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The concern about cyber threats on unmanned aerial vehicles (UAVs) increases as
they becomemore sophisticated and widely used in various areas. Although there
have been efforts to improve the security of UAVs, their focus is limited to physical
attacks and securing communication, and many areas remain open to issues.
Although amore comprehensive approach is required to improve the overall areas
of UAVs, it is reasonable to investigate the case study from the perspective of other
similar cyber-physical systems (CPSs). Thus, we see the architectural similarity
between UAVs and automobiles. Automotive security has seen significant
improvement throughout the last decade as vehicles have begun to have
connectivity and autonomy. There have been extensive research and
development efforts in various aspects, including securing the components,
securing communications, securing software updates, and securing the overall
management system to provide multi-layered security for the automotive
environments, and standardization and regulations are being issued. Due to the
similarity, the employment of ideas from the automotive environments in the UAV
environments becomes a reasonable approach. In this paper, we show the
automotive security trends and discuss how UAV environments are
comparable to automotive environments. We then show how security in
automotives is adapted in UAVs with a case study.
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1 Introduction

Unmanned aerial vehicles (UAVs) have been widely used in various areas for civil and
military purposes (Ghamari et al., 2022), and they are employing more sophisticated
functions beyond flight control. Although certain simple UAVs may be controlled by a
hobbyist with a remote controller over a low-frequency radio channel, a sophisticated UAV
may communicate with the ground control station (GCS) with more automated controls
over wireless communication channels, including cellular communications for various
applications, such as delivery services. Not limited to a mission using only a single
UAV, even multiple UAVs could be used for various large-scale missions with the
emerging wireless mesh communication among UAVs. Controlling multiple UAVs
could be carried out by clustering such UAVs and letting a UAV become the cluster
head to control the other UAVs in the cluster. Thus, the internal system architectures of
UAVs are becoming more complex, and multiple communication mechanisms are being
integrated.
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However, such advances inevitably brought the concern of cyber
threats, and cybersecurity has been emerging as one of the important
issues in UAV environments. For example, wireless communication
channels are identified as the attack surfaces threatening the security
of the UAVs.

Although several studies have been conducted on securing
communications among UAVs and infrastructures and physical
attacks on UAVs (Wang et al., 2021; Chamola et al., 2021), many
open problems remain to be considered for UAVs. As the UAV is
more exposed to attackers, attackers could have more advantage in
performing attacks. For example, attackers could capture a flying
UAV and try to disclose confidential data or modify the system of
the UAV. Protections against unauthorized physical access should
be considered, such as temper protection and management of
confidential information inside the UAVs. Thus, multi-layered
approaches should be considered to provide security in UAV
environments. With the urgent need for cybersecurity and
privacy by the rapid advance in UAV applications, it is
reasonable to refer to the achievements from similar cyber-
physical system (CPS) domains.

Considering that a sophisticated UAV could consist of multiple
components, such as a flight controller, a mission computer, and
other motors and sensors interconnected, we see the similarity of
architectures between automotives and UAVs. A modern vehicle
consists of multiple electronic control units (ECUs), which control
the powertrain, chassis, and infotainment. ECUs are interconnected
via in-vehicle networks (IVNs), such as CAN, LIN, FlexRay, and
Ethernet. Certain ECUs, called telematics control units (TCUs),
communicate with external entities, such as other vehicles and
infrastructures, and are connected to the IVNs. With the
emerging trend of connective vehicles, TCUs are becoming one
of the most important components in the vehicle, which enable
vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I)
communications over cellular communications or dedicated
short-range communications (DSRC).

As automobiles are directly related to the safety of humans,
including drivers, passengers, and pedestrians, such advances
inevitably bring concerns about privacy and security. There have
been various efforts to improve automotive cybersecurity in the early
stage. For example, EVITA projects had been operated since
2008 and produced research work on hardware security module
(HSM) specifications, V2V/V2I security design, and risk
assessments when the project ended in 2011. Such work did not
remain only a research topic. However, there have been extensive
efforts made from every aspect, including international standards
and regulations, to provide an adequate level of security and privacy.

Therefore, in this paper, we investigate the security trends in the
automotive domain, which share many similarities with UAVs and
have been one of the most significantly advanced over the last decade
with the advanced concepts of connected and autonomous vehicles,
and find the opportunities to adopt automotive cybersecurity into
UAVs. We review the current state of the art of automotive
cybersecurity efforts and the case study to identify the different
environments between vehicles and UAVs and show how to
overcome the difference. We also discuss how both domains can
be integrated as more CPS applications.

The outline of this paper is organized as follows: We first
compare the environments of automotives and UAVs in Section

2. We discuss the current state of the art of automotive security in
Section 3 and the status of UAV security and how automotive
security efforts can be employed in UAVs in Section 4. Then, we
introduce the case study of employing automotive security for the
UAV security use case in Section 5. We conclude the paper in
Section 6.

2 Comparison of environments

As UAVs are becoming more sophisticated, the architecture
of UAVs is becoming more similar to the architecture of
automobiles. In this section, we first briefly show the
automotive and UAV architectures in sequence and then
discuss how UAV environments are comparable to automotive
environments.

2.1 Automotive environments

2.1.1 Automotive E/E architecture
An automobile consists of electrical/electronic (E/E)

architectures to handle complex driving operations. The E/E
architecture (Figure 1) of a vehicle consists of more than a
hundred ECUs to handle the operations for powertrains, chassis,
and infotainment services. Certain ECUs are used only for simple
work, whereas more sophisticated ECUs are being employed as
advanced driver-assistance systems (ADAS) and autonomous
vehicles have emerged.

2.1.2 Vehicular communication protocols
Vehicular communications consist of in-vehicle communication

networks (IVNs) to interconnect ECUs and external
communication networks to connect the vehicle to external entities.

There are various types of IVNs, such as the controller area
network (CAN), the local interconnect network (LIN), FlexRay, or
Ethernet, as depicted in Table 1. Multiple IVNs are used in the
vehicle for different purposes with different capabilities.

In addition to IVNs for communicating among the internal
components, various external communication methods are used for
communication through TCUs and ECUs. Although several wireless
communication technologies, such as Bluetooth and Wi-Fi, have
already been used to connect mobile devices to the vehicle, DSRC/
wireless access for vehicular environments (WAVE) and cellular-
V2X (C-V2X) communications are being employed to support
emerging V2V and V2I applications.

2.2 UAV environments

UAVs have various types, which could be categorized by
purpose or size. For example, various sizes of UAVs (from very
small to large UAVs) could be categorized by size, as depicted in
Figure 2 (Burgués et al. (2019). Although these categorizations of
UAVs are not directly related to their capabilities, more complexity
of the system architecture could be employed in certain UAVs. We
discuss how the system architectures of UAVs are designed and what
kinds of communication protocols are used.

Frontiers in Communications and Networks frontiersin.org02

Han 10.3389/frcmn.2023.1122231

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2023.1122231


2.2.1 UAV system architectures
Although UAV systems could consist of different components

per type, every UAV consists of the flight controller as a main
component, which is used to control the critical applications related
to flying of the UAV, interconnecting controlling components, such
as sensors and motor controllers, depicted in Figures 3A, B

As the applications of UAVs are being advanced, a dedicated
mission computer is added to handle more sophisticated operations,

such as object detection, collision avoidance, and prevention.
Figure 3C depicts the UAV architecture with the flight controller
and the mission computer.

2.2.2 UAV communication protocols
There have already been several communication methods for

operating UAVs. In order to provide communication between the
flight controller motors and sensors over I2C, UART, and SPI, and

TABLE 1 Automotive in-vehicle communication protocols (Aliwa et al., 2021).

Protocol Bit-rate Application Domain Standard

High CAN 125 Kbps–1 Mbps Critical applications Powertrain and chassis ISO 11898

Low CAN 5 Kbps–125 Kbps Non-critical applications Body domain ISO 11898

CAN-FD Up to 10 Mbps Critical applications Powertrain and chassis ISO 11898

LIN 1 Kbps–20 Kbps Non-critical applications Body domain ISO 17987

FlexRay Up to 10 Mbps Critical applications Powertrain and chassis ISO 17458

FIGURE 1
A vehicle consists of a number of ECUs, and a certain ECU has wireless connectivity, which is called a Telematics Control Unit (TCU).

FIGURE 2
Various sizes of drones (figure from Burgués et al. (2019)).
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to the remote controller over radio channels, several proprietary
communication formats are used for UAV communication (Khan
et al., 2020), becoming similar to the automotive environment.

For example, in addition to introducing more advanced
protocols, such as MAVLink (Section 2.2.2.1) and UranusLink
(Kriz and Gabrlik, 2015) (Section 2.2.2.2), a CAN is used in
UAV to connect more peripherals. There are protocols over
CAN, such as DroneCAN (a renamed UAVCAN v1) or Cyphal
(a renamed UAVCAN v2) (Section 2.2.2.3) (Lee et al., 2018). We
discuss these in the following sections.

2.2.2.1 MAVLink
The Micro Air Vehicle Link (MAVLink) is one of the most

widely used protocols for communication between UAVs and GCSs.
It is adopted by several open-source autopilot systems, such as
Ardupilot and PX4. MAVLink was developed to be a flexible,
lightweight, and open-source communication protocol and used
explicitly for the bidirectional data exchange between the UAV and
the GCS, as well as between the UAVs. MAVLink (version 1.0)
originally had 8 bytes of overhead per packet, including start sign
and packet drop detection.

MAVLink did not originally implement any security
mechanism; therefore, the communication channel could be
vulnerable to several types of attacks, including spoofing, message
forgery, and denial of services.

Although MAVLink 2.0 is extended to have 14 bytes of
overhead and includes signature support to prevent the
forgery of the message, it remains vulnerable to eavesdroppers.
Allouch et al. (2019) clarified this vulnerability in MAVLink and
proposed MAVSec, which adds encryption to MAVLink to
provide confidentiality.

2.2.2.2 UranusLink
UranusLink (Kriz and Gabrlik, 2015) is a packet-oriented

protocol that provides unreliable and reliable services. The
protocol defined the packet structure and the data representation
transmitted. Each packet consists of the following fields: preamble
(PRE), sequence number (SQN), message identification (MID), data
length (LEN), data field, and checksum (CS).

UranusLink introduced unsecured and secured structures. The
secured structure was designed to provide confidentiality and
authenticity.

2.2.2.3 DroneCAN/Cyphal
DroneCAN1 and Cyphal2 are open technologies for real-time

intra-vehicular distributed computing and communication based on
modern networking standards for manned and unmanned aircraft,
spacecraft, robots, and cars. They were originally introduced as
UAVCAN to provide communication over the CAN. Later, the
UAVCAN v0 protocol is renamed as DroneCAN focusing on
running on CAN/CAN-FD, whereas the future version of
UAVCAN is renamed as Cyphal, focusing on multiple different
transport-layer protocols (e.g., Ethernet and CAN).

2.3 Environment comparison

As described in Sections 2.1, 2.2, the UAV system architectures
and communication models have similarities. We show the
comparison in Table 2. There is a similar medium for internal
communication (IC) and external communication (EC). Although
the TCU connects to external entities for the vehicle, the
communication module in the flight controller or the mission
computer (if used) connects to external entities.

3 Security in automotive

The concept of connected and autonomous vehicles has
emerged in the automotive environment since the last decade, as
connectivity enables V2V and V2I communications, and autonomy
enables ADAS and autonomous driving. However, those could
broaden more attack surfaces exposed to various potential
threats, and these threats could increase the risk that damages
human safety. For example, Checkoway et al. (2011) introduced a
comprehensive analysis of the possible attacks on vehicles, which are
exposed to various attack surfaces through channels, as shown in
Figure 4. Thus, cybersecurity has been one of the important issues in
automotive domains, and there have been various efforts to provide
security for the automotive.

FIGURE 3
(A) Example of UAV architecture (Pothuganti et al., 2017). (B) UAV architecture only with the flight controller. (C) UAV architecture with a mission
computer as a companion. (B) and (C) Simplified diagrams from PX4.

1 https://dronecan.github.io/

2 https://opencyphal.org/
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The early stage of the automotive cybersecurity researchwas led by the
project of E-safety Vehicle Intrusion Protected Applications (EVITA)
from July 2008 to December 2011. The project results include various
aspects to protect the vehicle from cyber threats, including secure onboard
communications, secure V2I communications, and software updates,

which become the important basis to improve the cybersecurity for
the automotive environments.

These results brought a strong impact on the academy and
industry, and there have been various research works to improve
automotive security. Table 3 shows a summary of automotive

TABLE 2 Comparison between automotive and UAV architectures.

Automotive architecture UAV architecture

Components Multiple (ECUs) Single or multiple components

Number of components +100 ECUs 1–a few

IC medium CAN, LIN, FlexRay, Ethernet, etc. I2C, SPI, UART, CAN, etc.

IC protocol Proprietary on medium DroneCAN/Cyphal (MAVLink)

EC medium Cellular, DSRC, etc. Cellular, Wi-Fi, etc.

EC component TCU Module in MC (or FC)

FIGURE 4
Communication channels on a modern car. Colors indicate a rough grouping of ECUs by function (figure from Checkoway et al. (2011)).

TABLE 3 Categories of security in automotive.

Category Sub-category Standard and regulation

Communication security Secure V2X security SCMS (Whyte et al., 2013)

Secure IVN AUTOSAR (2020)

System security Trust anchor/HPSE SAE International (2020); Henniger et al. (2009)

Secure software update Uptane (Karthik et al., 2016)

Security engineering Secure system SAE J3061, ISO/SAE 21434

Software update ISO 24089

Standards and regulations Standardization body SAE, ISO, AUTOSAR

Regulatory body UNECE (R155, R156), NHTSA
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security trends in different categories, and we explain the details in
the following sections.

3.1 Communication security in automotive

As a modern vehicle consists of multiple ECUs and can
communicate with external entities, many researchers have
focused on providing secure communication.

Various works have been proposed to secure communication
with external entities, including the vehicle and infrastructures
(V2V/V2I) and vehicle-to-everything (V2X) (Ghosal and Conti,
2020). Due to the importance of securing V2X communication,
these works do not only remain research work; they are being
adopted at the government level. The National Highway Traffic
Safety Administration (NHTSA) initiated the Crash Avoidance
Metrics Partnership (CAMP), which is a partnership with
automotive security experts to provide a privacy-preserved
security mechanism. CAMP proposed the “security credential
management system” (SCMS) (Whyte et al., 2013) to enable the
authentication of the vehicle safety message while preserving the
privacy of the vehicle. This could be performed using anonymous
but verifiable identities instead of transmitting the real identities of
the vehicles, which could be tracked. NHTSA adopted SCMS for
V2V/V2I environments, and Figure 5 depicts the components in the
infrastructure of SCMS. For more details on components, please
refer to Whyte et al. (2013).

Research on secure onboard communication among ECUs
inside the vehicle has focused on providing sufficient security
strength in a constrained environment. For example, a full-size
HMAC-SHA256 requires 32 bytes for the message authentication
code, and it may need to be truncated to be used in a CAN, which
only allows up to 8 bytes of payload. Thus, many researchers (Müter
and Asaj, 2011; Schweppe et al., 2011; Han et al., 2014; Nilsson et al.,
2008, 2009; Matsumoto et al., 2012) proposed authentication of
onboard communications, mostly on the CAN.

Each automotive vendor has also employed secure onboard
communications and AUTomotive Open System ARchitecture
(AUTOSAR) (AUTOSAR, 2020), which is a partnership to create
and establish an open and standardized software architecture for
automotive ECUs. It also provides a secure onboard communication
design, as depicted in Figure 6.

In addition to protecting the authenticated frames on the bus,
protecting the access by refining architectures (Kenjic and Antic,
2022), as depicted in Figure 7, is also considered. Domain or zonal
controllers could operate as firewalls to prevent unauthorized access
from other domains or zones.

3.2 Hardware-protected security for multi-
layered security in automotive

It has been commonly agreed that protecting the security
elements in the ECU only with software-based methods is

FIGURE 5
SCMS architecture design. Figure from Intelligent Transportation Systems Joint Program Office, the US Department of Transportation.

Frontiers in Communications and Networks frontiersin.org06

Han 10.3389/frcmn.2023.1122231

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2023.1122231


insufficient, and hardware-based protection shall be deployed as the
root of trust in multi-layered security (SAE International, 2020).

EVITA project defined the functional security requirements and
specifications of the HSM (Henniger et al., 2009) as in the following
three categories:

• Full EVITA HSM: Intended to provide efficient asymmetric
cryptographic functions to secure V2X applications. The
EVITA HSM Full Version uses its own independent
internal CPU that can directly access its internal RAM and
non-volatile memory to prevent any malicious interference
from the application CPU and the application software, which
can be accessed only by the application CPU via secure
interfaces.

• Medium EVITA HSM: Intended to enable secure but cost-
effective protection of gateways and domain controllers.
EVITA HSM Medium executes very fast symmetric
cryptography in hardware but rather slow asymmetric
cryptography in software, such as a digital signature.

• Light EVITA HSM: Designed to integrate and protect ECUs,
sensors, and actuators that provide or process security-critical
information. This specification includes an AES hardware
accelerator, with the security credentials handled by the
main ECU application processor.

The Hersteller Initiative Software (HIS) consortium, founded in
2004 and consisting of members from German automotive OEMs,
defined Security Hardware Extension (SHE), which is equivalent to
Light EVITA HSM.

The Society of Automotive Engineers International (SAE) has
been working on improving security with the hardware-assisted
component. SAE defines hardware-protected security environment
(HPSE)-SAE J3101 (SAE International, 2020) to avoid the confusion
of HSM across different domains. Requirements of HPSE include
the following categories:

1. Cryptographic key protection: These requirements provide
protected storage, management, and usage capability for
cryptographic keys.

2. Crypto algorithm: These requirements are intended for
implementation in the HPSE to maintain confidentiality,
integrity, and availability of the systems that make use of said
security environment.

3. Random number generator: These requirements are to provide
an acceptable level of random number generator.

4. Secure non-volatile data: These requirements consider that
some cryptographic algorithms or protocols make use of
retained data that need to be kept within the HPSE with non-
volatile data protection (e.g., monotonic counters and bit fields).

FIGURE 6
(A) Adding the truncated freshness value and authentication code in the payload. (B) Message authentication process between the sender and
receiver. Based on data from AUTOSAR (2020).

FIGURE 7
Evolved in-vehicle architecture. (A) Domain architecture. (B) Zonal architecture. (C) Centralized architecture. Based on data from Kenjic and Antic
(2022).
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5. Algorithm agility: These requirements stem from the need for a
flexible design of the HPSE to accommodate updates over the lifetime
of the vehicle.

6. Interface control: The device that implements the secure elements
of the HPSE typically needs to include various hardware ports for
debugging the HPSE and the ECU’s functional interfaces. These
hardware debugging ports could be attractive attack vectors, so their
availability needs to be controlled.

7. Secure execution environment: The secure execution environment of
the HPSE can provide separate shielding of common services, the
resources used to process secret data, and various associated
cryptographic logic.

8. Self-tests: These requirements suggest best practice
recommendations for operational states and self-tests, although
self-test is typically not easy to be standardized due to wide
variation in microprocessor architectures and capabilities.

Using HPSE as the root of trust, various security mechanisms,
including secure/authenticated boot, secure firmware update, secure
communication, secure diagnosis, secure logging, and intellectual
property protection, are provided to enable multi-layer protection in
the system.

3.3 Secure software update in automotive

As the lifetime of a vehicle is long, there is a high possibility of new
software vulnerabilities or bugs while the vehicle is in use. Thus, the
software update has been one of the important features of managing the
vehicle throughout its life cycle of the vehicle. Moreover, as visiting the
dealer shops or repair centers to get the new software is costly, software
updates over the air have been strongly required to reduce such costs.
However, the ecosystem of software updates over the air could be
exposed to attackers. There have been several efforts to provide secure
software updates over the air in automotive environments.

The Uptane project (Karthik et al., 2016) was started in the mid-
2010s to enable the secure software update over the air for the
automotive. The design is inherited from The Update Framework
(TUF) (Samuel et al., 2010), which is originally designed to provide
security in the repository to prevent the system from installing
compromised software packages. Uptane is designed to provide
comprehensive security over the supply chain of software updates,
considering various attacks, including server compromise, by
separating roles and stages, as depicted in Figure 8. Many studies
were based on Uptane (Moore et al., 2020; Qureshi et al., 2021; Al
Blooshi and Han, 2022). Uptane had been standardized as IEEE/ISTO
standard3 and is now being standardized under Linux Foundation4 with
the active involvement of the automotive industry. We discuss more
details of Uptane in Section 5.1.

In addition to the security framework by design, engineering
efforts have been ongoing too. The International Organization for
Standardization (ISO) has been making the software update
engineering standard, which is called ISO 24089: Road Vehicles

Software Update, specifying requirements and recommendations for
software update engineering for road vehicles on the organizational
and the project level, and vehicles, vehicle systems, infrastructure,
and the assembly and deployment of software update packages after
the initial development.

3.4 Cybersecurity engineering in automotive

In order to provide an adequate level of security with reasonable
efforts, it is important to design and implement systems deploying
multi-layered protection based on appropriate threat analysis and
risk assessment over the life cycle. In the early stage, SAE introduced
the first cybersecurity standard for automotive, SAE J3061 (Society
of Automotive Engineers International, 2016), to provide guidance
on the security engineering process for securely developing the
automotive. As the automotive industry had begun to understand
the importance of the cybersecurity engineering process, which
was introduced as ISO/SAE 21434 (ISO, 2021). Currently, ISO/
SAE 21434 is being adopted as the standard of cybersecurity
engineering process for the automotive.

3.5 Standardization and regulation for
automotive security

There have been efforts to issue standards and regulations to
employ cybersecurity in the automotive. As mentioned in prior
sections, several groups, such as AUTOSAR, SAE, and ISO, have
been developing cybersecurity standards for various areas,
including communication security, system security, and
security engineering.

NHTSA/DoT is mandating SCMS for secure V2X
communication, and there have been international efforts to
regulate automotive security. The United Nations Economic
Commission for Europe (UNECE) World Forum for
Harmonization of Vehicle Regulations (WP.29) has recently
introduced two regulations, Regulation number 155 (UN
R155), about cybersecurity and cybersecurity management
system (CSMS) (UNECE, 2021a) and Regulation number 156
(UN R156), with regard to software updates and software updates
management systems (SUMS) (UNECE, 2021b). For many
countries, starting July 2024, it is expected that all new
vehicles produced shall comply with these regulations. Each
nation adopts UNECE regulations into domestic regulations to
implement security in automotive engineering and software
updates. UN R155 is aligned with the cybersecurity
engineering process standard, ISO/SAE 21434, whereas
R156 is aligned with the software update engineering
standard, ISO 24089, respectively.

4 Ideas to improve security of UAVs

In this section, we discuss the efforts to improve the security of
UAVs. We first show the state of the art of UAV security research
and standardization efforts in Section 4.1 and then discuss how
automotive security could be deployed into UAVs in Section 4.2.

3 IEEE-ISTO 6100.1.0.0: Uptane Standard for Design and Implementation.

4 https://uptane.github.io/papers/uptane-standard.2.0.0.html.
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4.1 State of the art of UAV security

As UAVs are systems with wireless communications, there has
been a concern about potential attacks on UAVs. Wang et al. (2021)
and Chamola et al. (2021) identified various types of attacks on
UAVs in the physical and network layers during wireless
communication, including jamming, spoofing, and even
spreading malware. Wang et al. (2021) also defined the security
requirements of UAVs: data confidentiality, access authentication,
system availability, information integrity, and behavior reliability.
They also suggested several countermeasures preventing physical
attacks, such as jamming and spoofing, as well as encryption and
authentication ofMAVLink. Moreover,Wang et al. (2021) identified
several open issues in securing UAVs, and we map these issues into
related categories as in Table 4.

As we categorize the security challenges and countermeasures as
physical security, communication security, privacy engineering, system
security, security engineering, and standard and regulation, we review
how UAV security research and efforts are ongoing.

Physical security has been mostly considered in UAV
environments as the threat is on mobile CPS. Various physical
attacks, such as jamming and spoofing on sensors and signals, have
been studied.

In addition to several countermeasures briefly suggested by
Wang et al. (2021), several studies about communication security
have focused on providing data confidentiality, information
integrity, and access authentication for UAVs. Some researchers
(Tanveer et al., 2020; Jan and Khan, 2021; Tanveer et al., 2021; Cho
et al., 2020) focused on the establishment of authenticated
communication between the ground station and the individual
UAV and between UAVs.

Considering the deployment of multiple UAVs as UAV swarms,
a few studies have provided secure communication among UAVs.
Abdel-Malek et al. (2021) proposed models using proxy signatures
over 5G device-to-device (D2D) technologies. In the circumstance
that each UAV is capable of cellular communication, each UAV is
communicating with other UAVs using 5G D2D technologies.

In certain situations, there could be more constraints, such as the
situation in which edge UAVs do not have direct communication
with the ground station, whereas each UAV should communicate
with other UAVs in the swarm. In such a scenario, the
authentication of edge UAVs could happen without the
involvement of the ground station. Semal et al. (2018) proposed
a certificate-less group authenticated key agreement design that
allows communication in a UAV swarm without requiring a
certificate for each UAV.

FIGURE 8
Components and update workflow in Uptane Community (2022).

TABLE 4 Challenges in UAV security (Wang et al., 2021) and related categories.

Challenge Category

UAVs with new radio techniques Physical security

UAV security in the space–air–ground integrated network Communication security

Privacy in UAV-enabled applications Privacy technology

A multi-layer and defense-in-depth security framework System security, security engineering

UAV-involved communication security standards Standard and regulation
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There are also efforts to reduce the burden of the computation of
public-key cryptography algorithms for resource-constrained UAV
platforms. Khanh et al. (2020) introduced the reputation model that
enables immediate decisions on whether the additional authentication
process is required and the other additional protocol using it. For the
UAV with a higher reputation score, faster authentication is available.
However, the leakage of the shared key could result in the malicious
entity impersonating the other genuine UAV in the swarm. Han et al.
(2022) proposed a model to overcome this limitation and enable
lightweight mutual authentication among UAVs, ensuring seamless
authentication and resilience against key compromise.

A few works focused on utilizing hardware-assisted methods,
such as physically unclonable function- (PUF-) based techniques to
enable mutual authentication in UAVs (Pal et al., 2020; Gope and
Sikdar, 2020). However, due to the nature of PUF, these protocols
require communication between the UAV and the ground station in
performing the authentication process.

For Privacy engineering, several researchers (Yao et al., 2017;
Tedeschi et al., 2021) focused on privacy-preserving methods as
privacy has been a concern for UAV environments. Although the
identity of the UAVs is broadcast, the true identities of UAVs are
only known to the authorized entity.

Compared to the aforementioned security categories, efforts on
system security, security engineering, security standards, and
regulations are recently started. There have been requests to
develop and introduce security standards and recommendations
(ANSI Unmanned Aircraft Systems Standardization Collaborative,
2020) for emerging UAV applications. Several standards
committees, such as SAE G-32 Cyber-Physical Systems Security
Committee, RTCA SC-216/EUROCAE WG-72 Aeronautical
Systems Security, ASTM WK56374, and IETF, develop the
security standards for UAVs.

For example, SAE G-32 has started to create the three criteria to
help manage risk and ensure the security of CPS throughout their
life cycle. SAE G-32 is working on the following standards:

• SAE JA 7496, Cyber-Physical Systems Security Engineering
Plan (CPSSEP),

• SAE JA 6678, Cyber-Physical Systems Security Software
Assurance,

• SAE JA 6801, Cyber-Physical Systems Security Hardware
Assurance.

Although several efforts for standardization and research work
and most research focus on communication security and privacy,
there are still many open problems for securing the system
architecture of UAVs in system security.

4.2 Consideration of boosting UAV system
security by employing automotive security

To achieve security over the life cycle of UAVs, providing the
multi-layer and defense-in-depth security framework into the
system of UAVs, as in Section 2.2.1, is required.

System security focuses on securing UAVs, not only the
communication channels but also the internal parts of UAVs.
Securing the system includes preserving the system’s integrity

and data confidentiality, securing internal wired communication,
and providing secure software/firmware updates over the life cycle.

As mentioned in Section 2.2.1, a UAV consists of a flight
controller, mission computer, and various sensors and motors.
These components are interconnected over proprietary
connections or internal wired networks, as addressed in Section
2.2.2. This makes the similarity with automotive and employing the
security design from the automotive environments reasonable.

4.2.1 Preserving the UAV system’s integrity
and data confidentiality

As discussed in Section 3.2, deploying HPSE in UAVs is essential
to guarantee a secure system to preserve system integrity and data
confidentiality.

Although Pirker et al. (2020) focused on deploying HPSE for
UAVs, their work remains to provide the HSM as the secure gateway
between UAVs and the GCS, and the security of components inside
UAVs was barely considered.

It is obvious that the flight controller and the mission computer
need to be protected. Employing the HPSE in each component could
be the inevitable approach to protect components in the UAV.

Moreover, protecting other independent components, such as
motors and sensors installed inside a UAV, should also be
considered, as depicted in Figure 3. However, employing the
HPSE with equal capabilities to each component may not be easy
considering the overall resource constraint including the cost. As
discussed in Section 3.2, a vehicle consists of ECUs with different
capabilities, and there are three different EVITA grade HSMs and
SHE to be employed in each ECU.

Although we do not give what level is sufficient for the UAV
component type, the rating of the risk level and the capabilities of the
component could be the criteria for the implementer. These
decisions should be part of security engineering.

The first criterion is considering the risk. For example, each
component may not have an equivalent attack surface. Certain
components inside a UAV may be only connected via serial
interfaces, such as the inter-integrated circuit (I2C), a universal
asynchronous receiver-transmitter (UART), and the serial peripheral
interface (SPI). However, some components could be connected over
the network, such as CAN, as DroneCAN and Cyphal are specified.
How much the component is exposed to the attack surface could be
related to how much the chance exists that the component to be
targeted by the attacks. It is also interpreted as the opportunity to rate
the likelihood in the threat analysis.

The second criterion is the capabilities of components. In the
automotive scenarios, if the component handles lightweight and
non-critical operations, a lower grade of HPSE could be considered.
In contrast, the flight controller or the mission computer of the UAV
may need a higher grade of HPSE.

4.2.2 Securing UAV’s internal wired
communication

Although a few studies have considered securing the MAVLink
(Allouch et al., 2019), most researchers focused only on securing the
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wireless communication between UAVs and between UAVs and the
ground station. In contrast, securing communication inside UAVs is
barely addressed.

As addressed in Section 2.2.2, the wired communication model in a
UAV is similar to the automotive environment. As several studies have
focused on securing IVNs, such as CANs and FlexRay, in the
automotive domain, adopting the idea into UAVs could be reasonable.

Because the CAN was originally designed without considering
the security, 8 bytes of payload in the CAN packet is a huge
constraint to providing authentication and encryption. Although
CAN-FD allows up to 64 bytes of payload, design efficiency is still
required, considering the backward compatibility. Thus, the efforts
in securing IVN focused on how to efficiently utilize the constraint
payload in the packet, mostly targeted to CAN/CAN-FD.

Therefore, employing the research efforts already performed for
automotive in the UAV environment could be easy in supporting
security for the UAV communication protocols, such as MAVLink,
UranusLink, and especially DroneCAN/Cyphal. For example,
DroneCAN/Cyphal is fundamentally the communication protocol
running over CAN, and deployment of the secure CAN protocol is
immediately considered. Moreover, as explained in Section 2.2.2.1,
MAVLink only provides 8 bytes (version 1.0) or 14 bytes (version
2.0) for the payload, which is a similar constraint to CAN.

Additionally, adopting firewalls could be considered to protect
communication among the resource constraint devices.

4.2.3 Providing secure software/firmware
updates over the UAV’s life cycle

The secure software update has been one of the important
features in maintaining the system’s security during the life cycle,
and it is also important for securing UAVs over the life cycle.

Although the commercial UAV market is already providing
new software and firmware for their product, how to securely
manage the overall software update processes should be
considered. Cyberattacks are evolving and various attacks,
including malicious software packaging and reverse
engineering, could target the UAV software update processes.

Thus, securing the software update processes for UAVs is also
important, and a few studies have been introduced. Salamh (2021)
showed the threat modeling on UAVs as a service and suggested the
use of secure software updates. Al Blooshi and Han (2022) proposed
a security model to enable security software updates of UAVs,
including UAV swarm environments, adopting Uptane (Karthik
et al., 2016; Kuppusamy et al., 2017; Kuppusamy et al., 2018), which
is designed to provide a comprehensive security framework for
automotive environments.

In Section 5, we show the work of Al Blooshi andHan (2022) as a
case study that employing security for automobiles could enable the
rapid improvement of the security of UAVs.

5 Case study: Securing UAV software
update adopting automotive security

This section shows a case study of employing automotive
security technology in UAV environments. Al Blooshi and Han

(2022) investigated the similar characteristics between UAVs and
the automotive and proposed a security model based onUptane with
principles described in Section 5.1.

5.1 Key principles of Uptane

Uptane is a comprehensive security framework for software
updates in the automotive environment, whose scope includes entire
ecosystems related to the software update, from infrastructures that
manage the software to the target components in the vehicle. Uptane
defines roles to separate the duties and authorities and enable multi-
layered security on the infrastructure and vehicle sides. By
separating roles, the resiliency of the ecosystem against various
attacks could be increased, even resiliency when a certain key is
compromised via the network breach.

5.1.1 Separation of roles in infrastructures
The main key principle of Uptane for the infrastructure side is

the separation of duties, where the responsibility of signing the
metadata is distributed between different roles.

As depicted in Figure 8, there are four different basic roles on the
repository on the server side: root, timestamp, snapshot, and
targets. Each role is independently managed on the server.

In addition to the roles, Uptane utilizes multiple repositories,
known as director and image repositories, and lets the director
repository sign metadata using the root key, whereas the repository
is connected to the network while only allowing the image repository
to use the root key offline, in which the repository only uses the root
key when it is disconnected from the network. This strict policy
increases the resiliency that the root key at the image repository is
secure even when the director repository is compromised.

For more detail on the repositories, refer to Karthik et al. (2016),
Kuppusamy et al. (2017), and Kuppusamy et al. (2018).

5.1.2 Primary and secondary ECUs in the vehicle
Uptane categorizes the ECUs in the vehicle into two types:

primary and secondary ECUs. The primary ECU is responsible for
distributing information from the repositories to the secondary
ECUs and communicating with the different repositories on
behalf of all secondary ECUs in a vehicle. This enables the
primary ECU to manage the entire ECUs in the vehicle, and it
could prevent unauthorized data from flowing to other ECUs. In
contrast, the secondary ECU communicates with the primary ECU
to receive the new software or report the updated result. The
secondary ECU could also verify the software once received. It is
considered that primary ECU has more capabilities than secondary
ECUs, for example, a TCU in the vehicle.

5.1.3 Metadata and manifest
In order to manage the software, Uptane defines metadata and

manifest to be exchanged between infrastructures and vehicles.

5.1.3.1 Metadata
Metadata are used to provide verifiable information about the

software to the vehicle. Uptane defines four types of metadata, and
each metadata is generated by each role in the repository. Root
metadata are generated and signed by the root role, issuing the
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public keys used to verify metadata created by the other roles.
Timestamp metadata are generated and signed by the timestamp
role, identifying if there are new metadata or images on the
repository. Snapshot metadata contain version numbers and
filenames of the images the repository has released and generated
and signed by Snapshot role. Targets metadata have information
about images, such as hashes and file sizes, and are generated and
signed by the Targets role.

When the update is initiated, the repository sends all metadata of
the images to the vehicle. The primary ECU of the vehicle verifies the
image by checking that the hashes and sizes of the signed metadata
match the metadata from the repository. The primary ECU sends
the metadata and the software images to the secondary ECUs only if
the images and metadata are verified. Secondary ECUs also verify
the metadata and the image to perform the installation. Upon the
scenario, secondary ECUs may perform full verification, which is
verifying all metadata, or partial verification, which is verifying only
target metadata.

5.1.3.2 Manifest
Manifest is used to provide the vehicle’s current software

information to the repository. The primary ECU first constructs
a vehicle manifest, which is a compilation of ECU version reports
about the different software versions installed on the ECUs, and
sends it to the repository. Using the information in the vehicle
manifest and ECU version reports inside, the repository determines
which images should be downloaded next. ECU version reports and
the vehicle version manifest are sent to the server before the software
update and also after the update is completed.

5.2 Challenges in UAV software update

5.2.1 UAV software update scenarios
It is investigated that performing the software update for UAVs

could happen in the following two scenarios: performing the
software update at the base or during the mission.

5.2.1.1 Software update at the base
Performing software updates at the base is currently being

provided for commercial UAVs. Certain vendors already provide
the new software and firmware and let UAV users download and
install them to UAVs, although security during the software update
is not the primary focus.

The scenarios of advanced UAVs with a flight controller and a
dedicated mission computer can be considered a simplified model of
a vehicle that consists of primary and ECUs. As depicted in
Figure 3C, the mission computer communicates with the
infrastructure; it could be considered a primary ECU.

Thus, due to many common traits with automotive
environments, deploying Uptane for software updates of a UAV
is inevitably considered and could be used without any modification.

5.2.1.2 Software update during the mission
For UAV scenarios, there can be scenarios where software

updates happen during the mission. In the situation that a
critical security update is urgently needed, the software update of
the UAV could happen without returning to the base.

Updating UAVs could happen in various scenarios, either a
single UAV or multiple UAVs as a group or a drone swarm. Also,
certain UAVs could be in situations that cannot perform updates
immediately, which will be detailed in Section 5.2.2.

5.2.2 Challenges in UAV environments
Although there is a strong similarity between the UAV and

automotive environments, Al Blooshi and Han (2022) identified that
there are significant differences between the two, as mentioned in
the following sections.

5.2.2.1 Energy constraint in UAV
In the automotive environment, the energy constraint issue is

not a critical factor. Instead, the constraint issues were due to
computational and communication capabilities in ECUs and
IVNs, as well as the complexity of multiple supply chains and
the cost of manufacturing the vehicle.

In contrast, the energy constraint issue is one of the most
significant issues to limit the utilization of UAVs as battery-
powered flying devices.

5.2.2.2 Deploying multiple UAVs as a swarm
In the automotive scenario, grouping multiple vehicles while

driving on the same road could happen for platooning. However,
although platooning is happening, each vehicle has sufficient
capabilities to communicate to the other entities, not only the
other vehicle but also the infrastructures, such as a roadside unit.

In contrast, in the UAV scenarios, when multiple UAVs in the
cluster could be operated for the same mission, as a “swarm,” UAVs
with different capabilities could be used. The cluster head (the fog
UAV) leading the UAV swarm may have full capabilities to
communicate not only with UAVs but also with the GCS, and
other UAVs (followers in the swarm) may have capabilities only to
communicate within the swarm.

5.2.2.3 UAV as a component and an independent device
As discussed in Section 2.2.1, a UAV may consist of multiple

components, including the flight controller and the mission
computer. Also, more components could be installed due to the
advance in UAV technologies.

Moreover, when multiple UAVs are used as a swarm, it could be
the set of UAVs to be installed during the mission. Although all the
UAVs are connected in one swarm, they are still considered
independent devices.

Although all the components and ECUs in the vehicle perform
the updates at the same time, someUAVsmay not be able to abort or
pause the mission they are performing. For this reason, software
updates of the UAV swarm are considered difficult as they may
affect the continuity of important missions.

5.2.2.4 Dynamic grouping of the UAV swarm
Although the vehicle consists of a group of many ECUs, they are

hardly changed during the lifetime of the vehicle. Conversely, a UAV
swarm may consist of different cluster heads (fog UAV) following
UAVs in each mission. In addition, UAVs in a swarm during a
mission could be changed by joining or leaving the swarm.

This dynamic group makes it hard to use the same mechanism
solely as defined in Uptane. Each UAV may generate a version
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manifest collecting version report from the internal components.
The cluster head collects all the version manifests from each UAV
because the cluster head is the only entity to interconnect UAV to
infrastructure. Moreover, the cluster head needs to manage the
UAVs in the swarm.

Thus, a management model for the cluster head to control the
software update of the swarm is needed.

5.2.2.5 Wireless communication among UAVs
In the automotive scenario, the update is first delivered from the

server to the primary ECU over wireless communication. However,
once the update is delivered to the primary ECU, the distribution of
the update to the secondary ECUs is not challenging as it is
performed over a wired communication, such as CAN.

However, in the case of a UAV swarm, in addition to the
communication between the update server and the cluster head,
the communications among UAVs are carried out over the
wireless channel. As a result, all communication channels
within the UAV swarm should consider the attacks targeting
the wireless channels.

Security mechanisms for a software update for UAVs satisfying
the same security strength of Uptane need customization due to the
unique characteristics of the UAV environment.

5.3 Customizing Uptane for UAV
environments

5.3.1 Customized manifests
Al Blooshi and Han (2022) introduced the swarm version

manifest (SVM), in addition to the drone version manifest
(DVM) and component version manifest, to overcome the
limitation of Uptane (Kuppusamy et al., 2018) discussed
previously.

5.3.1.1 Component version manifest
The component version manifest (CVM) is a renamed ECU

version report of Uptane and includes the component software
status information. In other words, the infrastructure can determine
whether the software is up-to-date or needs an update.

The CVM’s payload contains the component unique identifier
(CUID), information about the installed image, and the time the
manifest was generated.

5.3.1.2 Drone version manifest
The DVM is renamed the vehicle version manifest in Uptane.
In a single UAV scenario, the DVM is sent to the software

update server directly, which is equivalent to Uptane. In contrast, in
the swarm scenario, each UAV sends the DVM to the cluster head.

The DVM’s payload contains the UAV’s unique identifier
(DUID), information on the installed image, the time the
manifest was generated, and a list of the component version
manifests.

5.3.1.3 Swarm version manifest
The SVM is defined to customize Uptane for UAV swarm

scenarios. By collecting all DVMs, the cluster head constructs the

SVM and acts as a master list of all the images running on all UAVs
or components in the swarm.

The SVM is first generated when the UAV swarm is established
and sent to the software update server to let it recognize the dynamic
group, as discussed in Section 5.2.2.4. The SVM’s payload contains
the swarm’s unique identifier (SUID), the cluster head’s unique
identifier (CHUID), and a list of DVMs.

Figure 9 depicts the hierarchy of SVM, DVM, and CVM.

5.3.2 Customized metadata
For the UAV swarm scenarios, swarm-snapshot metadata are

added, which is the dynamically generated metadata, in addition to
the metadata as explained in Section 5.1.3.1. Therefore, the cluster
head and the software update server can distinguish the UAVs in the
UAV swarm.

5.3.3 Partial postponing update in UAV swarm
scenarios

In UAV swarm scenarios, some UAVs may not be able to
perform an immediate software update, as discussed in Section
5.2.2.3. Thus, the concept of postponed is added as part of the results
of the update, in addition to success and failure in Uptane. The UAVs
that cannot perform the immediate update respond with postponed
in the DVM to the cluster head, and the results are reported to the
server. Once they can perform the software update, they perform the
software update and report the result.

5.4 Design flow

Upon analysis, as discussed in Section 5.2.2, Al Blooshi and Han
(2022) proposed a framework for secure software updates for a UAV
swarm environment customizing Uptane. We describe how the
Uptane is customized for the UAV environment.

5.4.1 System components
The design by Al Blooshi and Han (2022) defined the

components as follows.

5.4.1.1 UAVs
As depicted in Figure 3, a single UAV consists of components,

such as a flight controller and a mission computer, similar to the
vehicle, as the vehicle consists of multiple ECUs.

For the UAV swarm case, the UAV is defined as follows:

• Cluster head (CH): It manages the UAV swarm, which
consists of one or multiple following UAVs. Only the
cluster head communicates with the software update server
and the ground station

• Following UAV (FD): It is a member of the UAV swarm and
controlled by CH. FD may only communicate with other
UAVs in most cases.

5.4.1.2 Infrastructures
• Software update server (SUS): It distributes the updates to the
cluster head in the UAV swarm. The SUS contains all roles and
repositories and delivers new updates to the UAVs.
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• Ground control station (GCS): It is a UAV operator that
knows the public keys of UAVs. The GCS is responsible for
defining the URL of the update server, uploading the
updates to the update server, and establishing a UAV
swarm.

5.4.2 Software update phases
The overall software update processes are distinguished into the

following three phases:

• Phase 1 (preparation): UAVs and servers initially exchange
the necessary information to perform the software update
(Section 5.4.2.1).

• Phase 2 (update): UAVs receive updates from the server and
perform the software update (Section 5.4.2.2).

• Phase 3 (report): UAVs report the result to the server when
the update processes are completed (Section 5.4.2.3).

The detailed flows of each phase in Al Blooshi and Han (2022)
are described in Sections 5.4.2.1–5.4.2.3.

5.4.2.1 Phase 1: Preparation
In the initial preparation phase, all relevant entities must be

prepared to be able to perform the software update. This stage
includes preparation in GCS, SUS, and UAV. If a UAV swarm is
established for the mission, GCS generates the UAV swarm DS.

5.4.2.1.1 Swarm preparation in ground station. When the
mission requires the UAV swarm DS, the GCS initially establishes
DS that includes at least one CH and n number of following UAVs
FDi, where 1 ≤ i ≤ n. Establishing DS, the address (i.e., URL) of SUS,
and the information about the edge UAV in DS, including UAVs’
IDs and public keys, are given to CH at this point. After DS is
established, the ground station provides information about DS,
INFODS, to the SUS. It is assumed that GCS and SUS have a
secure communication channel. INFODS contains the IDs and
associated public keys of all UAVs in DS.

5.4.2.1.2 Preparation in UAV swarm. Establishing the swarm
DS, the CH first requests the UAV information from each FDi in DS,
where 1 ≤ i ≤ n (n is the number of UAVs).

• PD-1: Each FDi constructs and sends DVMi to the CH.
• PD-2: CH verifies DVMi with each FDi’s public key.

Every manifest is signed by its generator, and the signature is
included in the manifest, as reported by Kuppusamy et al. (2018).

• PD-3 CH then constructs and sends SVM1 to the SUS.

For the single UAVmission, the UAV only constructs DVM and
sends it to SUS.

The overall preparation flows are depicted in Figure 10.

FIGURE 9
Swarm version metadata, drone version metadata, and component version metadata. Reproduced from Al Blooshi and Han (2022), with permission
from IEEE.
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5.4.2.1.3 Preparation in software update server. The SUS
contains roles and repositories as defined by Kuppusamy et al.
(2018).

In receiving INFODS from GCS as in Section 5.4.2.1.1 and SVM1

from the CH as in Section 5.4.2.1.2, the SUS performs the following:

• PU-1: The SUS verifies the INFODS from the GCS and SVM1

from the CH.
• PU-2: The SUS compares INFODS and SVM1 to identify the
exact members of DS.

Note that the number of UAVs in SVM1 never exceeds that in
INFODS. In contrast, the smaller number of UAVs in SVM1 could
happen due to various reasons, such as weather conditions.

Using the information of DS, the SUS generates swarm-snapshot
metadata in the update phase.

5.4.2.2 Phase 2: Update
The update phase contains three stages: update initiation (UI),

software verification (SV), and installation (IS).

5.4.2.2.1 Update Initiation. When a new update of the software
version is issued, the SUS first checks the UAV swarm information
collected from SVM1. If any UAV or components in the UAV swarm
DS are considered a target for a software update, the SUS initiates the
software update plan. It is assumed that the transmission between
the SUS and the CH is over a protected channel such as transport
layer security (TLS).

• UI-1: The SUS informs the update existence to the CH.
• UI-2: The CH constructs and sends jth manifest, SVMj, as
described in Section 5.4.2.1.2.

For the first update case, SVMj may be equivalent to SVM1. In
this case, CHmay only send the hash of contents in SVM1 instead of
sending the whole SVM1 again.

• UI-3: The SUS compares SVMj with SVMj−1.

If the UAV swarm needs an update,

• UI-4: The SUS generates the metadata for the update.

For the single UAV mission, swarm-snapshot metadata are not
necessary.

• UI-5: The SUS sends ALL metadata to the CH.

5.4.2.2.2 Software Verification. In receiving the metadata from
the SUS, the CH performs the following:

• SV-1: CH verifies ALL metadata like Kuppusamy et al. (2018),
including swarm-snapshot.

CH downloads the software only when all metadata are
successfully verified.

• SV-2: CH verifies the software images.

If the software image is encrypted, CH only verifies the images in
an encrypted state, the same as Uptane.

• SV-3: CH sends metadata to each target, where the target is the
components in the CH and FDs.

The communication between the CH and the FD is carried out
here over a wireless channel. The channel is assumed to be protected
using any existing method (e.g., TLS). In receiving metadata from
CH, FD performs the following:

• SV-4: FD verifies all metadata, and when the metadata are
valid, FD downloads software images from the CH or directly
from the SUS.

The FD that can perform the update may directly download the
software image through SUS using the URL, which is performed to
reduce the energy consumption of the FD. In this case, FD can skip

FIGURE 10
Preparation for the UAV swarm software update. Reproduced from Al Blooshi and Han (2022), with permission from IEEE.
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downloading and verifying the software images for such UAVs in
steps SV-2 and SV-3.

• SV-5: The FD verifies the image with metadata (TARGET as in
Uptane).

After step SV-5, the UAV turns to the installation mode.

5.4.2.2.3 Installation. When the software image is validated, each
target is ready to install the software images. Once the installation is
completed, each UAV moves to the reporting phase. However, UAVs
that cannot perform the installation immediately, as explained in
Section 5.3.3, may postpone the update and move to the reporting
phase without installing the update.

5.4.2.3 Phase 3: Report
In the reporting phase, each component in a UAV would have

one of the following results: success, failure, or postponed.
Each component in FD constructs CVM and sends it to FD. In

collecting CVM from internal components, FD performs the
following:

• RT-1: Each FDi constructs DVMi and signs it with FDi’s
private key.

Although the DVMi is constructed by collecting new CVM from
the internal components, the postponed result does not require a new
CVM for constructing DVM.

• RT-2: Each FDi sends DVMi to the CH.
• RT-3: The CH constructs SVMj+1 with all collected DVMi and
sends it to the SUS.

Results of either success or postponed in DVMis are considered
completed software updates. However, SVMj+1, including a
postponed update, requires the resume of the update when available.

5.4.2.4 Managing postponed software update
If any drone version manifest DVMi has the result of postponed,

the CH may check the update applicability of the FD periodically or
by following predefined policies.

Upon the predefined policy, the CH may check the status of
postponed FDs if they can perform the update. If an FDi is still
unable to perform the update, it shall reply with postponed with the
detailed reason in DVMi. If available, the FDi resumes the update
from step SV-5 again. When the software installation is completed,
FDi constructs and sends the DVMi with success to CH.

As depicted in Figure 11, in step RT-3, CH constructs SVMj+2

only containing DVMis from the newly updated FDis and hash of all
up-to-date DVMs instead of all DVMs. Thus, the CH reduces the
size of the SVMs when handling the postponed update.

5.5 Evaluation

The proposed design by Al Blooshi and Han (2022) evaluated
whether the security model provides security and efficiency while
preserving the design fundamentals of Uptane.

5.5.1 Security evaluation of design
5.5.1.1 Security of swarm version manifest

As explained in Section 5.2.2.4, the SVM is introduced to
support the dynamic grouping, in addition to the renamed DVM
and CVM that are static per drone, the same as the vehicle case.

Security evaluation of DVM and CVM follows Karthik et al.
(2016) as they are identical, and this section focuses on the security
analysis of the SVM. Let the attackerAdv attempt to compromise the
SVM. As each manifest is signed by each owner, as depicted in
Figure 9, Adv, as a third-party attacker, may fail to modify the
existing SVM, as well as CVM and DVM, as in Karthik et al. (2016).

Adv may even try to modify SVM after compromising FD. It
may include the fraudulent EDAdv into the compromised SVM
SVMAdv, as the Adv can generate SVMAdv with a valid signature
using the private key of FD. However, the SUS detects the EDAdv by
comparing SVMAdv to INFODS from GS, as EDAdv is not listed in
INFODS.

In contrast, Adv may exclude DVM from SVMAdv to make the
SUS perceive incorrect members in the drone swarm. However, this
attack is only limitedly available when Adv generates SVMAdv for the
first time during the swarm establishment, as SUS checks the
number of DVMs with the previous SVMs during the mission.

Moreover, a significant reduction in DVMs may be detected by
SUS and GS as they impact the mission. In contrast, excluding a
small number of DVMs will be meaningless to operate the mission,
as hundreds or thousands of drones are deployed in large-scale
missions. To succeed in a meaningful attack,Adv has to compromise
FD before the preparation in Section 5.4.2.1.2 is completed and
exclude enough DVMs that impact the mission without being
detected.

For the metadata, although swarm-snapshot metadata are
included, the security model still follows Karthik et al. (2016).

5.5.1.2 Security over wireless connection in drone swarm
Since FD and ED are connected over a wireless channel, the

Adv may also perform Eavesdrop attack, Drop-request attack,
Slow retrieval attack, and Endless data attack between the FD
and ED.

5.5.1.2.1 Resiliency against Eavesdrop attack. As the metadata
and manifests are all signed, no additional security method other
than encrypting the channel is necessary. Encryption of the channel
can be achieved by any existing methods, such as TLS, as addressed
in Section 5.4.2.2.

5.5.1.2.2 Resiliency against Drop-request attack. The SVM
allows FD and SUS to know the number of drones in the drone
swarm by collecting DVMs from each drone.

5.5.1.2.3 Resiliency against Slow retrieval attack. Similar to
UPTANE (Karthik et al., 2016), all drones can detect and respond to
an attack bymonitoring the download speed of imagemetadata and image
binaries.

5.5.1.2.4 Resiliency against Endless data attack. When
downloading the image from the FD or SUS, the edge drone checks
the size of the software image in the CVMandDVM. In addition, the FD
verifies the size of the images in the CVM, DVM, and SVM.
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5.5.1.3 Managing postponed update
Al Blooshi and Han (2022) showed that the design supports the

case where some drones may be unable to perform the update while
the software update to the drone swarm is initiated, as in Section
5.3.3. FD and SUS can manage the postponed update by checking
the version number in SVM.

5.5.1.4 Resiliency against other known attacks
Al Blooshi and Han (2022) showed that the proposed

adaptations to Uptane allow us to address specific attacks
targeting UAV environments, as described in Section 5.2.2.

As every component in the drone environment verifies the
metadata, Rollback attack, Fast Forward attack, Partial bundle
installation attack, Arbitrary software attack, Mix-and-match attack,
and Freeze attack are mitigated, as shown in Karthik et al. (2016).

Other attacks targeting the wireless communications in the
drone swarm, including Eavesdrop attack, Drop-request attack,
Slow retrieval attack, and Endless data attack, are also mitigated,
as discussed in Section 5.5.1.2.

Thus, the customized Uptane for secure UAV software update
design remains resilient against the known attacks addressed by
Kuppusamy et al. (2018).

5.5.2 Efficiency of design

Al Blooshi and Han (2022) showed the efficiency of the design,
which is important in drone environments discussed in Section
5.2.2.1. The proposed design provides an efficient way of sending
SVMs, as depicted in Figure 11. Although the first report (SVM

FIGURE 11
Software update scenario. Handling the UAV’s postponed update. Reproduced from Al Blooshi and Han (2022), with permission from IEEE.

FIGURE 12
Comparison of size of manifests in 1) single UAV update, 2) initial UAV swarm update (v1), and 3) resuming postponed UAV swarm update for two
UAVs. Tested with 10 UAVs using Raspberry Pi 4. Reproduced from Al Blooshi and Han (2022), with permission from IEEE.

Frontiers in Communications and Networks frontiersin.org17

Han 10.3389/frcmn.2023.1122231

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2023.1122231


v1) after the initial software update has the whole data, the
second report (SVM v2) contains only the changed information.
The efficiency of the proposed design is also shown by
performing a simulation, as depicted in Figure 12. Postponed
update significantly reduces the overhead compared to the initial
update.

6 Conclusion

While the importance of the security of UAVs is increasing
as the applications and architecture of UAVs are becoming more
sophisticated, there are still many open security issues to be
mitigated in UAV environments, although many studies and
standardization activities are ongoing. In this paper, we showed
how the efforts to improve automotive security could be
deployed in UAV environments, as well as the case study of
employing the automotive software update security technology
in UAV environments. The results show that automotive
security could be deployed in UAV environments with
modification while still enabling rapid adoption, preserving
the security strength. We believe that employing automotive
security technology in UAVs could boost the rapid improvement
of the security of UAVs as automotive environments, UAVs have
many architectural similarities, and more case studies remain as
our future work.
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