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With the development of the Internet of Things, more and more sensors are

deployed to monitor the environmental status. To reduce deployment costs, a

large number of sensors need to be deployed without a stable grid power

supply. Therefore, on the one hand, the wireless sensors need to save as much

energy as possible to extend their lifetime. On the other hand, they need to

sense and transmit timely and accurate information for real-timemonitoring. In

this study, based on the spatiotemporal correlation of the environmental status

monitored by the sensors, status information estimation is considered to

effectively reduce the information collection frequency of the sensors,

thereby reducing the energy cost. Under an ideal communication model

with unlimited and perfect channels, a status update scheduling mechanism

based on aQ-learning algorithm is proposed. With a nonideal channel model, a

status update scheduling mechanism based on deep reinforcement learning is

proposed. In this scenario, all sensors share a limited number of channels, and

channel fading is considered. A finite stateMarkov chain is adopted tomodel the

channel state transition process. The simulation results based on a real dataset

show that compared with several baseline methods, the proposed mechanisms

canwell balance the energy cost and information errors and significantly reduce

the update frequency while ensuring information accuracy.
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1 Introduction

The Internet of Things (IoT) is an emerging technology that enables us to interact

with the surrounding environment effectively (Xu et al., 2014). In the next few years, it is

estimated that more than 75.44 billion (Fizza et al., 2021) IoT sensing devices will be

deployed in various environments, such as cities (Ahlgren et al., 2016), factories (Xu et al.,

2014), and farmland (Wolfert et al., 2017). In many IoT applications, it is necessary to

collect real-time information for the decision-making of various services to maintain the

normal operation of the environment. The age of information (AoI) (Yates and Kaul,

2019) can be used to quantify the timeliness of sensed information. However, most sensor

devices have no reliable energy source and need to be powered by batteries or rely on an

energy collection module to harvest energy from the surrounding environment. Thus,
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maintaining the normal operation of sensors for a long time

while simultaneously providing accurate and timely data for real-

time services is one of the main challenges in the development of

IoT technology (Abd-Elmagid et al., 2019).

With the dense deployment of sensor networks1, status

information collection from massive sensor nodes encounters the

problem of high energy cost and scarce wireless communication

resources. The sensor-collected data itself can be viewed as a kind of

network resource. The data collected at the same time or by the

devices located close to one another are usually strongly correlated.

Using the temporal and spatial correlation between status updates,

the status update information of a sensor can be estimated by using

the relevant information when the sensor does not update, to reduce

the transmission frequency and save energy. However, the reduction

of the status update frequency will reduce the accuracy of the

information received by the user. Therefore, how to quantify and

use the spatiotemporal correlation between status updates and

ensure information accuracy while reducing the overall energy

cost need careful investigation.

Regarding sensor status update control problems, the status

update actions of the sensor nodes are controlled through a

scheduling strategy to meet the users’ monitoring requirements

(Fei et al., 2010). The optimal strategy usually requires the global

statistical information of the network, which is impractical to be

obtained a priori. Furthermore, as the sensor nodes are densely

deployed, the computational complexity becomes unacceptable.

Reinforcement learning (RL), which involves learning the

optimal policy through interactions between the agent

(controller) and the environment without any statistical

information, is an effective machine learning method (Sutton

and Barto, 1998) to deal with the problem.

In the literature, many studies have focused on sensor status

update scheduling and the application of RL to the IoT. In the study

by Zhu et al. (2019), the authors designed an update scheduling

mechanism at the edge node and determined the data and cache size

that can minimize the freshness of the overall network information.

Yang et al. (2015) considered the problem ofminimizing the average

AoI of sensors under the condition of a given system energy cost.

Leng and Yener (2019) studied average AoI minimization in

cognitive radio energy harvesting (EH) communications. Abd-

Elmagid et al. (2020a) characterized the threshold-based

structure of the AoI-optimal policy in wireless-powered

communication systems while accounting for the time and

energy costs at the source nodes. In the study by Gindullina

et al. (2021), the authors investigated the policies that minimize

the average AoI and analyzed the structure of the optimal solution

for different cost/AoI distribution combinations. However, the AoI

only measures the freshness of information. For a user, information

accuracy is also important, which is different from information

freshness. Pappas et al. (2020) considered a system where external

requests arrive for status updates of a remote source, which is

monitored by an EH sensor. The results revealed some insights

about the role of caching in EH-based status updating systems.

Stamatakis et al. (2019) derived the optimal transmission policies for

an EH status update system. AMarkov decision process (MDP) was

formulated, and numerical simulations were run to show the

effectiveness of the derived policies for reserving energy in

anticipation of future states. In the study by Hribar et al. (2021),

the authors designed an algorithm for a battery-powered sensor

network and determined the optimal transmission frequency of the

sensor. Li et al. (2017) tried to solve the deployment problem in

wireless sensor networks. In the studies by Fang et al. (2017) and Li

et al. (2017), the authors proposed scheduling strategies for mobile

wireless sensor networks. Mitra and Khan (2013) implemented a

cluster-based routing protocol to reduce the energy cost of a single

sensor.

In the study by Li et al. (2018), based on the Q-learning

algorithm, the authors improved the spectrum utilization of

industrial IoT sensors. The algorithm proposed in the study

enables the sensor to learn and find the most appropriate

channel for transmission. Likewise, Chu et al. (2012) used

the Q-learning algorithm to design an enhanced ALOHA

protocol to minimize the conflict in the transmission

channel. Zheng et al. (2015) and Ait Aoudia et al. (2018)

analyzed how the EH sensor can manage the power supply

more effectively. An RL-based algorithm was proposed to

prevent power failure of the sensor. Abd-Elmagid et al.

(2020b) proposed a deep RL (DRL) algorithm that can learn

the age-optimal policy in a computationally efficient manner. In

the study by Hribar et al. (2019), the authors presented a control

policy for a system composed of battery-powered sensors to

balance the energy consumption and the loss of information

freshness. Different from the studies by Zhu et al. (2019) and

Hribar et al. (2019), we consider EH sensors that can collect

energy from the environment. EH sensors have been considered

in the study by Hatami et al. (2020), where the trade-off between

the overall information freshness and the sensors’ energy

consumption was studied. However, it is assumed that each

sensor updates its status independently. In practice, the status is

correlated in both space and time. Exploiting the correlation is

helpful to reduce energy costs and improve sensing accuracy. In

summary, there lacks the application of the spatiotemporal

correlation in EH sensor networks on the status update

policy design. The main works and contributions of this

manuscript are summarized as follows.

• [·] We consider a status update system with an edge node

collecting status information from a set of EH sensors and

transmitting it to users. Both ideal and nonideal channel

models are considered. We aim to minimize the weighted

cost of both energy cost and information error by exploring

the spatiotemporal correlation among sensors.1 The study was partially presented in IEEE WCSP (Han and Gong, 2021).
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• [·] For an ideal channel model with a perfect and unlimited

number of channels, we propose a Q-learning–based

algorithm to determine the optimal policy. For a

nonideal channel model with a fading and limited

number of channels, we propose a DRL-based algorithm

to determine the near-optimal policy while simultaneously

reducing the computational complexity.

• [·] We evaluate the performance of the proposed algorithms

via simulations using a real dataset. The results show that the

proposed algorithms effectively reduce the weighted cost

compared with the baseline values.

The rest of this manuscript is organized as follows. The

system model and problem formulation are presented in Section

2. Research on status update control under the ideal channel

model is presented in Section 3. Research on status update

control under the nonideal channel model is presented in

Section 4. A final summary is presented in Section 5.

2 System model and problem
formulation

We model and describe the scenarios and problems in this

section. First, we introduce the sensor network model to explain

how each component of the network operates. Second, we

introduce the sensors’ EH and consumption model. Then, the

spatiotemporal correlation of the status update and the

information error are quantified and modeled. At last, the

optimization problem is formulated.

2.1 Network model

We consider an IoT network that consists of multiple EH

sensors, multiple users, and an edge node as a gateway between the

users and the sensors, as shown in Figure 1. The sensors observe

the physical phenomena in different spaces and at different times,

such as temperature or humidity. A user may actively request for

the information collected by one of the sensors. We assume that

there is no direct link between the users and the sensors. Therefore,

the information collected by the sensors must be forwarded to the

users through the edge node. Assume the edge node can cover all

the sensors and all the users. The system is slotted with equal slot

length. The time slots are indexed by t ∈ {0, 1, 2, 3, . . .}.

The detailed model and actions of the users, edge node, and

sensors are as follows.

• There are multiple users to request sensors’ information.

The user in the system can be any person or machinery or

FIGURE 1
The system consists of multiple users, an edge node, and multiple energy harvesting sensors. The users make requests to the edge node. The
dashed lines with numbers show that the edge node commands sensor 1 to update and return the information to user 1. The solid lines with numbers
show that the edge node estimates the status information using cached data and returns the information to user 2.
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various upper applications of the IoT that need

environmental information. The user can request for the

information collected by any sensor in any time slot. The

users’ requests for sensors are random and independent of

each other. Let rk(t) ∈ 0, 1{ } denote whether the status

information from sensor k is requested at the beginning of

the time slot t. We have rk(t) � 1 if there are user requests

for sensor k and rk(t) = 0 otherwise. Assume that the

requested delivery is completed instantaneously and is

error-free.

• The edge node plays the role of a gateway to forward data

from the sensors to the users. The gateway is responsible

for the following actions:

1. Receive and respond to users’ requests. The edge node

receives the users’ requests in each time slot and delivers

the requested status information in response to the

users.

2. Request the sensor to update the status. The edge node

requests the sensors to send status updates to update its

cache. Even if there is no user request, the edge node can

do this when the cached data is outdated or the sensors

are of sufficient energy. Once the edge node is required

to update, the sensor must update the status as long as it

has enough energy and the channel state is good. Let

ak(t) ∈ 0, 1{ } denote whether the edge node commands

the sensor k to update in the time slot t. We have ak(t) �
1 if the gateway commands the sensor to update the

status and ak(t) � 0 otherwise.

3. Store the information from the sensors. There is a cache

at the edge node, which can store the status update of

the sensor. For sensor k, the edge node will only store its

latest status updates, and the old status updates will be

discarded.

4. Estimate status information based on correlations. The

edge node can use the cached information to estimate

the requested information using the correlation

between status updates. When the user requests

information from a sensor, the gateway, according to

the decision, can choose to return the estimated

information to the user. It is an effective way to

reduce information errors when the requested sensor

is of low energy to update its status.

• There are K sensors, indexed by k ∈ 1, 2, . . . , K − 1, K{ }.
Sensors are deployed to monitor the status information of

the environment. Let xk denote the location of the sensor k.

Let fk(t) denote the status information collected by the

sensor k in the time slot t. When the edge node does not

require its status update, the sensor will not collect

information. Let uk(t) ∈ 0, 1{ } denote whether the sensor

k updates the status to the edge node in the time slot t. We

have uk(t) � 1 if the sensor k collects informationfk(t) and
sends it to the edge node and uk(t) � 0 otherwise.

2.2 Energy model

Each sensor has a battery with limited capacity. The energy

harvest module of the sensor can harvest energy from the

surrounding environment and store the energy in the battery.

At the beginning of each time slot, if the sensor receives a request

of sending a status update, it consumes a certain amount of

energy to collect environmental information and send it to the

edge node when it has enough energy.

The sensor k has a battery capacity of BK; the energy level of

sensor k in the time slot t is expressed as

bk(t) ∈ 0, 1, . . . , BK−1, BK{ }. Let gk(t) denote the energy cost

of sensor k for collecting and sending the status update in the

time slot t. The energy cost is different in different channel states.

In the ideal channel model, there is a constant energy cost for

status collection and transmission. While in the nonideal channel

model, the energy cost depends on the channel states. Sensor k

costs Ek(t) units of energy in the time slot t. The value of Ek(t) is
affected by ak(t) and bk(t), expressed as follows:

Ek t( ) � gk t( ), if ak t( ) � 1 and bk t( )≥gk t( )
0, if ak t( ) � 0 or bk t( )<gk t( ) .{ (1)

Let hk(t) ∈ 0, 1{ } denote the amount of energy harvested by

sensor k in the time slot t. The energy level of the sensor in the

next time slot t + 1 depends on the sensor’s action and its EH

result in the time slot t. The energy level bk(t + 1) can be

expressed as follows:

bk t + 1( ) � min bk t( ) + hk t( ) − Ek t( ), Bk{ }. (2)

2.3 Information correlation and error
model

AoI is an indicator that can be used to quantify the freshness

of information. It is defined as the time passed since the latest

received information was generated. Let Δk(t) denote the AoI of
the latest information updated by the sensor k. If the sensor k

updates the status during the current slot, the AoI drops to a

certain value determined by the status transmission time. Since

the value can be viewed as a constant bias with little impact on

decision-making, we assume that it equals 0 for simplicity.

Without a status update, the AoI evolves as

Δk(t) � Δk(t − 1) + 1. Therefore, Δk(t) is related to uk(t) and

can be expressed as follows:

Δk t( ) � 1 − uk t( )( ) Δk t − 1( ) + 1( ). (3)

The difference between the generation times of the latest

updates from two sensors i and j can be calculated in terms of AoI

as follows:

Δij t( ) � Δi t( ) − Δj t( )∣∣∣∣ ∣∣∣∣. (4)
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Equation 4 represents the temporal correlation of two status

updates. A smaller value indicates a strong correlation and vice

versa. It seems Δij(t) and Δji(t) have the same value and

meaning.

The K sensors observe time-varying phenomena at K fixed

locations x1, . . . , xK{ }. Each sensor can collect environmental

information in any time slot. Let fk(tk) denote the last status

update successfully collected and sent by the sensor k. The status

cached at the edge node can be expressed as a K dimensional

vector y � [f1(t1), f2(t2), . . . , fK(tK)]. In the time slot t, the

real environmental information at xk is I(xk, t). If the user

requests I(xk, t) in the time slot t but the sensor does not

collect and send it, the edge node can use the correlation

among information to estimate I(xk, t) using the cached y

and then send the estimated information to the user.

According to the separable covariance model described by

Cressie and Huang (1999), which was proved and used by Stein

(2005), the covariance between two pieces of information from

the locations xi and xj is expressed as follows:

cij � exp −θ1dij − θ2Δij t( )( ), (5)

where dij is the Euclidian distance between any two sensors i and j

and θ1 and θ2 are scaling parameters of space and time,

respectively. The covariance is used to quantify the correlation

between status information in time and space.

The edge node can estimate the correlated status information

using the linear minimum mean squared error estimation method

based on the cached information y and covariance model. This

method has been used to estimate the status information in the

studies by Hatami et al. (2020) and Schizas et al. (2008). Let Î(xk, t)
denote the estimation value of the real status information at xk in the

time slot t, which can be expressed as follows:

Î xk, t( ) �∑K
k�1

wkfk tlk( ), (6)

where wk, k = 1, . . ., K are the estimator weights. The weight

vector w = [w1, . . ., wK] can be obtained as follows:

w � CYY( )−1CYZ. (7)

CYY, CYZ are covariance matrices obtained by Eq. 5:

CYY �
c11 / c1K
..
.

1 ..
.

cK1 / cKK

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦;CYZ �
c1k
..
.

cKk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

When the edge node does not obtain the sensor’s status

update, it can send the estimated value to the user. In this case,

the user experience will decline because of the deviation between

the estimated value and the real value.We use the relative error to

measure the loss of information accuracy caused by sending the

estimated value. Let ek(t) denote the error between the

information sent to the user and the real-time information at

xk in the time slot t. If the sensor updates information to the edge

node in the time slot t, we have ek(t) � 0. Otherwise, we have

ek(t)> 0. In summary, ek(t) is expressed as follows:

ek t( ) �
0, if uk t( ) � 1

Î xk, t( ) − I xk, t( )
I xk, t( )

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣, if uk t( ) � 0

.

⎧⎪⎪⎨⎪⎪⎩ (9)

2.4 Problem formulation

According to the analysis of Sections 2.2 and 2.3, the impacts

of information updating on the system performance are two-

folds. On the one hand, sensors updating the status will consume

energy, but the status information is fresh. On the other hand,

estimating the status information based on the cache without

updating the status from sensors can save energy, but the

accuracy of the information may reduce. Therefore, how to

control the update frequency of the sensors to balance the

energy cost and information accuracy cost of the whole

system needs to be carefully studied.

The energy cost can be quantified by the energy consumed by

the whole system. The energy consumed by a sensor in a time slot

can be obtained by Eq. 1. The information accuracy cost can be

quantified by the error between the estimated information and real

information as in Eq. 9. The objective of this study is to optimize the

decision-making policy to consider these two costs at the same time.

Therefore, we consider a weighted sum cost function as follows:

Lk t( ) � βEk t( ) + 1 − β( )rk t( )ek t( ), (10)

where β ∈ [0, 1] is a weight parameter that describes the relative

importance of the two costs.

The overall cost of the whole sensor network in a period of

time T can be expressed as follows:

∑T
t�0
∑K
k�1

Lk t( ). (11)

The goal of our study is to determine the optimal policy π* to

minimize the total cost. The problem can be expressed as follows:

FIGURE 2
The actions of the edge node in each time slot can be divided
into three parts: making decisions, receiving sensor status updates
or information estimation, and sending information to users. The
action of receiving the users’ requests is included in the
decision-making stage.
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πp � min
π
∑T
t�0
∑K
k�1

Lk t( )|π[ ]. (12)

In the following sections, we consider two different channel

models: ideal channel and nonideal channel models. In the ideal

channel model, we assume that the number of channels is infinite,

and each channel can deliver data without error by a constant

transmit power. In this case, the sensors are independent of each

other. Therefore, it is equivalent to minimizing the total cost of

each sensor. In the nonideal channel model, there is a limited

number of channels, and each channel experiences fading over

time. In this case, sensors’ actions correlate with one another and

the problem is of high complexity. We will solve these two

problems based on two different RL algorithms.

3 Status update control policy based
on Q-learning in the ideal channel
model

In this section, by transforming the status update control problem

under the ideal channel model into a MDP, a sensor scheduling

control policy based on a Q-learning algorithm is designed. First, we

introduce the basic concepts and theories of RL. Then, we explain the

ideal channel model and describe how to use MDP to define the

decision-making problem. At last, we design and implement the Q-

learning–based scheduling algorithm.

3.1 Q-learning algorithm

The Q-learning algorithm is a value-based model-free RL

algorithm that can adapt to the unknown environment and

update the policy in real-time. Here, Q is the state-action

value function. The main idea of the Q-learning algorithm is

to build a Q-table to store the Q values of all the “state-action”

pairs. When selecting an action in a certain state, we find the

action with the largest Q value according to the Q-table to

maximize the reward or minimize the cost.

The main goal of Q-learning is to update the values in the Q-

table through iterative learning. The update formula of theQ value is

Q s, a( ) ← Q s, a( ) + α Ra
s→s′ + γmax

a′
Q s′, a′( ) − Q s, a( )( ),

(13)

where s′ is the next state reached by action a executed under state
s. During the update process, Ra

s→s′ + γmaxa′Q(s′, a′) is regarded
as the real Q value of executing action a under the current state s.

Take the value of Q(s, a) as the estimated Q value of the current

state-action pair. The value Q is updated as the value of the

previous Q plus the learning rate γmultiplied by the gap between

the optimized Q function and the current one. The value in the

Q-table is iteratively updated through the above Q value update

formula. When the value updated in the Q-table is gradually

stable, i.e., the value in the Q-table no longer changes or the

difference of eachange is less than a specified threshold, the

optimal policy is obtained. That is, we can select the action for a

given state by maximizing the Q value according to the Q-table.

3.2 MDP modeling in the ideal channel
model

In the ideal channel model, we assume that the

communication channel between the sensor and the edge

node is perfect. There is no fading and delay in transmission,

and the channels among sensors are independent of each other.

There will be no channel competition, any number of sensors can

send the status update to the edge node in each time slot, and all

of them can be sent successfully.With the ideal channel, the

decision-making process, as shown in Figure 2, is independent

for each sensor. The edge node will make a decision for each

sensor in a time slot, making a total of K decisions. If the edge

node requires a status update from a sensor and the sensor has

enough energy, it will update the status, and the edge node will

receive the status update. If the user sends a request but the edge

node cannot obtain the latest status from the corresponding

sensor, the edge node will estimate the information. The edge

node will return the latest status update or the estimated

information to the user at the last stage of each time slot.

Our update control problem can be reformulated as an MDP

problem. The MDP model can be defined as a tuple:

Sic,Aic,P ic s t + 1( )|s t( ), a t( )( ),L t( ), γ{ }, (14)

where

• The state set Sic is composed of the states of all sensors

observed by the edge node at the beginning of all time slots.

Let s(t) ∈ Sic denote the state set of all sensors at the time

slot t. We have s(t) � {s1(t), s2(t), . . . , sK(t)}, where sk(t)
denotes the state of sensor k, which can be expressed as

follows:

sk t( ) � �bk t( ), ek t( ){ }. (15)

The edge node only possesses the sensors’ energy state of the

last update. Assume that sensor k sends the latest information in

slot ti; then, we have �bk(t) � bk(ti), ti < t.

FIGURE 3
Relationship between channel state and transmission power.

Frontiers in Communications and Networks frontiersin.org06

Han and Gong 10.3389/frcmn.2022.933047

https://www.frontiersin.org/journals/communications-and-networks
https://www.frontiersin.org
https://doi.org/10.3389/frcmn.2022.933047


• The action set Aic is composed of the actions chosen by the

edge node. The actions chosen by the edge node at time slot t

for all sensors is denoted by a(t) ∈ A and

a(t) � a1(t), a2(t), . . . , aK(t){ }, where ak(t) ∈ 0, 1{ }
indicates whether the edge node requests an update from

sensor k in slot t.

• Pic(s(t + 1)|s(t), a(t)) is the state transition probability

matrix. Each component represents the state transition

probability from slot t to t + 1 under the given action.

• L(t) is the cost caused by the system taking action a(t) in

the state s(t). It is the sum of the costs of each sensor in the

system, defined as follows:

L t( ) �∑K
k�1

Lk t( ). (16)

• γ ∈ (0, 1) is a discount factor so that the long-term sum

cost converges. Thus, γ is less than 1 to ensure that the cost

is bounded.

The edge node selects an action in each time slot according to

the state and calculates the cost through the possible energy

consumption and information error caused by the action. Policy

π � π(a(t)|s(t)) is the mapping from state to action, which

defines the probability of selecting various possible actions in a

given state. When the edge node uses different policies to make

decisions, the corresponding cumulative costs are also different. In

this problem, the long-term cumulative loss is expressed as follows:

Ln �∑∞
t�0

γtL n + t + 1( ). (17)

The goal of solving this problem is to determine the optimal

policy π* to minimize the cumulative cost. According to the

policy π*, the edge node can select the best action for the system

in each time slot, so as to minimize the cumulative cost, that is,

πp � argmin
π

E Ln|π[ ]. (18)

3.3 Design of scheduling algorithm based
on Q-learning under the ideal channel
model

In this section, the edge node’s decision for each sensor is

independent, i.e., the decision for one sensor will not affect the

decision for the other sensors. For a single sensor, because the

action selection has a Markov property, it only depends on the

state in the current time slot. Therefore, solving the total cost

minimization problem of the whole system can be equivalent to

solving the cost minimization problem of each sensor in each

time slot.

The sampled state in the Q-table can be expressed as follows:

sl � sl1, sl2, . . . , slK( ), (19)
where slk denotes the corresponding state component of

sensor k in this state. Therefore, sl can be further expressed

as follows:

sl � �bl1, el1, �bl2, el2, . . . , �blK, elK( ). (20)

The sampled action in the Q-table can be expressed as

al � al1, al2, . . . , alK( ), (21)

where alk denotes the action decision made by the edge node to

the sensor k in a certain state.

In the design and implementation of the algorithm, the

ϵ-greedy strategy is used to balance the relationship between

“development” and “exploration.” Development means that in

the process of RL, the agent selects the best action from the

learned empirical knowledge, i.e., the experienced “state-action”

pair, according to the principle of maximizing the action value.

Development fully utilizes the old knowledge. Exploration is

when the agent selects unknown “state-action” pairs in addition

to the old knowledge, i.e., when reaching a state, it selects random

unknown actions. The purpose of exploration is to prevent the

agent from falling into the local optimal solution. Without

exploration, the agent only uses the empirical “state-action”

pair for decision-making and only selects the action that has

been selected in a state, which is not necessarily the global

optimal. In a certain state, the unknown action may bring a

greater reward. Therefore, randomly selecting unknown actions

with the probability of epsilon and at the same time selecting the

actions with the greatest action value at hand with the probability

of 1 − ϵ can well prevent the policy from falling into the local

optimal solution. In the beginning, because the edge nodes are

unfamiliar with the environment, we set a large ϵ to let the edge

node randomly select actions to explore the environment. As the

number of iterations increases, the edge node is more aware of

the environment. By lowering ϵ, the edge node is more inclined to

use experience to choose the optimal action. The Q-learning

algorithm is summarized as Algorithm 1.

Algorithm 1.Q-learning algorithm to obtain the optimal policy.
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4 Status update control policy based
on DQN in the nonideal channel
model

Different from the ideal channel model in the previous

section, the nonideal channel model studied needs to consider

the influence of the number of channels and the channel state of

the sensor on the decision-making of the edge node. First, we

describe the nonideal channel model and the channel state

transition model. Then, we model the decision problem as an

MDP problem. At last, we design and implement the scheduling

algorithm based on DQN.

4.1 Nonideal channel model

In the nonideal channel model, we assume that there is

channel competition among the sensors, and the channel gain

changes between time slots and remains constant within one time

slot. We utilize a block fading model to describe the time-varying

channel.

With the nonideal channel, there are two feasible protocols

on when and how to detect the channel state:

1. Obtain the channel state by the status update (OCSSU). In

each time slot, the edge node makes a decision and schedules

the corresponding sensor to update the status. The sensor

receives the scheduling information and estimates the channel

state through this communication interaction. When the

sensor updates the status, it will feed back the channel

state information to the edge node as well. When receiving

the status update and the channel state feedback, the edge

node updates the stored channel state for subsequent learning

and decision-making.

2. Obtain the channel state by channel detection (OCSCD).

Different from the OCSSU, a channel state acquisition

process is added. In particular, at the beginning of each

time slot, the edge node communicates with each sensor to

obtain the channel state. With the obtained channel states, the

edge node then makes the decision following the same process

as that followed in the OCSSU.

The advantages and disadvantages of the two different

schemes are as follows. With the OCSSU, the edge node

obtains the channel state only after the sensor updates the

status information, which reduces the number of

communications and energy consumption. Through the

interaction with the sensors, the edge node can continuously

learn and master the random change characteristics of the

channel state. Then, it can speculate on the possible future

channel states of the sensors for the upcoming decision-

making. However, the inferred channel state may be different

from the real state, which may degrade the performance. With

the OCSCD, the edge node obtains the exact channel state

information from all sensors with the additional cost of

detection energy consumption. In each decision-making, the

accurate grasp of channel state information is conducive to

the edge node to make better decisions but at the same time

consumes additional time and energy. Moreover, the

performance of the OCSCD is directly affected by the energy

cost of channel detection. For the two different channel state

detection schemes, we will verify their impact on decision-

making through experiments.

When making decisions in the nonideal channel model, due

to the channel competition between sensors, it is impossible to

make independent decisions for each sensor. Therefore, it is

necessary to consider the overall scheduling. The K sensors share

J channels for communication, where J ≤ K. The transmission

power required by the sensor to transmit information under

different channel states is different. The channel state model and

the transition probability of the channel state between adjacent

time slots are described below.

Assuming that each status update of the sensor needs to

transmit information with a size of M bits within the time of tdt,

the information rate can be expressed as follows:

r � M

tdt
. (22)

According to the Shannon formula, the information rate rmax

can be expressed as

rmax � B log2 1 + P

N0
( ), (23)

where B is the channel bandwidth, P is the signal power, andN0 is

the noise power. Tomeet the data transmission requirements, the

channel status needs to satisfy rmax ≥ r; otherwise, it will not be

able to transfer all data within a given time. In this study,

assuming that the bandwidth is constant, the information rate

of the channel is related to the transmission power and the noise

power. Based on Eq. 23, we can obtain

P � 2
rmax
B − 1( )N. (24)

To achieve the information rate required for transmission in

different channel states, the sensor needs to transmit data with

different transmission power. Following Liu et al. (2005), we

consider a total of N = 6 channel states. As shown in Figure 3, in

the case of state 1 with the best channel, the sensor only needs to

complete the data transmission with the unit power of p. When

the channel state becomes bad, the transmit power increases. In

the case of state 6 with a very bad channel, the required energy for

transmission is infinitely large. Therefore, it is considered that the

sensor will not transmit data in the 6th channel state. We fix the

information rate and substitute the boundary power value among

states into Eq. 24 to obtain the boundary value of the signal-to-

noise ratio corresponding to each state. The boundary signal-to-
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noise ratio of each state is defined as γn, when the signal-to-noise

ratio is in the interval (γn−1, γn], the channel state is n, and the

sensor needs to update the status with the corresponding

transmission power.

In this study, the Nakagami-m channel fading model is used

to describe the distribution of signal-to-noise ratio γ (Stüber and

Steuber, 1996). The signal-to-noise ratio of each time slot follows

the gamma distribution with the probability density function

pγ γ( ) � mmγm−1

�γmΓ m( ) exp −mγ

�γ
( ), (25)

where �γ ≔ E{γ} is the average signal-to-noise ratio,

Γ(m) ≔ ∫∞
0
tm−1 exp(−t)dt is the gamma function, and m is

the fading parameter, usuallym≥ 1
2. The reason for choosing this

model is that it contains a large class of fading channels. For

example, the Rayleigh channel model is a special case when m =

1. From Eq. 25, the probability that the channel is in a certain

state is

Pr n( ) � ∫γn

γn−1
pγ γ( )dγ

�
Γ m,

mγn−1
�γ

( ) − Γ m,
mγn
�γ

( )
Γ m( ) ,

(26)

where Γ(m, x) ≔ ∫∞
x
tm−1 exp(−t)dt.

The finite state Markov channel model is adopted to describe

the channel state transition. It is assumed that the state transition

will only occur between adjacent states, and the probability of

transition exceeding two continuous states is 0 (Razavilar et al.,

2002), i.e.,

Pl,n � 0, |l − n|≥ 2. (27)

The transition probability between adjacent states can be

expressed as follows:

Pn,n+1 � Nn+1Tf

Pr n( ) , if n � 0, . . . , N − 1

Pn,n−1 � NnTf

Pr n( ), if n � 1, . . . , N
(28)

where Tf is the ratio of packet size and symbol rate of transmitted

data andNn is the crossover rate of stateN up or down, which can

be estimated by the following formula (Yacoub et al., 1999).

Nn �
������
2π

mγn
�γ

√
fd

Γ m( )
mγn
�γ

( )m−1
exp −mγn

�γ
( ), (29)

where Fd is the Doppler frequency. The probability that the

channel remains in the same state in adjacent time slots is

Pn,n �
1 − Pn,n+1 − Pn,n−1, if 0, < , n<N
1 − P0,1, if n � 0
1 − PN,N−1, if n � N

.
⎧⎪⎨⎪⎩ (30)

At last, the transition probability of the state follows the

matrix:

Pc �

P0,0 P0,1 / 0

P1,0 P1,1 P1,2
..
.

0 1 1 0
..
.

PN−1,N−2 PN−1,N−1 PN−1,N
0 / PN,N−1 PN,N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (31)

4.2 MDP formulation for the nonideal case

The Q-learning algorithm needs to store the Q value of

the “state-action” pair, but the state space and the action space

of this problem are extremely large, so the solution based on

the Q-learning algorithm is no longer applicable to this

problem. By training the network parameters and directly

inputting the “state-action” pair in a network, the agent can

estimate the Q value using the fitted action value function

and select the action with the largest Q value to make a

decision directly. Therefore, for the problem under the

nonideal channel model, a sensor scheduling

control algorithm will be designed and implemented based

on DQN.

Our update control problem can be reformulated as an MDP

problem as well. The MDP model can be defined as a tuple:

Snc,Anc,Pnc s t + 1( )|s t( ), a t( )( ),L t( ), γ{ }, (32)

where

• The state set Snc is composed of the states of all sensors

observed by the edge node at the beginning of each time

slot. Let s(t) ∈ Snc denote the state at the time slot t. s(t)
consists of four parts:

1. Requests from users at the beginning of the time slot t

expressed as

r t( ) � r1 t( ), r2 t( ), . . . , rK t( )( ). (33)

2. The power level of the sensors known at the edge node at the

beginning of the time slot t expressed as

�b t( ) � �b1 t( ), �b2 t( ), . . . , �bK t( )( ). (34)

3. The AoI of each sensor status update stored at the edge node

at the beginning of the time slot t expressed as

Δ t( ) � Δ1 t( ),Δ2 t( ), . . . ,ΔK t( )( ). (35)

4. The channel states of the sensors. If the historical state

information is adopted based on the OCSSU, the channel

state is expressed as
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G t( ) � �G1 t( ), �G2 t( ), . . . , �GK t( )( ). (36)

Only when the edge node communicates with the sensors can

it know the real channel state. Denote Gk(t) as the real channel
state of the communication between the time slot t sensor and the

edge node; then, �Gk(t) can be expressed as

�Gk t( ) � Gk t − 1( ), if uk t − 1( ) � 1
�Gk t − 1( ), if uk t − 1( ) � 0

.{ (37)

If channel state detection is performed at the beginning of

each time slot as the OCSCD, the channel state is expressed as

G t( ) � G1 t( ), G2 t( ), . . . , GK t( )( ). (38)

Therefore, under the nonideal channel model, the state of

each time slot in the decision problem can be expressed as a

matrix composed of four K dimensional vectors, expressed as

follows:

s t( ) �
r t( )
�b t( )
Δ t( )
G t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (39)

• The action setAnc is composed of the actions chosen by the

edge node. The actions chosen by the edge node at the time

slot t for all sensors is denoted by a(t) and defined as

a t( ) � a1 t( ), a2 t( ), . . . , aK t( )( ). (40)

• The state transition probability matrix

Pnc(s(t + 1)|s(t), a(t)), the cost function L(t), and the

discount factor γ ∈ (0, 1) are similar to those presented in

Section 3.2.

The optimization goal of this problem is also to find the

optimal policy π* so that the edge node can minimize the long-

term cumulative cost of the system through the guidance of this

policy.

4.3 Design of scheduling algorithm based
on DQN under the nonideal channel
model

The Q-learning algorithm requires a Q-table to store the

value functions of all states and possible actions. The size of

the state space and action space affects the temporal and

spatial complexity. The state space under the nonideal

channel model is infinitely large. In addition, compared

with the independent decision of each sensor under the

ideal channel model, the nonideal channel model needs to

make a unified decision for the entire sensor network, which

will lead to higher complexity. By fitting the action value

function with a deep neural network, the decision-making

problem with the high-dimensional state space and action

space can be effectively solved.

DQN is an RL algorithm that combines neural networks andQ-

learning algorithms. In the Q-learning algorithm, the agent can

select the optimal action through the Q-table. For simple systems

with small state space and action space, Q-learning is an effective

method. However, for the problem with infinitely large state/action

space, the Q-learning algorithm encounters dimensionality. For

example, for training a computer to play an Atari game (Mnih

et al., 2013), image data need to be inputted as a state and a

combination of actions including up, down, left, and right will be

outputted. The input state is a picture with the size of 210×160

pixels. Each pixel has 256 possible values. Then, the size of the state

space is 256210,×,160. It is impractical to store all the states in a table.

Thus, the value function approximation is introduced so that the

state-value pair can be well modeled by a network with a relatively

small number of parameters, i.e.,

Q s, a( ) � f s, a, w( ).

Once the parameters w are optimized and determined for a

given form of function f, we can directly evaluate Q(s, a) by

entering state s and action a, without storing and iterating the

value of Q for all states and actions.

The required neural network is realized by Pytorch (Paszke

et al., 2019), and the network structure is shown in Figure 4. The

input form is a vector v � (s, a), expressed as

v � r t( ), �b t( ),Δ t( ),G t( ), a t( )( ). (41)

The output is the corresponding Q value of the “state-action”

pair of the input. The loss function of the Q network is

L θ( ) � 1
n
∑n
i�1

r + γmin
a′

Q̂ st+1, a′; θ′( ) − Q st, a; θ( )( )2, (42)

Then, the gradient of the formula (Eq. 42) is updated through the

iterative formula:

θt+1 � θt + α∇θL θt( ), (43)
where α is the learning rate. The weights of the Q network are

updated accordingly.

The algorithm is summarized as Algorithm 2.

Algorithm 2. Obtaining the optimal policy based on DQN

under the nonideal channel model.

Through Algorithm 2, a Q value fitting network can be

built and trained. With the fitting network, each time the edge

node makes a status update control decision under a certain

system state, it obtains a state-action pair. Traversing the

action space, it obtains all possible “state-action” pairs. By

inputting each “state-action” pair into the fitting network, we
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can obtain the corresponding Q value through the network

output. The edge node follows this decision-making method to

ensure the minimum system cost in each time slot, so as to

ensure the minimum long-term cumulative cost with the

optimal policy.

5 Simulation result

In this study, we evaluate our proposed method using the

dataset provided by the Intel Berkeley Research laboratory

(Bodik et al., 2004). The dataset contains the real location and

the measured temperature of 45 sensors. We use their real

location information and measured temperature information

for simulation. In this study, we compare its performance

with those of several conventional status update control

policies to show the superiority of the algorithm proposed in

this study. We compare with the following baseline policies:

• Random: The edge node will select a random action ak(t) ∈
{0, 1} in each time slot.

• Greedy: In any time slot, when the user requests

information, i.e., rk(t) = 1, the edge node will ask the

sensor to update the information, i.e., ak(t) = 1.

• Threshold: When the user requests information I(xk, t), the

edge node sends a status update request to the

corresponding sensor only when Δk(t) is greater than a

given threshold.

In each time slot, the probability of harvesting a unit of

energy is denoted by gk, i.e., gk = Pr{hk(t) = 1}. In addition, the

user request probability is denoted by pk, i.e., pk = Pr{rk(t) = 1}.

For each method, the average cost is defined as

Lavg � 1
KT

Ln t( ), (44)

FIGURE 4
We employ the network with three hidden layers, eachwith 24 neurons. We use theMSE loss function and Adamoptimization algorithm to train
network weights. We apply the ReLU activation function for the hidden layers and the linear activation function for the output layer.

TABLE 1 Simulation parameters of the nonideal channel model.

Parameter Value

number of time slots T 5 × 107

number of sensors K 10

user request frequency pk 0.3

energy harvesting frequency gk 0.5

weight coefficient β 0.6

discount factor γ 0.99

learning rate α 0.01

exploration rate ϵ ϵ(t) � 0.02 + 0.98e−0.01t

FIGURE 5
Average cost of the Q-learning algorithm and baseline
policies with the ideal channel model.
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where Ln(t) is obtained from Eq. 16.

5.1 Ideal channel case

We use the parameter settings shown in Table 1 to verify the

performance difference between the algorithm based Q-learning

proposed in Section 3.3 and the baseline policies.

Figure 5 is the comparison of the average cost of the Q-

learning algorithm and the baseline policies with the ideal

channel model. It can be seen that the proposed algorithm

can converge and is significantly better than other baseline

policies. The average cost caused by the threshold policy is

slightly lower than that caused by the greedy policy, but both

strategies are significantly better than the random policy. Our

proposed Q-learning algorithm results in a 1.5-times lower cost

than that produced by the threshold policy. At the beginning of

learning, the performance of the proposed policy is similar to that

of the random policy but gradually increases to a lower level. This

changing trend also meets the assumption of the ϵ-greedy
strategy, that is, more random actions are selected at the

beginning of learning and experience is then used to

continuously improve the policy.

As shown in Figure 6, the influence of the weight coefficient

on the average cost can be observed by changing the weight value

β in the cost function. The larger the value of β, the greater is the

corresponding average cost. The reason is that in the cost

function defined in this study, the energy cost is not strongly

related to the user request. If there is no user request and the edge

node commands the sensor to update the status, there will be

energy cost without information accuracy cost. When a user

request occurs and the status of the sensor is updated, it will also

result in energy consumption cost without information

accuracy cost.

To study the influence of different user request frequencies

and EH frequencies on the policy proposed in this study, we fix

the EH frequency (gk(t) � 0.3 and gk(t) � 0.7) and change the

user request frequency and obtain the results as shown in

Figure 7A. When the user request frequency is constant

(pk(t) � 0.3 and pk(t) � 0.7) while the EH frequency changes,

the result is as shown in Figure 7B. It can be seen that a higher EH

frequency and lower user request frequency can reduce the

average cost. A high EH frequency means that the sensor has

enough energy to update. On the contrary, when the sensor does

not have enough energy to update, it will lead to a higher average

cost of the system. At the same time, a lower user request

frequency means a lower interaction frequency between the

user and the system, which also indicates a lower average

cost. In general, the algorithm proposed in this section has

better performance in the case of fewer user requests and

more energy.

FIGURE 6
Average cost of the system under different weight
coefficients β.

FIGURE 7
Average cost under different user request frequencies and energy harvesting frequency: (A) shows the average cost caused by the same energy
harvesting frequency and different user request frequencies and (B) shows the average cost caused by the same user request frequency and different
energy harvesting frequencies.
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We also study the differences in energy cost and information

accuracy between the proposed method and the baseline policies.

As shown in Figure 8, the ratio of energy consumed by the status

update to the total energy and the ratio of user request

information with an accuracy of 95% to the total user request

information are the best in both aspects. It can be seen that the

greedy policy will cause a lot of energy costs due to the high

update frequency. However, due to the large energy cost,

sometimes there is not enough energy to respond to the user’s

request. Hence, it results in high information accuracy errors.

The threshold policy performs well in energy saving. However,

due to its low update frequency, the threshold policy results in

more information errors. Because the proposed method will use

the cached information to estimate the user’s request

information, it can reduce the energy cost and ensure

information accuracy.

5.2 Nonideal channel case

By implementing the model described in Section 4.1 and

simulating with the parameters mentioned in Table 2, the

transition probability matrix between the channel states of the

nonideal channel model can be obtained as follows:

P �

0.938 0.062 0 0 0 0
0.176 0.649 0.175 0 0 0
0 0.152 0.712 0.136 0 0
0 0 0.363 0.300 0.337 0
0 0 0 0.221 0.590 0.189
0 0 0 0 0.058 0.942

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (45)

The simulation parameters of the experiment are shown in

Table 3.

As shown in Figure 9, the loss function value of training

gradually converges.

Figure 10 shows the comparison of the average cost between

the DQN-based algorithm and several baseline policies. It can be

seen that with sufficient training rounds, the results of DQN can

converge and are better than those of the baseline policies. In

addition, the performance of two different channel detection

FIGURE 8
Proportion of sensor energy cost and proportion of
information sent to users with an accuracy of more than 95%.

TABLE 2 Simulation parameters of the nonideal channel model.

Parameter Value

average signal-to-noise ratio �γ 15 dB

Doppler frequency fd 10 Hz

slot length per frame Tf 2 ms

number of channel states N 5

fading parameters m 1

number of bits per packet M 1,080

TABLE 3 Simulation parameters of the ideal channel model.

Parameter Value

memory buffer size 2000

samples per batch 250

target network parameter update cycle 125

number of sensors K 10

user request frequency pk 0.3

energy harvesting frequency gk 0.5

weight coefficient β 0.6

discount factor γ 0.99

learning rate α 0.01

exploration rate ϵ ϵ(t) � 0.02 + 0.98e−0.01t

FIGURE 9
Value of the loss function.
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schemes is compared. The results show that the energy cost of

each channel detection has a great impact on the two schemes.

When the energy cost of each channel detection is small (ED = 1),

the decision-making method of channel detection at the

beginning of each time slot is slightly better than the one of

using a historical channel state. It is advantageous to use the latest

channel state information for decision-making, but it will cause

more energy costs because all sensor channel states need to be

detected at the beginning of each time slot. Therefore, compared

with the use of historical channel states, channel state detection at

the beginning of each time slot shows better performance with

low channel detection energy cost. With the increase in the

energy cost of channel detection, the average cost of the OCSCD

for channel detection at the beginning of each time slot becomes

greater than that of the OCSCD using historical channel state

information. When the energy cost of channel detection

continues to increase to 3, the average cost of channel

detection at the beginning of the time slot is even greater than

that of the baseline policies. This indicates that when the energy

cost of channel detection is large, using the OCSCD scheme is

unfavorable for decision-making. Channel detection at the

beginning of each time slot may consume a large amount of

energy, so that the sensor does not have enough energy to update

the status.

Figure 11 shows the information accuracy cost and energy of

the proposed method and baseline policies under different user

request frequencies. It can be seen that the algorithm proposed in

this study is optimal.

This study also presents statistics on the channel usage

frequency of each policy under different user request

FIGURE 10
Comparison of performances between different policies. DQN (historical channel state) denotes the historical channel state used in decision-
making; DQN(ED = x) denotes that channel state detection is performed at the beginning of each time slot; and x units of energy are consumed for
each channel detection. (A) shows the comparison between the DQN (historical channel state) algorithm and baseline policies. (B) shows the
comparison of two different channel state detection schemes and different channel detection energy costs.

FIGURE 11
Effect of different user request frequencies on the proposed algorithm and baseline policies in terms of information accuracy cost and energy
cost. (A) shows the average information accuracy cost and (B) shows the average energy cost.
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frequencies, and the results are shown in Figure 12. Using the

ratio of the total number of status updates of the sensor to the

total number of channels with good channel state in all time slots

as the statistical standard, it can be seen that the proportion of the

number of updates of the method proposed in this study is the

smallest; with the increase in the user’s request frequency, the use

of state correlation for state estimation is more helpful to reduce

the frequency of sensor status updates. It can be seen from the

figure that the performance gain of the method proposed in this

study is the most obvious under the high user request frequency.

This is because when the overall network information cached by

the edge node is relatively fresh, higher information accuracy can

be guaranteed through the cached information or estimated

information for some time, so as to reduce the update

frequency of the whole sensor network and save more energy.

6 Conclusion

This study analyzes how to use the correlation between

sensor status updates to ensure the accuracy of sensor

observation results and reduce the energy cost in a network

composed of EH sensors. The status information is

spatiotemporally related for all sensors. Therefore, status

updates from some sensors are helpful when estimating the

status information of others. Two channel models are

considered in this study. In the ideal channel model, the

communication channels between the sensor and the edge

node are independent and in good condition. In the nonideal

channel model, all the sensors share a limited number of

channels and the channel state is time-varying, which

requires sensors to communicate with edge nodes with

different power. By transforming the decision control

problem under the two models into a multi-objective

control decision problem with Markov property, the

control policy is solved by an algorithm based on RL.

Using a dataset obtained from a real sensor network, the

simulation results show that the control policy proposed in

this study outperforms the baseline policies. In addition, the

simulation results show that energy balance can be achieved

to a certain extent, i.e., the edge nodes will command the

sensors with higher energy costs to update the state more

frequently.
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