processing, and computing power, respectively. However,
current single-vendor network deployments, with proprietary interfaces
and equipment, highly restrict the cellular technology innovation,
progression, and capability to support future critical use cases. Thus,
Open Radio Access Network (O-RAN) has introduced new interfaces
and architectures relying on openness and interoperability that support
enabling programmable data-driven control and intelligence in network
deployments (Bonati et al., 2020). Openness allows operators to choose
different open off-the-shelf hardware and software components from
multiple suppliers without being restricted to a single-vendor
proprietary hardware, and accordingly, build flexible and on-
demand scalable RAN deployments. Still, there are currently
multiple challenges in multi-vendor deployment model such as: (1)
added complexity to identify and isolate unwanted performance issues
in the network, herein, the role of the system integrator becomes vital
for managing and controlling the added troubleshooting complexity,
and (2) security is a particular area of concern as the infrastructures
deployed by different vendors’ equipment could increase threat surface
areas. Therefore, there has been a coordinated global effort to improve
O-RAN architecture performance through virtualized network
elements and open interfaces that incorporate intelligence over RAN
and to leverage emerging learning methods to employ intelligence in
every layer of the RAN architecture.

AI/ML techniques have been developed since the 1950s to
resolve multiple research problems, which are highly challenging
to optimize in a manual setting, from vision applications to expert
systems. In parallel, the complexity of wireless technology has
significantly grown, i.e., multi-RAT heterogeneous networks,
facing challenging requirements in terms of throughput, latency,
and reliability (Wang et al., 2020; Kaur et al., 2021). Thus, it is a
natural evolution for the wireless community to evaluate how AI/
ML solutions can support design and deployment constraints faced
by next-generation wireless systems (from compensation of RF non-
linearities to end-to-end network optimization and automation).
However, it is not a straightforward task to apply AI/ML solutions in
the wireless domain due to several unique performance challenges.
For instance, (a) in partially observable deployments, the decision
algorithms have only a partial view of the network, which results in a
sub-optimal AI/ML operation, (b) non-stationarity, where the
propagation conditions, user locations and traffic characteristics
may all rapidly evolve, (c) real-time constraints, e.g., L1/
L2 applications running at millisecond timescales, (d) low-data
regime, where it can be difficult in certain deployments to obtain
a high number of samples for some network/environment
conditions, which rarely occur, and (e) scalability challenges,
where the AI/ML decisions may be applied to thousands of user
equipment’s (UEs) or even more within wide-scale industrial
internet of things (IIOTs) deployments (Voss, 2022).

In addition, anAImulti-agent strategy is requiredwhenmultiple AI
processes run in parallel and apply independent actions on the same
network parameters and/or the same network area. Those agents are
cooperative by design; however, some competition may also occur, e.g.,
in case of jamming or a security attack or when the impact of a decision
on adjacent network parameters is not well controlled. The O-RAN
architecture enables this multi-layer decision-making architecture. For
instance, a UE may perform intelligent sensing on its environment
while intelligence at the RU level may optimize the beam-forming
patterns. The DU cognitive module may perform scheduling decisions
on sub-millisecond basis (Polese, et al., 2020) while the near-RT RIC
decides user association on multiple cells (e.g., resource optimization)
and a non-RT RIC enhances the long-term network performance (e.g.,
policy selection and network orchestration) by aggregating data on a
larger network area. In parallel, the amount of storage and processing
capabilities required for each of those intelligent modules may be
dynamically adapted through proper network function orchestration,
and according to the deployment-specific requirements. The O-RAN
disaggregated architecture enables to benefit from a large pooling effect
multiplied by the progress made on state-of-the-art server architectures
(Dell Technologies, 2022).

The demand in the number of wireless UEs and their rigorous
performance targets make optimizing the network capacity a highly
challenging task. Therefore, to utilize the wireless resources efficiently
while serving a guaranteed QoS profile for each UE, the network seeks to
find themaximumnumber of UEs that can be supported simultaneously
(Manosha et al., 2017). This operation is called ‘user Admission Control
(AC)’, where the network determines and is able to admit a number of
UEs for which their QoS targets are likely to be satisfied, e.g., their target
data rates are fulfilled (Caballero et al., 2018). User AC is considered an
optimization problem where the conventional exhaustive search
approach is one method to find the global optimal solution. However,
by increasing the number of users, the computational complexity of this
method increases exponentially, and some suboptimal algorithms are
looked for in practical scenarios (Nguyen et al., 2015). The user AC
problems have been extensively studied in open literature. AC has been
first examined in relation to Single-Input Single-Output (SISO) systems
in (Liu et al., 2012) wherein an l0 problem has been cast. Different priority
user groups are taken into account in (Monemi et al., 2015), and an
iterative algorithm is proposed by taking use of the correlation between
the Signal-to-Interference-plus-Noise Ratio (SINR) and the transmit
power of users. Centralized algorithms are also proposed to tackle the
user AC optimization problem (Nguyen et al., 2015); d. The centralized
implementation has been investigated for Multiple-Input Single-Output
(MISO) systems (Matskani et al., 2008) wherein it has been defined as an
integer non-linear optimization problem for a single cell. Then, using the
semidefinite relaxation method, two approximations of solutions are
developed. A distributed algorithm has also been proposed in (Mitliagkas
et al., 2011) utilizing the dual decomposition method. Resource access
schemes have also been a subject of investigation for 5G specific use cases
(Qiu et al., 2020), for instance using blockchain to determine the
admission and resource access for IoT based networks (Ding et al.,
2019). In addition to higher data rates provisioning, there are other
distinct use cases in 5G, namely ultra-reliable low latency
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communications (URLLC), and massive machine type communication
(mMTC). Each use case provides distinct challenges for the admission
control problem, and also dependencies on different network parameters
as shown by recent works in literature (Mehmeti and La Porta, 2019;
Mehmeti and La Porta, 2021a; Mehmeti and La Porta, 2021b).

Furthermore, in cellular networks, users may experience widely
different radio conditions. For instance, users, who are closer the
base station (BS), have a higher average SINR than users that are at
the cell edge. Furthermore, certain users may be located in a rich
scattering environment while others may not experience similar
conditions (Tse and Vishwanath, 2005). Therefore, it is challenging
to ensure fairness among users while they are being dynamically
admitted to the system because of the varying fading statistics
(Manosha et al., 2017). The majority of the currently adopted
AC algorithms consider a static mobility deployment or utilizing
AC algorithms for a certain instance, while in some newer problem,
mobile scenarios are taken into consideration. Some
implementations also perform AC for all UEs simultaneously,
assuming all connection requests are received at the same time.
Therefore, when such solutions are used over time in a dynamic
network, they might not offer fairness when admitting users.
Consequently, there has to be concrete research to leverage
emerging learning methods for this challenge.

In this paper, we first present the key Open RAN technology
architecture, following O-RAN Alliance standardization,
interoperability opportunities, and its potential for enabling true
artificial intelligence based cellular solutions. We survey the
background of the O-RAN Alliance reference architecture and
describe its vision and its workgroups structure. In the following
section, we consider a practical deployment use case on the problem
of single cell user AC with dynamic traffic. Assuming sequential
(and irregular) UE activity, performing dynamic AC in an online
setting is essential. Accordingly, we present a proof of concept,
intended for a cell-level AC use case which is integrated within a
network-simulator-3 (NS-3) framework, and complemented by an
advanced AI/ML AC learning solution.

2 Overview on O-RAN alliance
architecture, interfaces, and
standardization

2.1 O-RAN alliance architecture

Open RAN, driven by O-RAN Alliance (as one of the dominant
open RAN standard organizations), is based on the disaggregation of the
traditional RAN systems into radio unit (RU), distributed unit (DU) and
central unit (CU) components, in addition to various hardware platforms
and software. Open RAN is a transformation of the existing mobile
networks; it brings a diverse ecosystem into the development of RAN
infrastructures, instead of the traditional vendor-proprietary solutions. It
allows operators to choose different hardware and software components
from multiple suppliers without being restricted to one telecom vendor.
We should highlight that Open RAN technology started as a movement
that applies to all mobile technology generations (all xGs), i.e., 2G, 3G,
4G, 5G, and all futureGs.On top of 3GPPdefined specifications,O-RAN
Alliance also specifies Open RAN internal interfaces between the key
RAN building blocks which ensure multi-vendor interoperability. While
Open RAN technology is fully compliant with the 3GPP standards, it
further evolves the RAN capabilities towards truly open and intelligent
RAN systems, offering the following key enablers (2020 5G America,
2020):

− Open standardized interfaces between RUs and baseband units
(BUs), including the element management system (EMS) of the
radio/baseband, the network management system, control and
data planes, and the CU and the DU, respectively.

−Decoupling the deployed software from the hardware platforms
executing it.

− Open hardware that offers platforms with general purpose
processors and accelerators.

−Open software that is commercially viable to meet all the high
performing critical performance requirements to support real-
time system specifications.

FIGURE 1
Function split options between CU and DU for DL Reproduced with permission from 3GPP (2017).
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Particularly, for Open RAN networks, evolving the
standardization of the interfaces and ensuring interoperability of
the disaggregated components are the keys to success and mass
adoption. 3GPP partners have studied, and accordingly specified,
different functional split options between the CU and DU, which go
from the high layer RAN split to the low layer split, as shown in
Figure 1. Before selecting a potential function split for a certain Open
RAN deployment, several aspects need to be considered as follows:

− Transport Bandwidth: Referring to Figure 1, the transport
bandwidth, i.e., required data rate, is decreased, while the
achievable latency increases with the split option from the left
to the right, i.e., from split option 8 to split option 1. The
selected functional split allows a tradeoff between flexibility
and latency with requirements on the achievable data rate.

− Architectural function split: The architectural function split for
Open RAN should be based on vendor neutral hardware and
software. The O-RAN Alliance has designed an Open RAN
interface set and defined radio hardware requirements with
processing functions and capabilities under control of the DU
and corresponding software.

− Interoperability: Interoperability between different vendor
systems is an essential requirement for Open RAN systems.
Thus, the architectural function split will result in an interface
that can be easily implemented by any integrator and be
rigorously tested to allow for such interoperability.

As a result, after evaluating different RU, DU, and CU split options
specified by the 3GPP and compromising among complexity, flexibility,
transport data rate, latency, performance, and overall costs associated
with each split, the O-RAN Alliance has accordingly defined the
architecture and interfaces as double function splits with option 2
(DU-CU split/high layer split) and option 7-2x (DU-RU split/low layer
split). For small cell scenarios, Small Cell Forum (SCF) has standardized

option 6 (MAC-PHY split) interface associated with user, control,
synchronization, and management planes as well. In this paper, we
mainly focus on O-RAN defined architecture with option 2 and option
7-2x as depicted in Figure 2.

As a high layer split, the important benefit to have split option
2 is that all central unit (CU) functions can be fully virtualized and
running on servers in qualified data centers. With split option 2, the
user plane (U-plane) and control plane (C-plane) are separated as
well. Based on 3GPP function splits options 2 and 7-2x, the O-RAN
architecture shall include a service management and orchestration
(SMO) platform, RAN intelligent controllers (RICs) for near real-
time (near-RT) and non-real-time (non-RT) decisions (which will
be detailed in Section 2.3), and O-RAN functions. Furthermore, the
O-RAN Alliance has standardized their own interfaces for the Open
RAN architectures and extended the existing 3GPP interfaces and
eCPRI as fronthaul to connect O-DU and O-RU.

2.2 O-RAN alliance interfaces

Besides the similar planes defined by 3GPP with U-plane/C-plane,
with the new function split and the data traffic flow in Open RAN
architecture, O-RAN Alliance has also defined the M-plane for
handling management and configuration, the S-plane for handling
synchronization and timing and extended C-plane for handling near
real time control. As depicted by Figure 2, the O-RAN Alliance defined
interfaces that connect the Network Function (NF) building blocks of
the O-RAN architecture, including O1, O2, A1, E2 for upper layer split
as described below (other interfaces such as R1 within between SMO
and rApps is out of scope of this paper). For lower layer split, the
existing interface eCPRI as a front-haul connects the O-DU and O-RU.

− O1 interface: this interface supports the management entities
within the SMO framework and includes the O-RANmanaged

FIGURE 2
O-RAN data flows and Reproduced with permission from O-RAN Working Group 4 (2022).
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elements such as the operation and maintenance (OAM),
related to function of multi-vendor including FCAPS (fault,
configuration, accounting, performance management, security
management), and software management, respectively.

− O2 Interface: this interface connects the SMO to the ORAN
O-Cloud, and accordingly, it regulates a collection of services
into two logical groups: the infrastructure management
services, which is a subset of the O2 functions that are
aimed for deploying and managing cloud infrastructure, and
the deployment management services, which is the subset of
O2 functions that are responsible for life cycle management of
deployments on the cloud infrastructure.

− A1 Interface: this interface is defined between the non-RT RIC
(or SMO) and near-RT RIC. The non-RT RIC provides the
near-RT RIC with operational guidance such as policies, for
instance, to manage the adopted machine-learning (ML) model
in xApps. It also governs the orchestration and automation
(including the non-RT RIC), and 5G gNB (including the near-
RT RIC).

− E2 Interface: E2 interface is an open interface for forwarding
the measurements from the so-called E2-nodes, i.e., DUs, CUs,
and O-RAN compliant LTE eNBs, to the near-RT RIC, and the
configuration commands back to the DUs and CUs (Polese
et al., 2022). This enables the network to control ongoing
operations within the base station, using the supported
monitor, suspend, control and override messages, run
commands sent by the xApps, and the received data
collection and metrics from those units.

In addition, as the fronthaul interface, the eCPRI enables the
splitting of the baseband functions to reduce the traffic transfers and
can be framed as a packetized interface within Ethernet to take
advantage of the already-present ubiquitous Ethernet networks. As

shown in Figure 3, with the split option 7-2x for DL, the Open RAN
fronthaul interface connects the O-DU to one or multiple O-RUs.
The physical layer functions are split into the lower part, i.e., PHY-
low (L1-low) and the higher part, i.e., PHY-high (L1-high). The
PHY-low resides in the O-RU to perform I/Q decomposition,
precoding, digital/analog beamforming, inverse Fast Fourier
Transform (iFFT) and cyclic prefix (CP) addition. The PHY-high
resides in the O-DU to perform the scrambling, modulation, layer
mapping, precoding, resource element mapping, and I/Q
compression.

Additionally, the O-RAN Alliance distinguishes the 7-2x split
between Category A and Category B type O-RUs, depending on if
O-RU supports precoding function, as shown in Figure 3. The
Category B type O-RU supports multi-antenna systems for
massive MIMO, while Category A O-RU supports remote radio
heads (RRHs) with 1/2/4Tx/Rx. The details of O-RAN DL and UL
structure and design of split 7-2x are presented in O-RAN Alliance
technical specification (Rouwet, 2022).

2.3 RAN SMO and RIC proposed by O-RAN
alliance

In this Section, we briefly explain the details of the upper layer
split with non-RT and near-RT RICs. In order to enable
programmability of the RAN through the RIC, the O-RAN
Alliance’s objective is to separate the control and management
functions of the RAN infrastructure from its data plane
functions. To enable a more optimized ecosystem of intelligent
features and applications located close to the edge of the RAN, the
hierarchical non-RT and near-RT with the A1, O1, and E2 interfaces
are proposed in the O-RAN Alliance’s reference architecture.
O-RAN reference design introduces a hierarchical RIC platform

FIGURE 3
Open RAN architecture split option 7-2x for DL. Processing blocks, with a bold text, aremandatory for all O-RU categories. Precoding operation for certain
O-RU categories can be executed within the O-RU, where the precoding in O-DU can be Reproduced with permission from O-RAN Working Group 4 (2022).
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that makes use of the computing capabilities of a cloud-native
environment to enable AI/ML driven intelligent decisions and
RAN automation. Figure 2 depicts the general organization of
hierarchical control loops employing various O-RAN functions
(O-RAN Working Group 1, 2021). Non-RT functions, referred as
rApps, include service, configuration, policy management, and RAN
analytics. The non-RT RIC hosts model-training for the near-RT
applications in some cases. For these cases, the trained models and
real-time control functions generated in the non-RT RIC are
transferred to the near-RT RIC for runtime execution. To
encourage creativity and openness, the near-RT RIC is
introduced as an open compute edge platform hosting multi-
vendor applications. Additional open interfaces are added when a
new compute platform is added into the reference architecture
(Polese et al., 2022). provides a comprehensive discussion
regarding open interfaces. The xApps, or third-party applications,
that are deployed onto near-RT RIC, are mainly trained ML models
that operate in a cloud-based setting close to the edge of RAN and
provide near-RT control commands to CU/DU.

The split RICs based on the latency tolerance of the associated
micro-services is a new NF introduced by O-RAN Alliance. Non-RT
RIC supports rAPPs facing operators such as fault management,
performance management, and lifecycle management, respectively,
involving control loops of 1 s or more; near-RT RIC supports xApps
facing radio infrastructure such as radio resource management,
interference detection and mitigation, respectively, involving
control loops of 10 milliseconds up to 1 s (O-RAN Working
Group 6, 2020). Together, they are responsible for RAN
operation and optimization procedures across multi-operator
services and multi-vendor’s hardware and software components.
This timing-based split allows non-RT RIC to perform compute-
heavy and storage-heavy AI/MLmodel training, e.g., to discover and
predict statistical patterns such as the network spatio-temporal
traffic patterns, user mobility patterns, massive MIMO
parameters configuration patterns based on counters, statistics,
fault alarms collected by SMO. Accordingly, they provide policy-
based guidance to near-RT RIC for run-time execution to achieve
efficient radio resource allocation. The ML model inference and/or
retraining at locations closer to the distributed O-RU consume
much less compute and storage. To further improve
interoperability, the near-RT RIC is backward compatible with
legacy radio resource management through the E2 interface,
inviting both new and traditional vendors to join the O-RAN
innovation to develop best ways of bundling functional blocks to
achieve the maximum efficiency and optimal latency according to
the deployment scenarios, e.g., macro, massive MIMO, and small
cell deployments, respectively (Polese et al., 2022).

2.4 O-RAN alliance standardization and use
cases

2.4.1 3GPP movement on standardization
openness

3GPP has first started development of various functional split
options as part of Release-14 (2014, TR 38.801), i.e., pre-5G release.
The introduced functional splits aimed at introducing the notion of
disaggregating the standard protocol stack, such as to separate

processing a certain layer of the protocol stack from the computing
entity. Such 3GPP movement is considered the initial seed for true
cellular interface and processing openness and has been the key driver
for subsequent O-RAN specifications. Furthermore, as the 3GPP
release-18 progresses (i.e., 2023—5G-advanced), new critical use-
cases are emerging such as extended reality (XR). Those emerging
service classes require extensive computing powers (which is typically
delegated to the edge of the network, i.e., edge computing), high-
capacity, and low latency radio links, respectively. Accordingly, the
efficient support of those stringent services is highly challenging. It is
therefore envisioned that future O-RAN architectures may upgrade the
cellular systems’ capability to efficiently support those future use-cases,
due to, unlike 3GPP native systems, its unique computing pooling
capabilities, and ultimate interface flexibility.

There are several industry-led open RAN initiatives that seek to
unite an ecosystem of supply chain partners and advance open RAN
through the definition, development, and testing of standards and
reference architectures. Beyond the standards defined by the third
Generation Partnership Project (3GPP), multiple industry groups
are leading the open RAN movement, each with a different purpose
as detailed in the following sub-sections.

2.4.2 O-RAN alliance, TIP, open RAN Policy
Coalition and ONF

Because hardware, software and telecom companies work
together to create an open virtualized cloud network,
standardization is critical. There are a few predominant
standardization organizations in the open RAN movement.
However, there are only two that have attracted global media
and more industrial attention than others: the O-RAN Alliance,
formed in early 2018, a worldwide carrier-led effort that seeks to
define new radio architectures, and the Telecom Infra Project (TIP),
which was launched by Facebook (−Meta) in 2016. In this paper, we
have discussed all the Open RAN architectures, interfacing and use
cases based on the O-RAN Alliance standards. O-RAN Alliance’s
primary objective is to contribute to create a supply chain that opens
the RAN market for new vendors. As discussed in Section 2, the key
O-RAN principles are openness and intelligence. Accordingly,
O-RAN standardization progress always includes work on
network controllers, managements and orchestration framework
and the interfaces that connect all the telecommunication networks
components in the RAN infrastructure. By defining new
standardized interfaces, AI-optimized closed-loop automation is
achievable and a new era for network operations is enabled
(Parallel Wireless, 2020). As of today, O-RAN Alliance
specification work has been divided into technical work groups
(WGs), all of them under supervision of the Technical Steering
Committee (TSC). As shown in Table 1, each of theWGs covers part
of the O-RAN system architecture:

Compared to the 3GPP standard interfaces and architecture, the
O-RAN alliance focuses on a disaggregated and fully interoperable
RAN architecture. Regarding RAN interface standardization, 3GPP
mainly develops the interface between the UE and the network node,
which is the eNodeB in long-term evolution (LTE) or the gNodeB in
3GPP New Radio technology (NR) and the inter-node interfaces.
The network node, the eNodeB or gNodeB, has several layers of the
3GPP protocol stacks; however, it has been considered as a
monolithic network entity that provides all the radio access services.
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The node has components such as the RU and the DU, which are
vendor-specific and inter-connected over proprietary interfaces so
that wireless network operators must purchase a whole entity from a
single vendor. O-RAN, however, pursues a goal to have a fully
operational and interoperable architecture for RAN, with hardware
and software from different vendors. O-RAN provides an
architecture as a foundation of the virtualized and disaggregated
RAN on open hardware and cloud. O-RAN specifications define the
interoperable interfaces which fully support the O-RAN open
architecture and complement the 3GPP standards.

It is important to emphasize the difference between TIP andO-RAN
Alliance. O-RAN Alliance is involved in developing, driving and
enforcing standards to ensure that components and equipment from
different vendors interoperate with each other. To deploy an open and
interoperable ecosystem, existing gaps in 3GPP and other standard
bodies need to be addressed properly. It also creates profiles for
interoperability testing where standards are available. On the other
hand, TIP focuses mostly on deployment and execution. It supports
Plugfests and live deployments in the field and ensures different vendor’s
software and hardware equipment works with each other. This will
enable supplier diversity and reduce deployment and maintenance costs
across access, transport, and core networks, respectively.

Other two prominent industry-led open initiatives include Open
RAN Policy Coalition and Open Networking Foundation (ONF). The
first one was launched inmid-2020, and advocates policies to help drive
open RAN adoption. Its growing membership includes telecom
operators, equipment manufacturers, software developers, and silicon
chip makers (Moniem Tech, 2021). ONF also announced several new
initiatives in the open RAN domain in August 2020. This foundation is
looking to deliver open-source implementations of functionality
employed by open RAN components such as O-CU, O-DU, and
RICs. From a technical perspective, the O-RAN Alliance’s work is
the most foundational, prompting partnerships with many other
organizations. It is in the midst of taking a new approach to the
RAN market, in order to accelerate the adoption of its specifications. It
will continue to work closely with other related standards organizations.

2.4.3 O-RAN alliance standardization timeline
The evaluated Open RAN solutions are generally related to

3GPP standardization activity, i.e., the future open networks are
perceived as enhanced 4G/LTE and 5G/NR Radio Access
Technologies (RATs) with new functions, logical blocks and
vendor-agnostic platforms. Therefore, a vital open reference
architecture—so called: O-RAN—is developed by O-RAN
Alliance, and founded by AT&T, China Mobile, Deutsche
Telekom, NTT DOCOMO and Orange in August 2018 (O-RAN
Alliance, 2018). O-RAN Alliance is established as a fusion of two
former organizations, C-RAN Alliance and xRAN Forum (Business
wire, 2018). Those two organizations had different origins,
i.e., China from one side and the United States, Europe, Japan
and Korea from the other side. To date, O-RAN Alliance has been
signing, developing, and publishing technology liaisons,
collaboration agreements, and formal specifications (see Figure 4).

2.4.4 O-RAN phase I and phase II use cases
Figure 5 shows the different use cases defined byO-RANAlliance

and which are split into two phases as per organization members’
preference (Dryjański andKliks, 2021). Use cases fromPhase I shall be
developed earlier to solve the more immediate needs of the operators
(O-RAN Alliance, 2020). Similar to 3GPP stage-1/2 and stage-3
specification phases, O-RAN specifications follow a two-phase
specification structure in order to first, during phase-1, study and
specify high-priority and system-wide topics including white box
hardware, traffic steering, QoS optimization, and massive MIMO,
respectively. During phase-2, use-case specific and detailed
specifications are performed, similar to 3GPP stage-3 detailed
specifications, Herein, the specific system enhancements, including
the new signaling procedures, new interface designs or capabilities,
and message compositions, are all standardized, for enabling support
of the target capabilities or services (which are identified during
phase-1).

In the following section, we illustrate this new O-RAN
intelligence architecture by presenting an AC proof-of-concept

TABLE 1 O-RAN Alliance technical workgroups and their focus areas.

Technical workgroup (WG) Focus area

WG 1 Use Cases and Overall Architecture Identification of key O-RAN optimization and management use cases, deployment scenarios and overall architecture

WG 2 Non-RT RIC and A1 Interface Optimization and automation of the RAN Radio Resource Management (RRM), higher layer procedure optimization using the
RAN Intelligent Controller (RIC). Also providing AI/ML models to RAN functions

WG 3 Near-RT RIC and E2 Interface

WG 4 Open Fronthaul Interfaces Designing open interfaces to efficiently enable interoperability between different RAN hardware and software vendors

WG 5 Open F1/W1/E1/X2/Xn Interface

WG 6 Cloudification and Orchestration Commoditization, virtualization and modularization of multi-vendor RAN hardware and software

WG 7 White-box Hardware

WG 8 Stack References Design

WG 9 Open X-haul Transport Designing new open transport network based on new architectures and end-user service requirements for fronthaul, mid-haul
and backhaul

WG 10 OAM for O-RAN Studying the O1 interface Operational and Management (OAM) specifications, and providing coordinated definition and
collection of O1 key performance indicators (KPIs) across all WGs

WG 11 Security Work Group Developing the security aspects of the open RAN ecosystem
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(PoC) use-case. For the reader’s convenience, we first survey the
basic operation of AC in cellular systems.

3 AI/ML admission control use case

3.1 Motivation

Wireless networks operate on the principle of sharing available time
and frequency resources amongmultiple users. Without any control on
the number of UEs admitted to a cell, the perceived quality of service
(QoS) of the users deteriorates as the number of UEs served by a cell

increase, and likely the cell shall transition into a congested state. Cell
AC in LTE and 5G is an effective method to mitigate this network
congestion scenario and to ensure guaranteed QoS to the UEs. A call
admission algorithm works on some preset rules or thresholds and
provides a decision whether an incoming call can be accepted in the
network, or whether it needs to be dropped. Accordingly, AC is an
important radio resource management (RRM) technique used in both
instances of new call setups and handoff calls within the network.
Another purpose of AC is that it ensures the satisfaction of the different
QoS targets for admitted users that demand different radio performance
requirements based on the active service type, user preference, and
network load (Skehil et al., 2007).

FIGURE 4
Timeline of selected actions and events related to Open RAN development Reproduced under CC-BY-4.0 from Wypiór et al. (2022).

FIGURE 5
O-RAN use case phases and specification support Adapted from Rimedo Labs (2021), with permission from Rimedo Labs.
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While operators may set counters at the radio resource control
(RRC) layer, to control the maximum number of users in a cell with
a fixed threshold, such static AC does not efficiently cater to
variations in network traffic volume/arrivals, heterogeneous
device types, and the different QoS profile requirements for
requested 5G service classes such as the enhanced mobile
broadband (eMBB), and ultra-reliable low-latency
communications (URLLC), respectively. The 3GPP has also
investigated, through different use case studies, the process and
criteria for setting the maximum number of UEs that can use a
network slice simultaneously (3GPP, 2021).

Employing methods from AI/ML domain to the AC problem in
wireless networks has the potential to enhance efficiency in the
decision-making process. Deep learning-based AC techniques have
been shown to outperform non-AI based service grant and
preference techniques in cloud and edge-based networking (Zhou
et al., 2021). In the context of AI/ML based AC implementation
within the O-RAN framework, multiple design aspects need to be
addressed, as:

a. The flow of data collection from the E2 nodes using the O-RAN
interfaces, this includes the type and granularity of performance
metrics used for real-time inference and AI/ML model retraining

b. The AI/ML model types and/or categorizations which are most
efficient for this problem, this includes evaluating and selecting
from supervised and unsupervised models, while striking a
balance between training complexity and inference accuracy

c. The location of AI/ML model deployment to determine the host
and operator nodes (non-RT-RIC/near-RT-RIC/E2 nodes),
which will compromise between local storage and processing
on the one hand, and the interface load on the other hand

d. AI/ML model update procedures with new data which includes
the criteria for retraining the model or reselecting a new model
for AC decisions, and

e. The required operational changes of the network medium access
control (MAC) schedulers and Radio Resource Control (RRC) to
support AI/ML-native AC and follow RIC-based decisions.

Therefore, in this section, we present an extensive performance
evaluation of an AI/ML-driven AC algorithm within O-RAN
compliant architecture. The scenario is set such that the cell-level
AC is placed as part of the xApps, which are integrated within an
NS-3 simulation framework. Thus, we first discuss the
implementation of the proposed AC scheme within the O-RAN
setting, and second, we present details for model training, and
integration with the NS-3 simulation environment. Finally,
extensive system-level simulations results are depicted.

3.2 O-RAN compliant system architecture

The proposed AC algorithm can be implemented within an
O-RAN framework, hosted in the near-RT RIC as an xApp. The
algorithm is intended to dynamically control the allowed UE capacity
on the cell-level, by sending E2 messages to the CU to control the cell
capacities. Such recommended capacities are determined based on the

ML-driven QoS predictions per cell. The architecture of such
implementation is shown in Figure 6, where the communication
over the E2 interface enables ML model deployment in the near-RT
RIC, and hence, updating the cell capacities periodically. Functions,
such as QoS prediction and capacity recommendation, can be
deployed in the near-RT RIC since they need not be executed
within stringent real-time constraints. Other functions, like radio
resource control (RRC) connection request handling, priority UE
handling, will be executed in the CU as to ensure a timely response to
incoming connection requests. The machine learning model, used for
QoS prediction, can be provided to the near-RT RIC by the non-RT
RIC through the A1 interface. An rApp will be responsible for
retraining the ML model with updated data collected from the
network, then sending the new model back to be used for
inference. Alternatively, the retraining process can be performed
through offline means (independently from the ORAN
framework), and then, deployed onto the near-RT RIC from the
SMO through the O1 interface. The xApps and CU functions are
defined below to perform these functions:

Given the architecture explained above, the different functions
can be split into disaggregated flows, enabling the network to meet
the latency requirements for each O-RAN component. There are
4 flows in total, namely data collection, ML-based capacity
recommendation, admission decision and performance
monitoring and retraining, respectively. The data collection flow
is responsible for subscribing to required network measurements on

FIGURE 6
ORAN compliant architecture for the AC use-case, comprising of
3x Apps and added functions to the CU.
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the E2 nodes. Such measurements are received by the KPIMON
(KPI monitoring) xApp (O-RAN Alliance, 2019) and saved in the
database. Furthermore, the collected data is aggregated at a fixed
time-segment and maintained in the near-RT RIC to be used for
QoS prediction. The ML-based capacity recommendation flow
manages the QoS prediction and dynamic cell capacity control.
These functions are performed in the ML QoS estimation and AC
xApps, where the final output is a E2 message to the CU. The
admission decision flow can be handled in the CU in real-time,
where RRC connection requests are handled based on the thresholds
recommended by the near-RT RIC. Finally, the performance
monitoring and retraining flow is responsible for analyzing the
deployed ML model’s performance and triggering retraining in the
SMO or the non-RT RIC if necessary. As depicted in Figure 7, the
call flow of the proposed algorithm in an ORAN deployment is
shown.

To train the ML model, the ML training rApp receives
network measurements from the CU, and therefore, passes the
trained model to the ML QoS estimation xApp. The KPIMON
xApp subscribes to periodic cell-level network measurements,
which will be received as indications from the CU over the
E2 interface, and hence, stores them in the database. The QoS
estimation xApp retrieves the measurements from the database at
fixed time segments, runs QoS predictions on the ML model and
stores the predictions in the database. The AC xApp retrieves the
QoS predictions for post-processing, calculating the
recommended capacity per cell. Finally, it packs and sends an
E2 message to set the policy on the CU. The CU receives the new
policies and uses them for taking admission decisions when it
receives an RRC connection request.

3.3 ML model training and simulation setup

For the performance evaluation of the considered AC use case,
we train and evaluate a set of MLmodels to predict the PDU delay in
the packet data convergence protocol (PDCP) layer, where the delay
is the QoS metric considered by the algorithm. Those models will be
utilized for QoS prediction within the system setup, presented in
Section 3.2. The adopted ML models include traditional machine
learning models such as ridge, k-nearest neighbors (KNN) and
random forest regressors, respectively. In addition, we adopt deep
learning models including feed-forward neural networks. Therefore,
in this section, we discuss the model training process, including the
data cleaning operations.

The model training process includes multiple preliminary steps
to clean the training data, and preprocessing features including
SINR, and reference signal received power (RSRP) to db (decibel)
and dbm (decibel milliwatts) scaling, respectively. For cell-level user
admission control, we aggregate the data per cell ID, in 1 s time
segments, and calculate the mean RSRP, SINR and number of
unique UEs on the cell. The original dataset is split into 0.67 and
0.33 over the training and test sets, respectively; and one-third of the
training set is used for validation. We train different ML models
using UE count, average RSRP and average SINR to predict average
PDCP delay on the cell-level. The model hyperparameters are
optimized using a grid search algorithm over a set of selected
values for each parameter.

Once the model is trained and validated on the test set, it may be
deployed to production in a setting similar to that explained in
Section 3.2. The preprocessing steps done on the dataset shall be also
done on the network measurements collected in runtime before

FIGURE 7
Call flow diagram for user admission control implementation in an ORAN deployment.
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passing them to themodel for inference. Furthermore, if the network
measurements in the runtime environment are reported in a
different unit or scale, the preprocessing shall be changed
accordingly. The model would be running predictions in the
same time periods as the dataset, of which the output will be
used by the AC algorithm for threshold recommendation.

The ML model inference is used to compare the predicted effect
an additional UE would have on the average QoS on a given cell.
Provided with an operator defined minimum QoS value, the
algorithm determines whether admitting another UE would
compromise the existing UEs’ QoS.

3.4 NS-3 testbed

We utilize built-in model files in NS-3 for integration of the
proposed AI enabled AC algorithm in the xApp. The model files
include LteUEPhy, LteEnbRrc, and LteUePdcp (ns-3, 2019), which

represent the main protocol stack layers involved in the AC process,
and complies with 3GPP. The NS-3 inference flow for the proposed
AC algorithm is demonstrated by Figure 8.

The AC mechanism mainly resides within the RRC layer, and
fetches network measurements from the Phy layer using the
GenerateCqiRsrpRsrq function of the LteUEPhy model file. The
measurements in NS-3 are collected on a transmission time
interval (TTI) basis, which is 1 m interval (mimics 5G with
numerology 0). However, for model training, cell level
measurements are required. This requires pre-processing of the
UE generated measurements, which includes aggregating the UE
data on a per-cell level with a time granularity of 1 s. The time
granularity was chosen to cope with the AC control loop in the RRC
layer. The cell level measurements are a map of average RSRP,
reference signal received quality (RSRQ), SINR, and number of UEs
in each cell within the 1 s interval. The LteEnbRrc also keeps track of
the number of UEs admitted per cell, along with the respective
achievable capacity per cell. The capacity values per cell are

FIGURE 8
NS-3 Model inference flow for the proposed AC PoC use case.

FIGURE 9
Cell level measurements map for AC PoC use case.
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calculated as the maximum number of UEs that could be admitted to
the cell without violating the maximum PDCP packet delay, this
capacity is updated based on the predicted delay from theMLmodel.
An illustration of the cell level measurements map within LteEnbRrc
model file is given in Figure 9.

The trigger policy-based AC flow in the LteEnbRrc layer
schedules a call to the AdmissionControl function every 1 s to
predict the average delay for each cell, and therefore, update
their policies according to the target delay. The ns-3 events
scheduler operation calls the AdmissionControl function that runs
the predictions, i.e., predicts average delay for all the cells
considering one additional UE per cell. The model inference on
the cell-level measurements is used to update the capacity for each
cell. If the predicted delay for a cell is less than the predefined
threshold, the capacity is increased by 1, implying that the cell can
admit one more UE.

The third flow is admission decision, which sets the m_
admitRrcConnectionRequest flag, based on the capacity threshold
of the cell receiving the RRC request. This flow is event driven with
the admission/rejection logic embedded within the
RecvRrcConnectionRequest function. So, when a cell receives an
RRC request from a UE, corresponding CellID variable is
retrieved. Using the CellID, the capacity of the cell is retrieved
from the stored table. The Boolean variable is set to True if the
capacity of the cell is at least one more than the current cell load;
otherwise, it is set to False. In the first case, where the m_
admitRrcConnectionRequest flag is set to True, the RRC layer
sends a confirm message to UE, initiates RRC setup for the UE
and changes the UE state to Connected after the successful RRC
setup completion. On the contrary, in case of the flag set to False,
RRC layer forwards an RRC reject message to the UE along with a
wait period, which specifies the interval after which the UE can send
a new RRC request.

Some of the flows, which are planned for further enhancements
in the NS-3 integration, include a function callback that collects
delay values from the PDCP layer. These true delay values will

FIGURE 10
Cumulative distribution function (CDF) for Number of UEs per cell and average cell delay in our NS-3 dataset.

TABLE 2 Simulation parameters.

Parameter Value

Deployment scenario Macro

Number of cells 12 cells

Number of UEs/simulation 1–46

Cell Bandwidth 5 MHz

Inter-cell distance 500 m

Packet interarrival rate 1 m

packet size (bytes) 1024

MAC scheduler Proportional fair (PF)

TABLE 3 ML models performances on the test set generated in NS-3.

Model R2 score Mean absolute error (MAE)

Ridge Regression 0.77 0.034

KNN 0.89 0.013

Random Forest 0.88 0.013

Gradient Boosting 0.93 0.009

Neural Network 0.85 0.021
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enable model retraining, that will result in model performance
improvement during the simulation lifetime.

3.5 Performance evaluation

In this section, we present the performed ML model
experiments and respective model performance, based on the
ML models and the training process explained in Section 3.3.
The adopted ML models include traditional machine learning
models such as ridge, k-nearest neighbors (KNN) and random
forest regressors, respectively. In addition, we adopt deep learning
models including feed-forward neural networks. We discuss the
performance metrics used and the model to utilized by the AC
algorithm in the NS-3 integration.

The dataset, for training and validating the adopted ML models,
is generated based on NS-3 long-term evolution (LTE) simulations
[i.e., lena-dual-stripe scenario (ns-3, 2021)], with a static simulation
snapshot. That is, a fixed number of cells and cell bandwidth, in
addition to a predefined fixed packet size, and packet arrival rate,
respectively. The number of available UEs, for AC, is varied and
accordingly, the per-cell load becomes dynamically variant in time
such that the obtained dataset is diverse of low and high PDU delay
samples. The UE locations are ensured to be diverse and
independent by running multiple simulation campaigns with
different simulation random seeds. Specifically, 100 simulations
have been performed, for 10 different UE counts, each for
10 various random seeds. This results in a wider coverage of the
experienced PDU delays, i.e., a wider PDU delay distribution, as
depicted by Figure 10. Table 2 lists the main simulation parameters,
where we adopt a Macro deployment.

We split the data set into 2,264 training instances and 1116 test
instances for training and evaluating the models. Table 3 below
provides the models’ performance results on the test set. We use the
R2 score andMean absolute Error (MAE)metrics to evaluate theML
models performances. The R2 score indicates the proportion of the
target variable which can be inferred from the input features; and the
MAE provides the model’s average error on the observations in the
test set, which is to be minimized.

The tests show that the gradient boosting model performs best
on the used test set with an MAE of 0.0089. Other models such as
KNN, random forest and the neural network model tend to have a
similar MAE performance, i.e., from 0.013 to 0.021. Such results are
justified by the tree-based models’ capability to learn non-linear
patterns in scenarios where data is not available in abundance.

Since the models are intended for use in different environments,
the model robustness in different settings is investigated. We
compared the performance of the gradient boosting model and
the neural network on a high traffic load dataset, generated in
identical simulation settings with 50–70 UEs. Those tests are
conducted to evaluate the models’ capability of scaling its
prediction on traffic patterns not covered in the training set
distribution. Figures 11,12 show the ground truth and predicted
average delay against the number of UEs/cell, for both models.
Figure 11 suggests that using a neural network model would be more
robust in environments not previously seen by the model, as its
predictions scale up with the increasing number of UEs. In contrast,
gradient boosting predictions do not scale up on instances withmore
than 13 UEs/cell, i.e., the highest number of UEs/cell observed in the
training set. Therefore, although gradient boosting yields a lower
MAE, using a neural network is suitable when the ML model is
intended to operate in an environment different from training.

Next, we evaluate the E2E performance of the proposed
admission control algorithm. In particular, the performance
comparison metric is the predicted variable from the ML model,
i.e., the average PDCP packet delay. Furthermore, we discuss the cost
of AC algorithms in terms of the UERRC rejections to ensure reduced
QoS violations. As a performance benchmark, we utilize two schemes:
i) no admission control, as an upper bound for the accessibility KPI
and ii) fixed threshold admission control, which adopts a maximum
number of UEs per cell, and constant across all the cells. The fixed
threshold is set by the OAM within the O-RAN framework, and it
represents the best practice for operational networks such as LTE. We

FIGURE 11
Neural Network average delay prediction against number of UEs/
cell.

FIGURE 12
Gradient Boosting average delay prediction against number of
UEs/cell.
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use 2, 4, and 8 as the threshold values based on the selected cell
bandwidth and the stringent target PDCP delay. Moreover, to cater
for load variations, we use different number of UEs which are
uniformly scattered within the network coverage. Additionally,
different values of interpacket arrival rates are used in simulations,
which shows the variation in cell load due to higher generated user
demand in case of lower interarrival time. The simulation parameters
used are same as those given in Figure 12, with the only difference
being that the number of UEs are varied between 10 and 100 and
considered packet interarrival times are 1 m and 10 m. The stable
performance of the DNN based AC algorithm verifies the scalability
of the NN based algorithm as the number of UEs are increased
beyond the training data ranges.

The first presented result in Figure 13 gives a performance
comparison in terms of average service delay for the different
algorithms and with different number of UEs and variations of
the packet interarrival time. From the line graphs, we notice that the
fixed threshold admission control with 2 UEs in the scenario of 10 m
packet interarrival time shows the lowest delay. This is because of the

stringent admission control policy of not allowing more than 2 UEs
per cell even when there is sufficient capacity in the cell. As we will
see in the later results, this is under utilization of resources, and has
an associated cost. While the average delay for ML based AC
algorithm remains well below the maximum delay threshold, the
average delay for the no AC algorithm (NS-3 default mechanism)
increases rapidly above the threshold, particularly as the number of
UEs increase beyond 50. Another observation from this figure is that
the performance for 10 m packet interarrival time is slightly better
than the 1 m scenario, which is as expected since the traffic load is
lower for the 10 m interarrival time which results in lower service
delay.

The cumulative distribution function (CDF) representation
for the average delay in Figure 14 shows a consistent performance
trend with the previous results. The fixed admission control
threshold of 2 UEs shows the best results in terms of delay. In
terms of the number of cells with a delay value above the
threshold of 200 m, the ML based AC algorithm and fixed
threshold of 4 UEs show slightly higher percentage of cells as

FIGURE 13
Average delay vs. no. of UEs—performance comparison.

FIGURE 14
Average delay CDF performance comparison.
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compared to fixed threshold with 2 UEs. For the sake of
comparison, in the case of 10 m packet interarrival time,
about 95% of the cells satisfy the maximum average delay
threshold in case of fixed threshold AC with 2 and 4 UEs, and
ML based AC. The value drops to about 75% and 60% in case of
fixed threshold with 8 UEs and no AC, respectively. The
performance for fixed threshold with 8 UEs is between the no
AC and ML based algorithm due to its lenient threshold that
accepts a larger number of UEs which consequently results in
degrading the average QoS.

The graph in Figure 15 shows the scatter plot of the average
service delay for the ML based AC algorithm at different UE
population and packet interarrival durations, respectively. We
observe that the number of delay violations increase
monotonically with the number of UEs in the network. The
majority of QoS violations, i.e., when average cell delay is greater
than the predefined threshold, while number of UEs is less than 50,
comes with the 1 m packet interarrival cases. However, as the

number of UEs approaches 100, we observe comparable QoS
violations for 1 m and 10 m packet interarrival cases.

Finally, we present the simulator’s results on rejection rate for
the AC algorithms under consideration in Figure 16. While the no
ACmethod has 0 rejection rate since it accepts all RRC requests, due
to the stringent thresholds and QoS constraints, the fixed threshold
of 2 UEs has a higher UE RRC request rejection rate, which scales
linearly as the number of UEs are increased. In general, the rejection
rate for all cases increases linearly with the number of UEs in the
network, except for fixed UE threshold of 8 UEs and no AC scenario.
The high number of RRC rejections is the cost for fixed threshold
AC deployment. So, while we increase the UE target QoS to 95%
with ML based AC, it also has a lower associated cost for improved
UEQoS with a lower number of RRC rejections as compared to fixed
AC thresholds of 2 UEs. Therefore, the ML based AC strikes a
balance between resource utilization (UE AC in our case), and the
average service delay. In comparison with the fixed AC threshold of
4 UEs, although the fixed AC scheme shows slightly lower rejection

FIGURE 15
Average delay scatter plot vs. no. of UEs for ML based AC at different packet interarrival time.

FIGURE 16
AC rejection ratio vs. no. of UEs—performance comparison.
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rate, the ML based AC shows a better delay optimization with
176 delay violations as compared to 195 violations in case of fixed
threshold scheme with 4 UEs. For fixed AC with 8 UEs, the lower
rejection rate comes at a significant cost of delay violations, depicting
that the AC is way too lenient and causes high QoS degradation.
Another noticeable fact from the results is that we get identical
results for each threshold for the scenarios of 1 m and 10 m packet
interarrival times. The high rejection rate can be resolved if traffic
steering and RRC request redirecting capabilities are available and
activated to dynamically forward rejected RRC requests to
neighboring cells with lower loads.

3.6 Future enhancements

The AC PoC use case is an initial effort to implement an xApp
algorithm within the NS-3 framework for a real-time decision-
making problem. There are multiple limitations in the described
implementation, summarized as follows.

• The optimization is performed at a single cell granularity and
does not take the entire network under consideration for
optimized network-wide performance.

• The algorithm only assumes the packet PDU as the sole
performance KPI, and does not take other key factors into
account, where examples include the physical resource block
(PRB) utilization, power allocation, and target modulation and
coding scheme (MCS) per UE.

• The algorithm may lead to service denial of users when the
capacity threshold for a cell is met. In this case, the user awaits
till the capacity of the cell is enhanced. Optimization of the
resulting service denial may be further studied and mitigated
by dynamic RRC steering techniques.

Therefore, there are several future enhancements that can be
applied to the existing single cell AC algorithm implementation. For
instance, a multi-cell user admission control with RRC request
steering capabilities can help in balancing the load between cells
and ensure that a higher number of UEs are admitted in the network
while satisfying their respective target high QoS. Also, if the AC
algorithm is applied on handover cases, it will ensure that the QoS of
the already connected UEs in the terminating cell is not
compromised. From the energy efficiency point of view, we may
tune the AC algorithm to transfer RRC requests, in case of rejection
from an original cell to cells that will have a minimum increase in
power consumption due to the added UE. Finally, for dynamic PRB
allocation to different device class types, device class-based
thresholds should be introduced to set individual capacity for
each class type within the cell.

4 Conclusion

In this work, a comprehensive overview of O-RAN
architecture, technology enablers, specifications, open and
standardization procedures were rigorously surveyed. First, the

key Open RAN architecture design, the main architectural
building blocks, and the respective various functional split
options and open interfaces have been discussed. Second, the
potential of the Open RAN technology to unleash flexible and
vendor-neutral interoperability opportunities, are extensively
presented. Next, we provided an insight of O-RAN Alliance
standardization process along with its working groups focus
area, phase I and II use cases and a timeline of selected
actions and events related to Open RAN development. Finally,
the paper has introduced the unique Open RAN design aspects
which enable an efficient and large-scale support of AI/ML within
cellular networks, with its novel multi-layer decision making
architecture. To illustrate the network performance optimization
capability of this new architecture, we designed an ML based AC
O-RAN PoC and integrated it within the NS-3 LTE simulator.
The ML based approach shows good performance for delay
prediction given the number of UEs in the network, and
average values of SINR, and RSRQ per cell. Simulation results
show that the ML based solution lowers the UE QoS violations at
a cost of slightly higher rejection ratio for UE generated RRC
requests. We also highlighted future enhancements of this
framework which include extending the AC solution to multi-
cell environment with traffic steering capabilities that enable
real-time load balancing with enhanced QoS to the UEs.
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